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Abstract: In this paper, a stochastic SIQR epidemic model with non-monotone incidence is
investigated. First of all, we consider the disease-free equilibrium of the deterministic model is
globally asymptotically stable by using the Lyapunov method. Secondly, the existence and uniqueness
of positive solution to the stochastic model is obtained. Then, the sufficient condition for extinction of
the stochastic model is established. Furthermore, a unique stationary distribution to stochastic model
will exist by constructing proper Lyapunov function. Finally, numerical examples are carried out to
illustrate the theoretical results, with the help of numerical simulations, we can see that the higher
intensities of the white noise or the bigger of the quarantine rate can accelerate the extinction of the
disease. This theoretically explains the significance of quarantine strength (or isolation measures) when
an epidemic erupts.
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1. Introduction

Novel coronavirus first emerged in Wuhan in December 2019 [1] and then spread like a fire around
the world. The social loss caused by the disease was far beyond what we thought possible. It is
crucial to investigate the transmission mechanism and development trend of infectious disease through
mathematical modelling so as to take appropriate measures to control the epidemic. The SIR epidemic
model was originally proposed by Kermack and McKendrick [2]. Up to now, many researchers have
built different types of epidemic models, for instance [3—11]. It is known to all that one of the most
direct and effective measures against infectious disease is to quarantine identified contacts through
timely contact tracing [12], so that more people can be prevented from becoming infected. Therefore,
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epidemic models with quarantine are increasingly being investigated, such as [13—19].

It is widely known that the incidence function is crucial to the transmission dynamics of infectious
diseases. In 1978, Capasso and Serio [20] introduced a saturated incidence rate into epidemic models
to investigate the spread of cholera in Paris. Ruan and Wang [21] studied an epidemic model with a
specific nonlinear incident rate. A non-monotone incidence function was proposed by Xiao and
Ruan [22], the incidence rate includes the behavioral change and crowding effect of the infective
individuals. Based on the analysis of SARS [23], they discovered that the number of effective contacts
between infected and susceptible persons decreases at high levels of infection by the isolation of
infected persons or self-protection of susceptible individuals.

Let S (1), I(1), R(t), Q(t) denote the number of susceptible, infective, removed and quarantined. By
learning from the experience of predecessors, the deterministic SIQR epidemic model has the following

form
S'(H)=A —/lS(t) _ BS@I(0

I+al2(t)’

I =55l - (e + u+ I,

Q'(1) = yI(®) = (u+&Q),
R'(2) = el(t) + £Q(1) — pR(D),

where A is the recruitment rate of S (¢), i is the natural death rate, S is the average number of adequate
contacts, vy is the removal rate from /(¢), € and & represent the recovery rates from 1(¢), Q(t) to R(?).
All parameters in the above are assumed to be nonnegative. The dynamics of (1.1) is completely
determined by the basic reproduction number.

In real life, the models of population dynamics of diseases are inevitably affected by random
fluctuations. Li et al. [24] considered a stochastic SIRS epidemic model to understand the mechanism
of influenza A transmission. Yuan et al. [25] proves that environmental noises can change the
qualitative behaviors. In this paper, we assumed that the coefficient of quarantine 7y is subject to the
environment white noise, namely y — 7y + 05Bs(f). In addition, as the research work mentioned
above, adding a linear perturbation using Brownian motion (terms
o 1S (0)dB (1), o2 1()dB,(t), o3 Q(t)dBs(t), o4 R(t)dB4(t)) in model. We then consider the following
stochastic model

(1.1)

dS (1) = (A — uS (1) — B4t + o, S (1)dBy (1),

1+al?(t)

dI(t) = (BYD — (¢ + p+ YI(D)dt + 02 1()dBy(t) — os1(H)dBs(t),

1+al%(t)
dO(n) = (YI(t) — (u + &) Q(0)dr + 03 Q(1)dB5(1) + os1(1)dBs(1),
dR(t) = (el(t) + £Q(1) — pR(1))dt + o4 R(1)dB4(2),

(1.2)

where B;(t)(i = 1,2,3,4,5) are mutually independent standard Brownian motions with B;(0) = 0,
o(i =1,2,3,4,5) denote the intensities of the white noise B;(f).

