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Abstract: This paper addresses neutrosophic statistics that will be used to design a double- 

acceptance sampling plan. We will design the sampling plans when the lifetime of the product 

follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling 

plan will be determined using nonlinear optimization at various indeterminacy values and parameters. 

The productivity of the double sampling plan using neutrosophic statistics over the sampling plan 

under classical statistics will be given. The presentation of the proposed double sampling plan will be 

given with the help of industrial data. 
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1. Introduction 

The inspection of a finished product is done using acceptance sampling plans. When the 

inspection is done, it is not possible to test the complete lot of the product. A feasible and easy way is 

to select a representing part of a lot of the product and test for the specified time or note the number 

of failures using cutoff values of the sampling plan. The practice of sampling plans for the 

assessment of products protects the producers from rejecting a good lot and accepting a bad lot. The 

application of the sampling plans saves time, cost, energy and workers’ efforts. Singh et al. [1] 

considered the inverse Weibull distribution in designing an inspection scheme. Al-Nasser et al. [2] 

considered a Q-Weibull distribution in the implementation of the inspection scheme. Algarni [3] 

worked on a group inspection scheme under truncated test. The applications of various statistical 

distributions in the field of sampling plans can be seen in [4,5]. 
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A double acceptance sampling plan (DASP) is applied for testing the product when the 

decision-makers cannot reach the final decision on the basis of the first sample information. A second 

sample is selected, and combined sample information is used in decision-making [6]. The double 

sampling plan works more efficiently than the single plan in terms of average sample number (ASN). 

Mahdy et al. [7] worked on the DASP for various distributions. Saranya et al. [8] proposed the DASP 

for a Pareto type IV distribution. More applications of the DASP can be seen in [9–11].  

The DASP designed under classical statistics can be used when data is determinate. In practice, 

under uncertainty, the data is recorded in intervals or imprecise. Neutrosophic statistics introduced by [12] 

is applied when the data is inaccurate or recorded in intervals. Neutrosophic statistics reduce to 

classical statistics when no uncertainty is found in the data or parameter. Chen et al. [13,14] show the 

efficacy of neutrosophic statistics over classical statistics. Woodall et al. [15] suggested that the 

sample size should be fixed in advance for sampling plans and the control charts. Recently, 

Smarandache [16] proved that neutrosophic statistics is found to be better than classical statistics and 

classical multivariate statistics. The DASP using neutrosophic distribution can be seen in [17,18]. 

The existing DASP under classical statistics can be applied when lifetime data is 

determinate. [19–22] pointed out that lifetime data is not always precise in practice. The existing 

DASP under classical statistics cannot be applied in the presence of imprecise lifetime data. From 

the literature study, there is no work on the DASP for the inspection of the product in the presence 

of imprecise lifetime data. By exploring the literature on the sampling plans using neutrosophic 

statistics, we did not find any work on the DASP using neutrosophic Weibull distribution. In this 

paper, we will design a neutrosophic DASP (NDASP) using the neutrosophic Weibull distribution. 

The application of the proposed NDASP will be given using real data. The efficiency of the proposed 

NDASP over the DASP under classical statistics will be discussed. 

2. Preliminaries 

Aslam [23] introduced the Weibull distribution under indeterminacy with the following 

neutrosophic probability density function (npdf) and neutrosophic cumulative distribution function 

(ncdf). 
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Let 𝑥𝑁𝜖[𝑥𝐿 , 𝑥𝑈] be the neutrosophic random variable. Let 𝛽 and 𝛼 be the shape parameter 

and a scale parameter, respectively, and let 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] be a measure of indeterminacy. The npdf and 

ncdf of the Weibull distribution reduce to classical statistics when 𝐼𝑁=0. From [23], the neutrosophic 

mean and median are expressed as follows. 

𝜇𝑁 = 𝛼Γ(1 + 1 𝛽⁄ )(1 + 𝐼𝑁); 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈]       (3) 

𝜇𝑁 = 𝛼(ln (2))1/𝛽(1 + 𝐼𝑁); 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈].       (4) 

Suppose that 𝑎 is the termination time, and then 𝑡0 = 𝑎𝜇𝑁 is the truncated time. Using ncdf and 𝑡0, 

the probability of failure from [23] is given by  

𝑝(𝑟) = 1 − {exp(−𝑎𝛽(𝑟)−𝛽 (Γ(1 𝛽⁄ ) 𝛽⁄ )𝛽(1 + 𝐼𝑁)𝛽)(1 + 𝐼𝑁)} + 𝐼𝑁   (5) 
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where 𝑟 = 𝜇 𝜇0⁄ . 

