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Abstract: To define a new sequence space and determine the Köthe-Toeplitz duals of this sequence
space, characterizing the matrix transformation classes between the defined sequence spaces and
classical sequence spaces has been an important area of work for researchers. Defining and examining
a new vector-valued sequence space is also a considerable field of study since it generalizes classical
sequence spaces. In this study, new vector-valued sequence spaces E(X, λ, p) are introduced. The
Köthe-Toeplitz duals of E(X, λ, p) spaces are identified. Also, necessary and sufficient conditions are
determined for A = (Ank) to belong to the matrix classes (E(X, λ, p), c(q)); where Ank ∈ B(X,Y),
X ∈ {c, ℓ∞} and Y is any Banach spaces.
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1. Introduction

Let (X, ∥ · ∥) be a Banach space and p = (pk) be any bounded sequence of strictly positive real
numbers. Let w(X) be the set of all sequences x = xk with xk ∈ X. Bounded, convergent and null vector-
valued sequence spaces in X are denoted by ℓ∞(X), c(X), and c0(X), respectively. These sequence
spaces are linear subspace of w(X). When X = R or C (the real or complex numbers) it is used the
familiar notations ℓ∞, c and c0. Here, ℓ∞(X), c(X), and c0(X) are Banach spaces with the norm

∥x∥∞ = sup
k
∥xk∥,

where xk ∈ X for k = 1, 2, .... The set

S = {x ∈ X : ∥x∥ ≤ 1}

is the unit ball. B(X,Y) denotes the set of all bounded operators from a Banach space X into the Banach
space Y . If T ∈ B(X,Y), the operator norm of T is

∥T∥ = sup
x∈S
∥T x∥.
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In this paper, to indicate the continuous dual of X we use the notation X∗ instead of B(X,C). Also,
e and e(x) denote the sequences (1, 1, 1, ...) and (x, x, x, ...), respectively.

In the classical theory of matrix transformations, one of the basic problems is the characterization
of matrices that map a sequence space E into a sequence space F. The first step of this characterization
is the determination of the Köthe-Toeplitz duals of E. Also, the Köthe-Toeplitz duals of E are called
β-dual and α-dual of E.

Let X and Y be Banach spaces and (Ak) be the sequence of operators Ak defined from X to Y , which
are linear but not necessarily bounded. Then, the β-dual and α-dual of E are defined as follows:

Eα =
{
A = (Ak) :

∞∑
k=1

∥Akxk∥ < ∞ for all x ∈ E
}
,

Eβ =
{
A = (Ak) :

∞∑
k=1

Akxk converges in the Y − norm for all x ∈ E
}
.

Generalized Köthe-Toeplitz duals of X-valued sequence spaces ℓ∞(X), c(X) and c0(X) were defined
by Maddox [6].

Let Ax = (Ank) be an infinite matrix of linear, but not necessarily bounded, operators Ank from X to
Y . Suppose E is a nonempty subset of w(X) and suppose F is a nonempty subset of w(Y). We define
the matrix classes (E, F) by saying that A ∈ (E, F) if and only if, for every x = (xk) ∈ E,

Anx =
∞∑

k=1

Ankxk,

converges for each n in the norm topology of Y and the sequence

Ax =
(∑

Ankxk

)
n

belongs to F.

X-valued paranormed sequence spaces c0(X, p), c(X, p), ℓ∞(X, p) and ℓ(X, p) that are the
generalization of Maddox spaces c0(p), c(p), ℓ∞(p) and ℓ(p) were first defined by Rath [1]. Rath also
determined the generalized Köthe-Toeplitz duals of c0(X, p), c(X, p), ℓ∞(X, p) and ℓ(X, p). Suantai [8]
and Suantai and Sudsukh [7] gave the matrix characterizations (ξ(X, p), c(q)) where

ξ ∈ {c0, c0, c, ℓ, ℓ∞ Er, Fr}.

Srivastava and Srivastava [2] introduced the set c0(X, λ, p) and determined the generalized
Köthe-Toeplitz duals of these spaces where λ = (λk) is any sequence of non-zero complex numbers.