The article is organized as follows: In Section 2, we investigate the disease-free equilibrium of the
deterministic model (1.1) is globally asymptotically stable by using the Lyapunov-LaSalle asymptotic
theorem. In Section 3, the existence and uniqueness of globally positive solutions to the stochastic
model (1.2) are obtained. In Section 4, we establish sufficient conditions for extinction of the
model (1.2). In Section 5, we verify that the stationary distribution of stochastic model (1.2) will exist
under certain conditions. In Section 6, numerical simulations are given to support our theoretical
results. Finally, a brief conclusion is given In Section 7.
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2. The dynamics of deterministic model (1.1)

In the section, we will investigate the dynamics of the deterministic model (1.1). By summing all
the equations of model (1.1) one can obtain that the total population N(¢) = S(¢) + I(¢) + QO(¢) + R(?)
satisfies N'(f) = A — uN. Define

A A
I'={(@S,1,0,R), T(SSS +I+Q+R< —,and,S,I1,Q,R > 0}. (2.1)
Hu M

Obviously, I' is positively invariant of model (1.1). For the convenience of analysis, we will have
model

N'(t) = A — N,
’ _ BN-I-R-OQ)I
') =" —(e+u+yl, 2.2)

QW) =vyl-(u+80,
R () = el + Q0 — uR.

The region becomes
A A
F={WN,I,Q0,R), TéSN <—,and,0<I,QO,R,I+R,I+ QO+ R < N}. (2.3)
H H

We will analyze model (2.2) in the region (2.3).
Applying the approach of next generation matrix [26] to model (2.2), we obtain

BA

Ro=p(FV )= — |
0= ) uE+u+7y)

(2.4)

Theorem 1. Consider model (1.1). The disease-free equilibrium E, = (f—i, 0,0,0) always exists. It is
globally asymptotically stable if Ry < 1.

Proof. Define a Lyapunov function

1 A
V=-(N-=)Y+mI+R+0, (2.5)
2 u
where n; = m > 0. If Ry < 1, then the total derivative of V along the trajectories of
model (2.2) is given by

= (N=2)A-puN)+ P2 = (e +p+
+yl — (el +E)Q + €l + £Q — uR
2 —J—R—
= 2NA-uN? = & 4+ B2 — e+ p+ )l 2.6)
+yl + el —u(Q + R)
—p(N =2 + [m (5 — (s + p+ 7)) + 8+ 71l
—u(N =27 + (m(e+p+Y)(Ro— D+ e+ ).
Thus il—‘t/ < 0, and ”ﬁl—‘: = 0 if and only if N = :7" I =0,R =0,0 = 0. Applying the Lyapunov-
LaSalle asymptotic theorem, we can obtain that the disease-free equilibrium E, = (%, 0,0,0) is globally
asymptotically stable if Ry < 1. m|
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3. Existence and uniqueness of the global positive solution

Denote R} = {(S(2),1(n), Q(t), RIS (1) > 0,1(t) > 0,0(1) > O,R(r) > 0}, R, = [0, +0).
Throughout this paper, we let (Q, {F;}:-0, P) be a complete probability space with a filtration {¥;},»o
satisfying the usual conditions (i.e., it is increasing and right continuous while F contains all P-null
sets). We assume that model (1.2) is defined on (2, {F;}:>0, P).

Theorem 2. For any initial value (S(0),1(0), Q(0), R(0)) € R%, there is a unique positive solution
(S (), 1), Q(1), R(t)) of system (1.2). Furthermore, the solution will remain in Ri with probability 1,
namely, (S (1), I(1), Q(1),R(t)) € Rﬂt forallt > 0 almost surely.