3. The proposed NDASP 

Let 𝛼̃ and 𝛽 be the producer’s risk and consumer’s risk, respectively. Let 𝑛1 and 𝑛2 be the 

first and the second sample sizes. Suppose that 𝑑1 and 𝑑2 are the numbers of defectives from the 

first and the second samples, respectively. The proposed NDASP is described as follows.  

Step-1: Specify 𝐼𝑁, 𝛼̃ and 𝛽. 

Step-2: Inspect the first sample of size 𝑛1 and note the number of defective items 𝑑1. Accept a lot 

of the product if 𝑑1 ≤ 𝑐1; reject a lot of the product if 𝑑1 > 𝑐2. Otherwise, go to Step-3. 

Step-3: Inspect the second sample of size 𝑛2 and note the number of defective items 𝑑2. Accept a 

lot if 𝑑1 + 𝑑2 ≤ 𝑐2. 

The proposed NDASP is based on five parameters, namely, 𝑛1, 𝑐1, 𝑛2, 𝑐2 and 𝐼𝑁. The proposed 

NDASP is the generalization of the plan proposed by [23]. The operating characteristics (OC) 

function of the NDASP is taken from [24] and is given as 

𝐿(𝑝) = ∑ (
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where 𝑝 is given in Eq (5). 

The average sample number (ASN) for the NDASP is given by 

𝐴𝑆𝑁 = 𝑛1𝑃1 + (𝑛1 + 𝑛2)(1 − 𝑃1)        (7) 

where 

𝑃1 = 1 − ∑ (
𝑛1

𝑖
) 𝑝𝑖(1 − 𝑝)𝑛1−𝑖𝑐2

𝑖=𝑐1+1 . 

Optimization  

We know that 𝛼̃ and 𝛽 are the producer’s risk and consumer’s risk, respectively. Let 𝜇 𝜇0⁄  

be the quality level of the product. The producer’s interest is that the probability of acceptance for a 

good lot should be larger than 1 − 𝛼̃ at 𝜇 𝜇0⁄ = 𝑟2, and the consumer wishes that the probability of 

acceptance for a bad lot should be less than 𝛽̃ at 𝜇 𝜇0⁄ = 𝑟1. The plan parameters of the proposed 

plan will be determined using the following conditions. 

Specify 𝐼𝑁, 𝑟1, 𝑟2, 𝛼̃, 𝛽, 𝑎. 

Determine 𝑛1, 𝑛2, 𝑐1, 𝑐2, such that 

𝐿(𝑝1) ≤ 𝛽 

𝐿(𝑝2) ≥ 1 − 𝛼̃          (8) 

where 𝑝1 = 𝑝(𝑟1) and 𝑝2 = 𝑝(𝑟2). 

The four plan parameters are determined through the abovementioned optimization process by 

minimizing ASN. The plan parameters have been selected using the grid search method. During the 

simulation, several combinations of the plan parameters were found that satisfied the given 

constraints. Among the many combinations of the plan parameters, those where ASN is the minimum 

were chosen. The plan parameters are determined using different values of 𝑟2, 𝑎, 𝛼̃, 𝛽 and 𝐼𝑁 and 

placed in Tables 1–3. Tables 1–3 are constructed using 𝛼̃ = 0.05 ;  𝛽̃ = 0.05;  𝑎 = 0.25, 0.50, 

0.75; 𝑟1 = 𝜇 𝜇0⁄ = 1; 𝑟2= 1.8, 2, 2.5, 3, 3.5, 4; 𝐼𝑁= 0, 0.02, 0.05, 0.10; and 𝛽= 2, 2.50, 3. Tables 1–3 
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show that as the values of 𝑟2 increase from 1.8 to 4, the values of ASN decrease. On the other hand, it is 

also interesting to note that the values of ASN decrease as the values of 𝐼𝑁 increase from 0 to 0.10. 

Table 1. The plan parameters when 𝛽=2. 