Now, we define the new X-valued sequence spaces as follows:

c(X, λ, p) = {x = (xk) : ∃l ∈ X, lim
k→∞
∥λkxk − l∥pk = 0},

ℓ∞(X, λ, p) = {x = (xk) : sup
k
∥λkxk∥

pk < ∞}.

The spaces c(X, λ, p) and ℓ∞(X, λ, p) are BK spaces with the norm

∥x∥λ,p = sup ∥λkxk∥
pk/M,
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where
p = (pk) ∈ ℓ∞,

and
M = max{1, sup

k
pk}.

c(X, λ, p) and ℓ∞(X, λ, p) are generalization of several sequence spaces. Some of these
generalizations are as follows:

If λk = 1 for all k and X = C, then we obtain spaces c(p) and ℓ∞(p) introduced by Maddox in [5].

If λk = 1 for all k, then we obtain spaces c(X, p) and ℓ∞(X, p) introduced by Rath in [1] and also
introduced by Suantai and Sudsukh [7].

If λk = 1 and pk = 1 for all k, then we obtain spaces c(X) and ℓ∞(X) introduced by Maddox in [6].

2. Köthe-Toeplitz duals

This section is concerned with the generalized Köthe-Toeplitz duals of the spaces c(X, λ, p),
ℓ∞(X, λ, p).

Now we define the group norm and consider an inequality to be used to calculate the β- duals of our
spaces. If (Fk) is a sequence in B(X,Y), the group norm of (Tk) is

∥(Fk)∥ = sup
∥∥∥∥∥ n∑

k=1

Fkxk

∥∥∥∥∥, (2.1)

where the supremum is taken over all n ∈ N and all choices of xk ∈ S . Inequality∥∥∥∥∥ n+p∑
k=n

Fkxk

∥∥∥∥∥ ≤ ∥Rn∥.max{∥xk∥ : n ≤ k ≤ n + p} (2.2)

holds for any xk and all n ≥ 1, and all non-negative integers p, where

Rn = (Fn, Fn+1, Fn+2, ...)

is called nth tail of (Fn), see [5].
Some results related to Köthe-Toeplitz duals of the space c0(X, λ, p) were obtained by Srivastava

and Srivastava [2] as follows:

Lemma 1. A = (Ak) ∈ cα0 (X, λ, p) if and only if

(i) There exist an integer m ≥ 1 such that Ak ∈ B(X,Y) for each k ≥ m.

(ii) There exist an integer N > 1 such that
∑∞

k=m |λk|
−1∥Ak∥N−rk < ∞.

Lemma 2. Let (Tk) is a sequence in B(X,Y). Then, exactly one of the following is true:

(i) ∥Rk∥ = ∞ for all k ≥ 1.

(ii) ∥Rk∥ < ∞ for all k ≥ 1.
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Lemma 3. A = (Ak) ∈ cβ0(X, λ, p) if and only if

(i) There exist an integer m ≥ 1 such that Ak ∈ B(X,Y) for each k ≥ m.

(ii) ∥Rm(λ,N)∥ < ∞ for some N > 1, where

Rm(λ,N) = (λ−1
m N−rm Am, λ

−1
m+1N−rm+1 Am+1, λ

−1
m+2N−rm+2 Am+2, ...).

Theorem 1. A = (Ak) ∈ cβ(X, λ, p) if and only if

(i) A = (Ak) ∈ cβ0(X, λ, p).

(ii)
∑∞

k=1 λ
−1
k Akx converges for each x ∈ X.

Proof. Suppose x ∈ c(X, λ, p) and suppose (i) and (ii) hold. We can write

c(X, λ, p) = c0(X, λ, p) + E,

where
E = {e(z) : z ∈ X}.

See Theorem 3.9 [9]. Then, we can write

λkxk = λkyk + z

for all k ∈ N where the sequence z in X and the sequence (yk) in c0(X, λ, p).

Therefore,
∑∞

k=1 λ
−1
k Akz is convergent by condition (ii) and

∑∞
k=1 Akyk is convergent by Lemma 3.

Thus we have that
∑∞

k=1 Akxk converges.