Proof. Since the coeflicients of system (1.2) satisfy the local Lipschitz conditions, then for any initial
value (S(0), 1(0), Q(0), R(0)) € R?, there exists a unique local solution (S (1), I(z), Q(f), R(t)) on t €
[0, Te), where T, is the explosion time [27]. To show this solution is global, we only need to show that
7. = oo almost surely. Let ky > 1 be sufficiently large such that$ (0), 7/(0), Q(0) and R(0) all lie within
the interval [é, ko]. For each integer k > k¢, define the stopping time

T, =inf{r € [0,7.) : S(¥) ¢ (%,k)orl(t) ¢ (%,k)orQ(z) ¢ (%,k)orR(t) ¢ (%,k)}.
O

Throughout this paper, we set inf ) = oo (as usual @ is the empty set). Clearly 7; is increasing
when k — oo. Let 7o, = limy_, Ty, then 7, < 7. a.s. If we can show that 7., = oo, then 7, = oo and
(S (1), I(2), Q(1), R(t)) € R? a.s. for all £ > 0. If this statement is not true, then there is a pair of constants
T > 0and € € (0, 1) such that

P{t, <T}>e&.

Hence there exists an integer k; > &, such that
Plry <T}>¢ (3.1

for all k > k;.
Define a C>—function V : R* — R, by

St
V(S,I,Q,R)=(S(t)—c—cln Q) +U®)—-1-InI®)+(Q()—1-In Q1))+ (R(t)— 1 —-1InR(?)), (3.2)
c
where c is a positive constant to be determined later. For any u > 0, u—1—Inu > 0, so the nonnegativity
of this function can be seen. Applying It6’s formula to V, we have

AV =[(1 = $5)A - pS (1) = FEm) + (1 - 75)(Frazg — (8 +p + MI(©)
+(1 = )10 = ( + QM) + (1 = ) (el (D) + Q1) — uR(1))]dr
+icot + 0+ 03+ 0%+ 0 + 025 D)dr + (1 - 55)0 S (0B (1)
+(1 = 75)02 L (0dBs(7) — (1 — 355)0751(1)dBs ()

+(1 = 5)030(N0dBs (1) + (1 = 5505 1(1)dBs(1) + (1 = 35)T4R(H)dBa(1)

S[A+(eB-wIt)+cu+3u+e+y+E+ %0’% + %0’% + %0’% + %0’% + %0’% + %0‘% éi(gg)]dt

+0 (S (1) = ©)dB, (1) + 02(I(1) — 1)AB,(7) + 073(Q(7) — 1)dB3(7)

+04(R(t) — 1)dB4(?) + o5(1 — %)d&(l).

<
S()

(3.3)
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Letc = % Then

1 1 1 1 1, (¢
T+ =05+ =03+ =04 + =0 + —02 ®

272 93T 3T R0 T 95 gy

c

2

LV<A+QB+ou+e+y+&é+ (3.4)

Similar to the reference [28], the solutions of model (1.2) are stochastically ultimately bounded,
Hence there exists a suitable constant K > 0 independent of S, I, O, R and ¢ such that LV < K. So

dV(S (), 1(1), O(1),R(2)) < Kdt+ o 1(S(@) — c)dB(t) + o2(I(¢) — 1)dB,(?)

+03(Q(1) = 1)dBs (1) + 04(R(1) = 1)dBy(1) + o75(1 = 53)dBs(0).

(3.5)

Integrating both sides of (3.5) from 0 to 7, A T = min{r, T} and then taking the expectation,
EV (S (ty AT), I(ty AT), Q(ti A T),R(t; AT)) < V(S(0), 10), Q(0), R(0)) + KE(r; AT). (3.6
Thus,

EV (S (tx AT), I(ti AT), Ot A T),R(ti A T)) < V(S(0),1(0), 0(0), RO)) + KT.  (3.7)

Set Q; = {1y < T} for k > k; and in view of (3.1), we get P(€2;) > . Notice that for every w € €,

it exists that S(7y,w) or I(t;,w) or Q(t,w) or R(ty,w) equals either k or % Thereby,
V(S (14, w), (g, w), O(Tx, W), R(Ty, w)) is no less than either k — 1 —Ink, k—c—cln ’ﬁ, % —1-In % or
% - c - cln i Consequently, denote

M=k-1-Ink)A(k—c—cIn®)A(; =1 -In) A (3 —c—clnZ), we have
Vv (S (Tk’ U)), I(Tka (,()), Q(Tk’ (.U), R(Tka CL))) > M (38)
It follows from (3.7) that

