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Abstract: In this article, we study a Caputo fractional model, namely, the time fractional damped
Burger equation. As the main mathematical tool of this article, we apply a new approximate method
which is called the approximate-analytical method (AAM) to deal with the time fractional damped
Burger equation. Then, a new approximate solution of this considered equation was obtained. It
may be used to characterize nonlinear phenomena of the shallow water wave phenomena. Thereby, it
provides a new window for us to find the time fractional damped Burger equation new evolutionary
mechanism.
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1. Introduction

As we all know, complex natural phenomena are often characterized by nonlinear mathematical
models. When dealing with specific nonlinear phenomena, it is often necessary to consider the initial
value and boundary problems. This makes it difficult for us to find the exact solutions of this
considered models [1–5]. In particular, this thing becomes more difficult to deal with the fractional
differential equations. Therefore, in order to solve these problems, a lots of effective methods have
been proposed [6–13], such as the homotopy analysis method [6], the residual power series
method [7], the Lie symmetry group method [8,9], the iterative reproducing kernel method [10] and
the AAM [11], etc.

Here, we focus on the time fractional damped Burger equation [14] which reads,

Dα
t u + uux − uxx + pu = 0, t ∈ (0,T ], (1.1)
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with
u(x, 0) = px, x ∈ R, (1.2)

where p is a free constant.
The Burger’s equation was used to express the shallow water wave phenomena. In 1915, Bateman

H [15] proposed the one-dimensional nonlinear Burger’s equation of integral order for the first time.
Later, this equation was further studied by Burger JM [16]. In later days, many scholars applied
various methods to handle Burger’s-type model [17–21]. As feedback, exact solutions and approximate
solutions of this Burger’s equation, were obtained. For example, Guo T. et al. [17,18] utilized the BDF
finite difference scheme to deal with the viscous Burger’s equation. Inc [19] used an approximate
approach to consider the space-time fractional Burger’s equations. Peng X and Qiu W. et al.[20,21]
applied two different difference schemes to solve the mixed-type time fractional Burger’s equation
and the one-dimensional time fractional Burger’s equation. The goal of this letter is to apply a new
approximate method which is called the AAM to deal with the nonlinear time fractional damped Burger
equation. Thus, approximate solution of this considered equation was obtained.

The plan of this article as follows: In Section 2, the definitions and properties of the Caputo
fractional derivative were shown. The main steps, definitions and theorems of the AAM in Section 3,
were expounded in detail. In Section 4, we apply the AAM to deal with the nonlinear time fractional
damped Burger equation. Then, a new approximate solution of this researched model was yielded. In
the last section of this paper, conclusions and discussions of full texts were given.

2. Preliminaries

Before entering the discussion text, the definitions and properties of the Caputo fractional derivative
in this section were shown [22,23].
Definition 2.1. [22,23] The Caputo fractional partial derivative of the order α > 0 of the function
Ω(χ, τ) with independent variables χ and τ, is given by

Dα
τΩ(χ, τ) =


1

Γ(n−α)

τ∫
0

(τ − ς)n−α−1 ∂nΩ(χ,τ)
∂ςn dς, n − 1 < α < n, n ∈ N,

∂nΩ(χ,τ)
∂ςn , α = n ∈ N.

(2.1)

Theorem 2.1. [22,23] For the Caputo fractional derivative operator Dα
t (·), we have

Iαt Dα
t Ω(χ, τ) = Ω(χ, τ) −

m−1∑
k=0

τk

k!
∂kΩ(χ, 0+)

∂τk , m ≥ 1, m ∈ Z+, (2.2)

and
Dα
τ IατΩ(χ, τ) = Ω(χ, τ). (2.3)

3. This idea of the AAM

This main idea and results of the AAM [11] in this section, were given. As the scope of applications
of this method, we focus on this type fractional partial differential equations with initial values

Dα
t u(x̃, t) = g(x̃, t) + L(u) + N(u), n − 1 < α < n ∈ N, (3.1a)
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∂iu(x̃, 0)
∂ti = gi(x̃), i = 0, 1, 2, ..., n − 1, (3.1b)

where L and N are linear and nonlinear operators, respectively; and α is the fractional order of Caputo;
and x̃ = (x1, x2, ..., xn) ∈ Rn.

In this section, the main results of this considered scheme [13] were shown.

Lemma 3.1. For u(x̃, t) =
∞∑

k=0
lkuk(x̃, t) with the parameter l, the linear operator L(u) satisfies the

following property:

Lu(x̃, t) = L(
∞∑

k=0

lkuk(x̃, t))

=

∞∑
k=0

lkL(uk(x̃, t)).

(3.2)

Theorem 3.1. Let u(x, t) =
∞∑

k=0
uk(x̃, t). If considering uλ(x̃, t) =

∞∑
k=0
λkuk(x̃, t) with the parameter λ, then

the nonlinear operator N(uλ) satisfies the following property:

N(uλ) = N(
∞∑

k=0

λkuk)

=

∞∑
n=0

[
1
n!

∂n

∂λn [N(
n∑

k=0

λkuk)]|λ=0]λn.

(3.3)

Remark 3.1. If we denote

En(u0, u1, ..., un) =
1
n!