Since cβ(X, λ, p) ⊂ cβ0(X, λ, p) condition (i) follows from Lemma 3. If we take any x ∈ c(X, λ, p)
and y ∈ c0(X, λ, p), then

∑∞
k=1 Akxk and

∑∞
k=1 Akyk are converge. Morever, we consider

λkxk = λkyk + z

for all k ∈ N where the sequence z in X and the sequence (yk) in c0(X, λ, p). Hence,
∑∞

k=1 λ
−1
k Akz

converges for each z ∈ X. □

If we take λk = 1 and pk = 1 for all k in the Theorem 1, then we have Maddox [6] Proposition 3.2
as follows:

Corollary 1. (Ak) ∈ cβ(X) if and only if

(i) There exists m ∈ N such that Ak ∈ B(X,Y) for all k ≥ m.

(ii)
∑∞

k=1 Ak converges in the strong operator topology.

Theorem 2. A = (Ak) ∈ ℓ
β
∞(X, λ, p) if and only if

(i) There exist an integer m ≥ 1 such that Ak ∈ B(X,Y) for each k ≥ m.

(ii) ∥Rm(λ,N)∥ → 0 for all N > 1, where

Rm(λ,N) = (λ−1
m Nrm Am, λ

−1
m+1Nrm+1 Am+1, λ

−1
m+2Nrm+2 Am+2, ...).
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Proof. Let (i) and (ii) hold and x ∈ ℓ∞(X, λ, p). Then, there exists an integer N0 > 1 such that ∥xk∥ <

|λk|
−1Nrk

0 for all k ∈ N. If we use inequality (2.2), then we obtain∥∥∥∥∥ n+i∑
k=n

Akxx

∥∥∥∥∥ = ∥∥∥∥∥ n+i∑
k=n

λ−1
k Nrk AkλkN−rk xk

∥∥∥∥∥
≤ ∥Rm(λ,N)∥. max

n≤k≤n+i
{|λk|N−rk∥xk∥}

≤ ∥Rm(λ,N)∥.

Hence,
∑∞

k=1 Akxk is convergent since Y is a Banach space.

Since ℓβ∞(X, λ, p) ⊂ cβ0(X, λ, p) Lemma 3.2 yields condition (i). Now, suppose that (ii) fails, say

lim sup
n
∥Rm(λ,N)∥ = 3κ > 0.

Then, there exist integer 0 < m ≤ m1 ≤ n1 and zm1 , zm1+1, ..., zn1 in S such that∥∥∥∥∥ n1∑
m1

λ−1
k Nrk Akzk

∥∥∥∥∥ > κ.
Choose n1 < m2 such that ∥Rm2(λ)∥ > 2κ. Then, there exist m2 ≤ n2 and zm2 , zm2+1, ..., zn2 in S such that∥∥∥∥∥ n2∑

m2

λ−1
k Nrk Akzk

∥∥∥∥∥ > κ.
Now, by proceeding in this way, we can define the sequence x = (xk) as follows

xk =

{
λ−1

k Nrkzk, mi ≤ k ≤ ni,

θ, otherwise,

for all natural numbers i. Then, we have that x ∈ ℓ∞(X, λ, p), since

∥x∥ = sup ∥λkxk∥
pk ≤ N.

On the other hand
∑∞

k=0 Akxk is divergent, that is a contradiction. Hence the proof is completed. □

The Köthe-Toeplitz duals of c0(X, λ, p), c(X, λ, p) and ℓ∞(X, λ, p) can be rewritten in the case of
Ak ∈ B(X,Y) for all integers k. For these concept let define the following sets, which are the subspace
of w(B(X,Y)):

M0(B(X,Y), λ, p) =
⋃
N>1

{
A = (Ak) :

∞∑
k=1

|λk|
−1∥Ak∥N−rk < ∞

}
, (2.3)

M0(X∗, λ, p) =
⋃
N>1

{
f = ( fk) :

∞∑
k=1

|λk|
−1∥ fk∥N−rk < ∞

}
, (2.4)

M∞(B(X,Y), λ, p) =
⋂
N>1

{
A = (Ak) :

∞∑
k=1

|λk|
−1∥Ak∥Nrk < ∞

}
, (2.5)
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M∞(X∗, λ, p) =
⋂
N>1

{
f = ( fk) :

∞∑
k=1

|λk|
−1∥ fk∥Nrk < ∞

}
. (2.6)

Srivastava and Srivastava [2] showed that in the Theorem 3.1

cα0 (X, λ, p) = M0(B(X,Y), λ, p).