V(5(0),1(0), Q(0), R(0)) + KT 2 E (o (0)V (S (11, ), (s, ), Q(Ts, ), R(7y, w)))

> &M, (3.9)
where I, represents the indicator function of €. Letting k — oo, then
0o > V(5(0),1(0), Q(0), R(0)) + KT = oo, (3.10)
which leads to the contradiction and hence we obtain 7., = +oco a.s., which implies that
(S (1), I(2), Q(r), R()) € R} for all t € R,. The proof is completed.
4. Extinction of the disease
The following theorem establish a condition for extinction of the disease.
For convenience, let
1 f
(x(1)) = " f x(r)dr 4.1)
0
and "
R} = £ (4.2)

U 1.2, 1 2y
uEe+u+y+ 3505+ 350%)
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Theorem 3. For any initial value (S(0),1(0), Q(0),R(0)) € Ri, there is a positive solution
(S (1), I(1), Q(t), R(t)) of system (1.2) which has the following property

1
—o)(Ry - 1). (4.3)

nl(t 1
lim sup @ s(s+,u+y+—o-§+2

t—o0 t 2

If Ry < 1, then the disease I goes to extinction exponentially with probability I a.s.

lim I(z) = 0. (4.4)

t—o00
In addition, we have
tlim(Q(t)) =0, }im<R(t)> =0, tlim<5(t)> =—

Proof. Integration of the first three equations of the model (1.2) and then dividing by 7 gives

_ ff S(u)[(u) ;S 4B
w (S (t)> 0 l+012(u) + o1 fy (tu) I(M),
ﬁf’ Sed K 160dB ) [ 1)dBs(u)
1 ] 0 0 1+l [op) u)dBa(u (oF] u)dBs(u 4.
OO = 2P (g y)I(n) + T - T TR, (4.5)
0 o3 |, Q(u)dBs(u) o5 I (u)dBs(u)
Q00 10y — G + Q) + LD o3 Loty

Summing (4.5), one has

S5OSO 1010 4 Q000 = 4 - 'U,<S(l)> - (e+ “,)(I(t» - (u+ §)<Q(t)> L6
Il S(?)dBl(m Lok I(Ltodeuo L okh Q(:)st(u)_ (4.6)

For convenience, ¢(¢) is defined via subsequent equation

o) = —L[L0S© | [0-10) 4 00-00) .
o1 [iSdBiw)  oa [ IwdBaw) o3 [7 QB3 (“.7)
t t t ’
Then ¢
@) =—~- —(I(t)> - 'u—<Q(t)> +$(2). (4.8)

Obviously, applying large number theorem for local martlngales [27], we have
lim ¢(1) = 0. 4.9)
>0

Using It6’s formula to the 2nd equation of model (1.2), we have

dinl = [-B9 —(e+u+7y) - %(0’2 + 0'5)]dt + 0dBy (1) — 05dBs (1)

T+al2() 1 (4.10)
<BSH)-(e+u+vy+ 50'2 + 0'5)]dt + 0dB5(t) — 05dBs(1).
Integration of (4.10) and then dividing by ¢ gives
1nI(t)—tlnI(0) < E(S (I)() —)(8 bu+ 7(#_’_ )%0_2 n 0_5) szo de(u) 0'5f0 (tiBs(u)
_ AB _ Bletu Bu+é
= 2B 1)) — PO 1)) + B(0)
o fy de(u) _ s J dBs(u) 4.11)

—(e+u+y+ 1 0'2+ 0'5) -
o fO de(u) o fo dBS(u)

AB
_7—(6+,u+y+50'2+ 0'5)