𝑎 𝑟2 
𝐼𝑁=0 𝐼𝑁=0.02 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 125 174 0 8 298.6 171 110 0 8 281 

2 125 120 0 6 244.7 121 110 0 6 230.8 

2.5 123 37 0 3 159.9 115 36 0 3 150.9 

3 117 13 0 2 130 103 19 0 2 121.9 

3.5 100 30 0 2 129.8 112 10 0 2 122 

4 88 10 0 1 97.9 87 6 0 1 92.9 

0.5 

1.8 16 21 0 8 37 19 16 0 8 35 

2 10 21 0 6 30.7 10 19 0 6 28.8 

2.5 16 7 0 4 23 10 9 0 3 18.9 

3 10 6 0 2 15.9 10 5 0 2 15 

3.5 11 6 0 2 17 13 3 0 2 16 

4 9 4 0 1 12.9 9 6 0 2 14.9 

0.75 

1.8 30 34 0 6 63.9 42 18 0 6 60 

2 27 7 0 2 34 21 11 0 2 31.9 

2.5 20 6 0 1 25.9 22 3 0 1 25 

3 23 2 0 1 25 19 5 0 1 23.9 

3.5 22 3 0 1 25 19 5 0 1 23.9 

4 19 7 0 1 25.8 21 3 0 1 24 

𝑎 𝑟2 
𝐼𝑁=0.05 𝐼𝑁=0.10 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 127 131 0 8 257.9 93 132 0 8 224.7 

2 116 96 0 6 211.9 108 76 0 6 183.9 

2.5 114 24 0 3 138 91 29 0 3 119.9 

3 91 21 0 2 111.9 73 25 0 2 97.8 

3.5 92 20 0 2 111.9 76 22 0 2 97.8 

4 82 2 0 1 84 69 4 0 1 73 

0.5 

1.8 16 17 0 8 33 13 18 0 9 31 

2 11 16 0 6 26.9 16 7 0 6 23 

2.5 12 8 0 4 20 9 6 0 3 15 

3 8 6 0 2 13.9 8 4 0 2 12 

3.5 8 7 0 2 14.9 9 3 0 2 12 

4 6 7 0 1 12.7 9 4 0 2 13 

0.75 

1.8 44 11 0 6 55 23 25 0 6 47.9 

2 20 9 0 2 28.9 23 3 0 2 26 

2.5 18 5 0 1 22.9 14 7 0 1 20.8 

3 17 5 0 1 21.9 17 3 0 1 20 

3.5 16 7 0 1 22.8 15 4 0 1 18.9 

4 18 4 0 1 21.9 15 4 0 1 18.9 
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Table 2. The plan parameters when 𝛽=2.50. 

𝑎 𝑟2 
𝐼𝑁=0 𝐼𝑁=0.02 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 271 186 0 5 456.7 276 150 0 5 425.8 

2 253 145 0 4 397.6 255 116 0 4 370.8 

2.5 241 32 0 2 272.9 213 42 0 2 254.8 

3 195 11 0 1 205.9 183 9 0 1 191.9 

3.5 193 13 0 1 205.9 186 6 0 1 191.9 

4 192 14 0 1 205.8 178 14 0 1 191.8 

0.5 

1.8 20 12 0 5 32 21 9 0 5 30 

2 21 7 0 4 28 19 8 0 4 27 

2.5 15 4 0 2 19 12 7 0 2 18.9 

3 9 8 0 1 16.7 11 3 0 1 14 

3.5 15 2 0 1 17 11 2 0 1 13 

4 11 4 0 1 14.9 9 5 0 1 13.8 

0.75 

1.8 20 12 0 5 32 21 9 0 5 30 

2 21 7 0 4 28 19 8 0 4 27 

2.5 15 4 0 2 19 12 7 0 2 18.9 

3 9 8 0 1 16.7 11 3 0 1 14 

3.5 15 2 0 1 17 11 2 0 1 [13 

4 11 4 0 1 14.9 9 5 0 1 13.8 

𝑎 𝑟2 
𝐼𝑁=0.05 𝐼𝑁=0.10 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 260 125 0 5 384.9 184 144 0 5 327.6 

2 244 91 0 4 334.9 192 93 0 4 284.8 

2.5 207 23 0 2 229.9 159 37 0 2 195.8 

3 171 2 0 1 173 134 14 0 1 147.8 

3.5 156 18 0 1 173.8 135 13 0 1 147.8 

4 156 18 0 1 173.8 140 8 0 1 147.9 

0.5 

1.8 14 13 0 5 27 16 8 0 5 24 

2 19 5 0 4 24 11 9 0 4 20 

2.5 9 8 0 2 16.8 10 4 0 2 14 

3 10 6 0 2 15.9 8 2 0 1 10 

3.5 9 3 0 1 11.9 7 8 0 2 14.8 

4 9 4 0 1 12.9 8 2 0 1 10 

0.75 

1.8 14 13 0 5 27 16 8 0 5 24 

2 19 5 0 4 24 11 9 0 4 20 

2.5 9 8 0 2 16.8 10 4 0 2 14 

3 10 6 0 2 15.9 8 2 0 1 10 

3.5 9 3 0 1 11.9 7 8 0 2 14.8 

4 9 4 0 1 12.9 8 2 0 1 10 
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Table 3. The plan parameters when 𝛽=3. 