Moreover, they showed that if Y = C and fk ∈ X∗ for k ≥ 1, then

cα0 (X, λ, p) = cβ0(X, λ, p) = M0(X∗, λ, p)

in the Theorem 3.5.
The following result can now be proved in the same way as Theorem 3.1 in [2] .

Theorem 3. ℓα∞(X, λ, p) = M∞(B(X,Y), λ, p).

Theorem 4. Let Y be complex field C and f = ( fk) be a sequence of continuous linear functionals on
X. Then,

ℓα∞(X, λ, p) = ℓβ∞(X, λ, p) = M∞(X∗, λ, p).

Proof.
ℓα∞(X, λ, p) = M∞(X∗, λ, p)

from Theorem 3. Now, we show that

ℓβ∞(X, λ, p) ⊂ M∞(X∗, λ, p).

Following Srivastava and Srivastava [2] as in Theorem 3.5; suppose

f = ( fk) < M∞(X∗, λ, p),

then we obtain
∞∑

k=1

|λk|
−1∥ fk∥Nrk > 2,

for some N > 1. Also, there exists zk ∈ S such that ∥ fk∥ < 2| fk(zk)| for each k ≥ 1. If define the
sequence x = (xk) as

xk = sgn( fk(zk))|λk|
−1Nrkzk,

for k ∈ S (N), then the sequence x = (xk) in ℓ∞(X, λ, p) but
∞∑

k=1

fk(xk) = ∞.

These show that f = ( fk) < ℓ
β
∞(X, λ, p), so ℓβ∞(X, λ, p) ⊂ M∞(X∗, λ, p).

On the other hand ℓα∞(X, λ, p) ⊂ ℓβ∞(X, λ, p) since C is complete. □

Taking f = ( fk) ∈ B(X,C) instead of A = (Ak) ∈ B(X,Y) in Theorem 1, the following result can be
obtained.

Theorem 5. Let f = ( fk) be a sequence such that fk ∈ X for all k ∈ N. Then, f = ( fk) ∈ cβ(X, λ, p) if
and only if

(i)
∑∞

k=1 |λk|
−1∥ fk∥N−1/pk < ∞ for some N ∈ N.

(ii)
∑∞

k=1 λ
−1
k fk(x) converges for each x ∈ X.
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3. Matrix transformations

In this section, some matrix classes will be characterized using similar methods developed by Wu
and Liu [11] and Suantai and Sudsukh [7]. Throughout these section, F = ( f n

k ) be an infinite matrix
and f n

k ∈ X∗ for all k, n ∈ N. Moreover, let u = (uk) and v = (vk) be scalar sequences and uk , 0, vk , 0
and we can define two sets as follow:

Eu = {x = (xk) ∈ w(X) : (ukxk) ∈ E},

and
u(E, F)v = {F = ( f n

k ) : (unvk f n
k )n,k ∈ (E, F)}.

An X-valued sequence space E is solid when x = (xk) ∈ E and ∥yk∥ ≤ ∥xk∥ for all k ∈ N together imply
that y = (yk) ∈ E.

Now we give two lemmas, their proof can be found in [7].

Lemma 4. Let E be a solid X-valued sequence space which is an FK-space and contain Φ(X). Then

(E, c(q)) = (E, c0(q)) ⊕ (E, ⟨e⟩).

Lemma 5. Let E and En be X-valued sequence spaces, and F and Fn be scalar-valued sequence spaces
for all n ∈ N. Then,

(i) (
⋃∞

n=1 En, F) =
⋂∞

n=1(En, F).

(ii) (E,
⋂∞

n=1 Fn) =
⋂∞

n=1(E, Fn).

(iii) (E1 + E2, F) = (E1, F)
⋂

(E2, F).

(iv) (Eu, Fv) =v (E, F)u−1 .