∂n

∂λn [N(
n∑

k=0

λkuk)]|λ=0, (3.4)

then, Eq (3.3) becomes

N(uλ) =

∞∑
n=0

λnEn. (3.5)

Theorem 3.2. Let n − 1 < α < n, f (x̃, t) and fi(x̃) from system (3.1a/b), then system (3.1a/b) admits at
least a solution given by

u(x̃, t) = f (−α)
t (x̃, t) +

n−1∑
i=0

ti

i!
fi(x̃) +

∞∑
k=1

[L(−α)
t (u(k−1)) + E(−α)

(k−1)t], (3.6)

where L(−α)
t (u(k−1)) and E(−α)

(k−1)t are fractional partial integral of order α for L(u(k−1)) and E(k−1).
Theorem 3.3. Let B be a Banach space. Then, the series solution

u0(x̃, t) =

n−1∑
i=0

ti

i!
gi(x̃), (3.7a)

u1(x̃, t) = f (−α)
t (x̃, t) + L(−α)

t u0 + E(−α)
0t , (3.7b)

...
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uk(x̃, t) = E(−α)
(k−1)t + L(−α)

t u(k−1), k = 2, 3, ... (3.7k)

converges to S ∈ B for, if there exists γ(0 ≤ γ < 1), such that

‖un‖ 6 γ
∥∥∥u(n−1)

∥∥∥ , (3.8)

for ∀n ∈ N and gi(x̃) is initial value.
Theorem 3.4. The series solution

u(x̃, t) =

∞∑
k=0

uk(x̃, t), (3.9)

of the maximum absolute truncation error is

sup
(x̃,t)∈Ω

∣∣∣∣∣∣∣∣u(x̃, t) −
n
′∑

k=0

uk(x̃, t)

∣∣∣∣∣∣∣∣ 6 γn
′
+1

1 − γ
sup

(x̃,t)∈Ω
|u0(x̃, t)| , (3.10)

where the region (x̃, t) ∈ Ω.
In what follows, we apply the above definitions and theorems to deal with the nonlinear time

fractional damped Burger equation.

4. Approximate solution of the time fractional damped Burger equation

In this section, we applied the AAM to deal with the nonlinear time fractional damped Burger
equation. Then, we yield a new approximate solution of this researched model.

First of all, this considered model with the initial condition was rewritten as the following form

Dα
t u + uux − uxx + pu = 0, 0 < α ≤ 1, t ∈ (0,T ], x ∈ R. (4.1a)

u(x, 0) = px. (4.2b)

When α = 1, the exact solution with initial condition corresponding to

u(x, t) =
px

2ept − 1
. (4.2)

Equation (4.1a) was reexpressed as the form

Dα
t u = N(u) + uxx − pu, (4.3)

where N(u) = −uux.
Now, we suppose that Eq (4.3) has a approximate solution of the form

u(x, t) =

∞∑
k=0

uk(x, t). (4.4)

For the sake of the solution to (4.3), we have

Dα
t uλ = λ[N(uλ) + (uλ)xx − puλ], (4.5)
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adjoint the initial condition given as
uλ(x, 0) = g(x). (4.6)

Further,considering Eq (4.5) has a solution of the form

uλ =

∞∑
k=0

λkuk. (4.7)

Through Theorem 3.1 and initial condition (4.6), we have

uλ = g(x) + λIαt [N(uλ) + (uλ)xx − puλ]. (4.8)

Plugging (4.8) into (4.9) with (3.5), we have

∞∑
k=0

λkuk = g(x) + λIαt [
∞∑

n=0

λnEn +

∞∑
k=0

λk(uk)xx − p
∞∑

k=0

λkuk]. (4.9)

We do the Eq (4.9) for the items with λ equals the same power, get the following components:

u0 = g(x), (4.10a)
u1 = Iαt [E0 + (u0)xx − pu0], (4.10b)
u2 = Iαt [E1 + (u1)xx − pu1], (4.10c)
...,

uk = Iαt [E(k−1) + (uk−1)xx − pu(k−1)], k = 3, 4, ..., (4.10k)

where E(k−1) have been known in (3.6).
From Eqs (4.4) and (4.7), we have

u(x, t) = lim
λ→1

uλ(x, t) =

∞∑
k=0

uk(x, t). (4.11)

Further, one obtains
u(x, 0) = lim

λ→1
uλ(x, 0)⇒ g(x) = u(x, 0). (4.12)

On the basis of the formula (4.10) with initial condition (4.12), we obtain a few components of form

u0 = px, (4.13a)

u1 = −
2p2

Γ(α + 1)
xtα, (4.13b)

u2 =
2p3

Γ(α + 1)Γ(α)
xt2α−1, (4.13c)

u3 = −(
6p4

Γ(α + 1)Γ2(α)
xt3α−2 +

4p4

Γ2(α + 1)Γ(α)
xt3α−1). (4.13d)
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Hence, Eq (4.1) has the third-order term approximate solution of the form

u(x, t) = px −
2p2

Γ(α + 1)
xtα +

2p3

Γ(α + 1)Γ(α)
xt2α−1

− (
6p4

Γ(α + 1)Γ2(α)
xt3α−2 +

4p4

Γ2(α + 1)Γ(α)
xt3α−1).

(4.14)

Remark 4.1. Reference [11] has given the approximate solution of some points and corresponding
errors. It has been able to demonstrate the effectiveness and accuracy of this method. We won’t repeat
this work here.

In order to better to state the fractional order values α how to effect the approximate solution (4.14),
we plot two 3D-plots with the values p = 1 and p = −1 by Figures 1 and 2, respectively.

(a) (b) (c)

Figure 1. The approximate solution (4.14) with parameter value p = 1 was plotted.

(a) (b) (c)

Figure 2. The approximate solution (4.14) with parameter value p = −1 was plotted.

5. Conclusions and discussions

In this article, we studied the model (4.1) which can be applied to show the shallow water wave
phenomena. Here, we applied a new approximate method called the AAM to handle the nonlinear
time fractional damped Burger equation. As a result, the approximate solution of model (4.1), was
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obtained. The result can be expressed by 3D-plots. We can see that this method is an effective tool to
solve deal with other fractional differential equations.
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