𝑎 𝑟2 
𝐼𝑁=0 𝐼𝑁=0.02 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 489 212 0 3 700.1 497 149 0 3 645.6 

2 478 90 0 2 567.6 439 87 0 2 525.6 

2.5 400 28 0 1 427.7 377 19 0 1 395.8 

3 410 18 0 1 427.8 380 15 0 1 394.8 

3.5 418 9 0 1 426.9 370 27 0 1 396.7 

4 418 9 0 1 426.9 375 20 0 1 394.8 

0.5 

1.8 68 21 0 3 89.0 47 37 0 3 83.6 

2 46 30 0 2 75.5 64 3 0 2 67.0 

2.5 50 4 0 1 54.0 43 8 0 1 50.9 

3 54 2 0 1 56.0 48 4 0 1 52.0 

3.5 50 5 0 1 54.9 49 2 0 1 51.0 

4 58 2 0 1 60.0 44 7 0 1 50.9 

0.75 

1.8 15 19 0 4 33.8 17 9 0 3 26.0 

2 22 9 0 3 31.0 16 11 0 3 26.9 

2.5 12 14 0 2 25.6 13 8 0 2 20.9 

3 12 8 0 1 19.8 13 9 0 2 21.9 

3.5 14 3 0 1 17.0 14 2 0 1 16.0 

4 15 2 0 1 17.0 14 6 0 1 19.9 

𝑎 𝑟2 
𝐼𝑁=0.05 𝐼𝑁=0.10 

𝑛1 𝑛2 𝑐1 𝑐2 ASN 𝑛1 𝑛2 𝑐1 𝑐2 ASN 

0.25 

1.8 407 170 0 3 576.3 415 63 0 3 477.9 

2 414 53 0 2 466.8 328 60 0 2 387.7 

2.5 329 23 0 1 351.7 276 16 0 1 291.8 

3 330 23 0 1 352.7 288 4 0 1 292.0 

3.5 329 23 0 1 351.7 279 15 0 1 293.8 

4 342 12 0 1 353.9 284 9 0 1 292.9 

0.5 

1.8 40 35 0 3 74.5 53 8 0 3 61.0 

2 43 19 0 2 61.8 48 3 0 2 51.0 

2.5 32 17 0 1 48.5 32 7 0 1 38.9 

3 39 6 0 1 44.9 39 2 0 1 41.0 

3.5 42 5 0 1 46.9 32 7 0 1 38.9 

4 41 10 0 1 50.9 28 16 0 1 43.6 

0.75 

1.8 20 9 0 4 29.0 9 16 0 4 24.7 

2 20 8 0 3 28.0 13 6 0 3 19.0 

2.5 12 7 0 2 18.9 9 3 0 1 11.9 

3 12 2 0 1 14.0 7 9 0 1 15.6 

3.5 9 7 0 1 15.7 15 3 0 2 18.0 

4 12 9 0 1 20.9 13 2 0 1 15.0 
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4. Comparative study 

The efficiency of the proposed NDASP over the DASP under classical statistics proposed by [25] in 

terms of ASN will be presented in this section. To compare the efficiency of the proposed plan with 

the existing DASP proposed by [25], we will contemplate the identical values of all parameters. As 

mentioned earlier, the proposed NDASP reduces to the DASP proposed by [25] when 𝐼𝑁=0. The 

values of ASN for 𝐼𝑁 = 0 are also reported in Tables 1–3. From these Tables 1–3, it can be noted 

that the existing DASP has larger values of ASN as compared to the proposed NDASP. From 