Theorem 6. F = ( f n
k ) ∈ (c0(X, λ, p), c(q)) if and only if there is a sequence ( fk) ⊂ X∗ such that

(i)
∑∞

k=1 |λk|
−1∥ fk∥N−1/pk < ∞ for some N ∈ N.

(ii) m1/qn( f n
k − fk)→ 0 as n→ ∞ for every k,m ∈ N.

(iii) m1/qn
∑∞

k=1 ∥ f
n
j ∥r

1/pk → 0 as n, r → ∞ for each m ∈ N.

Proof. For the sufficiency assume that

F = ( f n
k ) ∈ (c0(X, λ, p), c(q)).

Since
cq = c0(q) ⊕ ⟨e⟩

from [10] (page-301), then we obtain

F = ( f n
k ) ∈ (c0(X, λ, p), c0(q) ⊕ ⟨e⟩).

Now, we can choose
D ∈ (c0(X, λ, p), c0(q))

AIMS Mathematics Volume 8, Issue 6, 13306–13316.
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and
E = (hn

k) ∈ (c0(X, λ, p), ⟨e⟩)

such that F = D + E by Lemma 4. In addition, (hn
k(x))∞n=1 ∈ ⟨e⟩ for all x ∈ X and k ∈ N since

Φ(X) ⊂ c0(X, λ, p). These yields that hn
k = hn+1

k for all k, n ∈ N. Let choose fk = h1
k , so we obtain

D = ( f n
k − fk)n,k ∈ (c0(X, λ, p), c0(q)).

We know that

c0(q) =
∞⋂

m=1

c0
(m1/pk )

from Theorem 0 in [10], which yields that

(m1/qn( f n
k − fk))n,k ∈ (c0(X, λ, p), c0)

for all m ∈ N by Lemma 5(ii) and (iv). If we use Theorem 2.4 in [11], then conditions (ii) and (iii)
hold. Further

∑∞
k=1 fk(xk) converges for all

x = (xk) ∈ c0(X, λ, p),

since
E = ( fk)n,k ∈ (c0(X, λ, p), ⟨e⟩).

So (i) holds by Theorem 3.5 in [2].
For the necessity suppose that ( fk) be a sequence such that fk ∈ X∗ for all k ∈ N and conditions

(i)–(iii) hold. Also, let F = D + E where

D = ( f n
k − fk)n,k

and E = ( fk)n,k. Hence
D ∈ (c0(X, λ, p), c0(q)),

by conditions (i), (ii), Proposition 3.1 (ii) and Theorem 2.4 in [11]. Moreover,
∑∞

k=1 fk(xk) converges
for all

x = (xk) ∈ c0(X, λ, p),

by proposition 3.3 and the condition (i). Hence E ∈ (c0(X, λ, p), ⟨e⟩). So Lemma 4 yields

F = ( f n
k ) ∈ (c0(X, λ, p), c(q)).

□
As an easy consequence of Theorem 4.3 in [7], we have

Lemma 6. F = ( f n
k ) ∈ (ℓ∞(X, λ), c(q)) if and only if there is a sequence ( fk) ⊂ X∗ such that

(i)
∑∞

k=1 |λk|
−1∥ fk∥ < ∞.

(ii) m1/qn( f n
k − fk)→ 0 as n→ ∞ for every k,m ∈ N.

(iii)
∑∞

j=k+1 m1/qn∥ f n
j − f j∥r1/pk → 0 as k → ∞ uniformly on n ∈ N, for each m, r ∈ N.

AIMS Mathematics Volume 8, Issue 6, 13306–13316.
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Lemma 7. ℓ∞(X, λ, p) =
⋃∞

m=1 ℓ∞(X, λ)(m−1/pk ).

Proof. Let x ∈ ℓ∞(X, λ, p), then there is some m ∈ N such that supk ∥λkxk∥
pk < m. Therefore,

∥λkxk∥m−1/pk ≤ 1

for all k ∈ N. Hence,
x ∈ ∪∞m=1ℓ∞(X, λ)(m−1/pk ).

Conversely, suppose that
x ∈ ∪∞m=1ℓ∞(X, λ)(m−1/pk ).