Tables 1–3, it can be noted that when the values of 𝐼𝑁 increase from 0 to 0.10, there is a 

decreasing trend in ASN. For example, when 𝛽=2, 𝜇 𝜇0⁄ =2, and 𝑎=0.25, the value of ASN is 244 

from the existing DASP under classical statistics proposed by [25]. On the other hand, for the other 

same values when 𝐼𝑁 = 0.02, the value of ASN is 230. The trends in ASN for various values of 𝐼𝑁 

and 𝛽 are shown in Figures 1–4. Figure 1 shows the curves of ASN for different values of IN when 

𝛽=2 and 𝑎=0.25. Figure 2 shows the curves of ASN for different values of IN when 𝛽=2.5 and 

𝑎=0.25. Figure 3 shows the curves of ASN for different values of IN when 𝛽=3 and 𝑎=0.25. Figure 

4 shows the curves of ASN when 𝛽=2, 2.5, 3.0, 𝑎=0.25, and 𝐼𝑁 = 0.02. From Figures 1–3, it can 

be noted that the ASN curve of the existing DASP under classical statistics is higher than the curves 

when 𝐼𝑁 =0.02, 0.05 and 0.10. The curves of Figure 4 depict that the ASN values increased as the 

values of 𝛽 increased. It can be seen that the curve of ASN when 𝛽=3 is higher than those when 

𝛽=2 and 2.5. From this study, it can be clearly judged that the proposed NDASP is more efficient than 

the existing DASP under classical statistics proposed by [25].  

 

Figure 1. ANS comparison when 𝛽=2 and 𝑎=0.25. 
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Figure 2. ANS comparison when 𝛽=2.5 and 𝑎=0.25. 

 

Figure 3. ANS comparison when 𝛽=3 and 𝑎=0.25. 
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Figure 4. ASN for various values of 𝛽 and 𝐼𝑁 = 0.02. 

5. Real example 

The application of the proposed NDASP under neutrosophic statistics will be discussed with the 

help of light-emitting diode (LED) data. According to [26], the LED manufacturing process “focuses 

on the luminous intensities of LED sources” and “the data given by luminous intensity of a particular 

LED inevitably have some degree of imprecision”. The data is shown in Table 4. By the 

implementation of the proposed plan, we selected the determinate values of luminous intensities 

from [26] and supposed that the degree of imprecision is 0.10 in measuring luminous intensities of 

diodes. The estimated value of 𝛽 is found to be approximately 2. Therefore, from Table 1, the plan 

parameters are noted as 𝜇 𝜇0⁄ = 4, 𝑛1=9, 𝑛2=6, 𝑐1=0, 𝑐2=3 and ASN=15. Let 𝜇0𝜖[2.87, 3.15] and 

𝑎=1, which leads to 𝑡0𝜖[2.87, 3.15]. Based on the first sample, the LED product will be accepted if 

no failure of luminous intensities of diodes occurs before 𝑡0𝜖[2.87, 3.15] and rejected if more than 3 

failures of luminous intensities of diodes are noted before 𝑡0𝜖[2.87, 3.15]. From the neutrosophic 

data, it can be noted that several failures of luminous intensities of diodes (more than 3) are before 

𝑡0𝜖[2.87, 3.15], which leads to the rejection of the LED product. Using the existing DASP under 

classical statistics for the same parameters, the value of ASN=19. On the other hand, the value of 

ASN for the proposed NDASP is 15. By comparing the proposed NDASP under neutrosophic 

statistics with the existing DASP, the proposed plan needs an average sample size that is equal to 15, 

and the existing DASP needs an average sample size of 19 to reach the same decision about the 

rejection of the LED product. Based on this study, it can be concluded that the proposed NDASP is 

more efficient than the existing DASP under classical statistics in terms of ASN. 

Table 4. The LED data. 
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6. Concluding remarks 

The double acceptance sampling plans for Weibull distribution under indeterminacy were 

presented in this paper. The operating characteristics function was introduced for the proposed 

NDASP. The proposed NDASP was the extension of the existing DASP under classical statistics. The 

proposed NDASP was found to be flexible and more informative than the existing DASP under 

classical statistics. The proposed NDASP can be applied to the testing/inspection of a lot of a product 

when indeterminate lifetime data is presented. From the results, it is concluded that the degree of 

impression plays an important role in determining the plan parameters. It was found that the double 

sampling plan under classical statistics gives higher values of ASN as compared to the proposed plan. 

The proposed NDASP can be applied for lot inspection under uncertainty. The proposed plan using a 

repetitive sampling scheme can be used for future research. The proposed NDASP using the 

Bayesian approach can be studied as future research. 
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