Then, there are some m ∈ N and K > 1 such that

∥λkxk∥m−1/pk ≤ K

for all k ∈ N. Hence, this yields
∥λkxk∥

pk ≤ mK pk ≤ mKt

for all k ∈ N, where t = supk pk, so that x ∈ ℓ∞(X, λ, p). □

Theorem 7. F = ( f n
k ) ∈ (ℓ∞(X, λ, p), c(q)) if and only if there is a sequence ( fk) ⊂ X∗ such that

(i)
∑∞

k=1 |λk|
−1∥ fk∥N1/pk < ∞ for all N ∈ N.

(ii) r1/qn(m1/pk f n
k − fk)→ 0 as n→ ∞ for every k,m ∈ N.

(iii) r1/qn
∑∞

j=k+1 ∥m
1/p j f n

j − f j∥s1/p j → 0 as k → ∞ uniformly on n ∈ N, for each m, r, s ∈ N.

Proof. Let consider the Lemmas 5–7. Then, we derive from two-sided implication Fx is in c(q)
whenever x ∈ ℓ∞(X, λ, p) if and only if

(m1/pk f n
k )n,k ∈ (ℓ∞(X, λ), c(q)).

So we have for the necessary and sufficient (i)–(iii) hold. □

Theorem 8. F = ( f n
k ) ∈ (c(X, λ, p), c(q)) if and only if there is a sequence ( fk) ⊂ X∗ such that

(i)
∑∞

k=1 |λk|
−1∥ fk∥N−1/pk < ∞ for some N ∈ N.

(ii) m1/qn( f n
k − fk)→w∗ 0 as n→ ∞ for every k,m ∈ N.

(iii) m1/qn
∑∞

k=1 ∥ f
n
j ∥r

1/pk → 0 as n, r → ∞ for each m ∈ N.

(iv) (
∞∑

k=1

f n
k (x))n ∈ c(q) for all x ∈ X.

Proof. As in the proof of Theorem 1

c(X, λ, p) = c0(X, λ, p) + {e(x) : x ∈ X}.

Hence, Lemma 5 show that
F ∈ (c(X, λ, p), c(q))
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if and only if
F ∈ (c0(X, λ, p), c(q))

and
F ∈ ({e(x) : x ∈ X}, c(q)).

Then,
F ∈ (c0(X, λ, p), c(q))

if and only if the conditions (i)–(iii) hold, follows easily from Theorem 6. Also, one can show that

F ∈ ({e(x) : x ∈ X}, c(q))

if and only if (iv) holds. □

4. Conclusions

The computation of Köthe-Toeplitz duals of sequence spaces is an important field of study in order
to determine the matrix transformation classes between two spaces. Many researchers try to derive new
sequence spaces using well-known sequence spaces. They also investigate for matrix transformation
classes between the proposed new sequence spaces and classical sequence spaces by identifying the
duals of the spaces they have obtained.

Many different methods have been used to obtain new sequence spaces. One of these is paranormed
sequence spaces defined by Maddox. Maddox has constructed new sequence spaces from classical
sequence spaces ℓ∞, c0 and c. These sequence spaces are ℓ∞(p), c0(p), c0(p) where

p = (pk) ∈ ℓ∞

and
M = max{1, sup

k
pk}.

With these sequence spaces defined by Maddox a wide working area has been opened. An other method
to obtaining new sequence spaces is “matrix domain” method. For an arbitrary sequence space X, the
matrix domain of an infinite matrix A in X is defined by

XA = {x ∈ w : Ax ∈ X}

as in [3,4]. The other method is to generate a new sequence space from classical sequence spaces using
any scalar sequence λ = (λk). For example, Srivastava and Srivastava [2] introduced the sequence space

c0(X, λ, p) = {x = (xk) : lim
k→∞
∥λkxk∥

pk = 0}.

The researchers can obtain new sequence spaces by using above methods.
In this study, we introduced generalized vector valued sequence spaces c(X, λ, p) and ℓ∞(X, λ, p).

We determined the Köthe-Toeplitz duals of these spaces and characterized some matrix classes
(E(X, λ, p), c(q)) where E ∈ {ℓ∞, c}. These spaces are the generalization of some sequence spaces
given in the references.
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