+ (),
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namely
w <(e+u+y+305+30)R5 - 1)
o [[dByw) o [ dBs(u)
+2f0t2 _ sfots +ﬂ¢(t)+ln1t(0)-
Obviously,
In/
fim O im ¢(1) = 0,
t—o00

oy fo dB,(u)
m— =

—o00

.05 [ dBs(u)
lim— =

t—00

Then for (4.12), if 9&5 < 1, we reach to the following fact that

In/(z 1
lim sup nl() <(e+pu+y+ 50'§+
—0o0

%o—g)(%g ~-1)<0,

namely,
limI(r) =0

—0o0

On the other hand

d500 + RO = [ZE10) - Q1) + £l (1) + £Q(1) — uR(1)]ds
+E20(0)dBs (1) + ST 1(1)dBs (1) + 04R(1)dB4(1)
um+wwummt
+E20(0dBs (1) + £21(dBs(1) + o4 R(DAB,(1).
Integrating (4.18) from O to ¢ and then dividing by ¢ gives
L2000 MORQ - = (£ 4 o)1) - p(R(D))
£y Jy QB gors [ 160dBs@w) o fj RG)dBaw)

u+é t p+é t t

Therefore,

(R()) = H ,ﬁg Q(t)—lQ(O) N R(t)—tR(O) 3 % I Q(u)tdB3(u) 3 %; N [(u)tdBS(u) e fotR(:A)dB4(u)]

+= (#+§ + e)X1(1)).
Let
m(f) = — L[ £, 2000, RO-RO) _ ény b 0w _ £os f(;l(u),dBS(u) o f()[R(;l)dB4(u)]’
consequently,
<Mm——e@§+wmm+mm
evidently,
lim (o) =0

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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we get
lim(R()) = 0. (4.24)
In addition,
dO@) = [yI(1) — (u + £)O(D]dt + 03 0()dB5(1) + o5 1(1)dBs (7). (4.25)
Integration of (4.25) and then dividing by ¢ gives
— 000 o3 [ Qw)dBs(w) o [ I(u)dBs(u)
997g1:ywm—w+@@mw-3£ — ok —, (4.26)
by algebraic manipulation,
oy 1 0H-00) 1 o3[ QwdBsw) 1 os [ [(w)dBsu)
(Q(n) = m(l(t» Y ; + Y . + g p . (427
Because,
_ " O(u)dB
lim M = 0,lim T3 h Q(tu) Wy, (4.28)
hence, we have
tlim o =0. (4.29)
Finally, putting the above Eqs (4.17) and (4.29) into (4.8), we obtain
lim S (¢) = é
o0 p

Thus we conclude that the disease extinction depends on the value of the parameter R}, if R < 1,
the disease will extinct. The proof is completed. O

5. Existence of stationary distribution.
In order to prove the existence of a stationary distribution, we recall a famous result from

Khasminskii’s [29]. Let X(¢) be a regular time-homogeneous Markov process in R? described by the
following stochastic differential equation

k
dX(t) = b(X)dt + Z o (X)dB(1). 5.1
I=1
The diffusion matrix is defined by
k .
AX) = (ay(0), a;j(x) = ) )] (0). (5.2)
I=1
Define the differential operator L associated with Eq (5.1) by
d d
0o 1 i
L= bl' - - ii . 53
; (x)(?x - 2 Z aj(x)ﬁx,@xj -3

i ij=

AIMS Mathematics Volume 8, Issue 6, 13241-13256.
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Lemma 1. ( [29]) Assume that there exists a bounded domain U C R¢ with regular boundary such
that its closure U C R4, having the following properties:

(i) there is a positive number M such that Zlf‘szl a;(x)&&; > M|&)? for xeU and é€RY,;

(ii) there exists a nonnegative C*-function V such that LV is negative for any xR \U.

Then the Markov process X(t) has a unique stationary distribution n(-).

The existence of a stationary distribution can be regarded as the stochastic weak stability of the
model, which means that the diseases will prevail in the long term. Notice that R(t) is independent of
S (1), I(t), and Q(t), then system (1.2) has the following form by removing R(t)

dS () = (A — uS (1) - B4t 4 oS (1)dBy (D),

1+al?(t)

dI(r) = (BLO _ (o 4y + Y)I(1)dt + 01(1)dBs(1) — os1(1)dBs (1), (5.4)

L+al?(t)

dO®®) = (YI(1) = (u+ H)QN)dr + o30(1)dB3 (1) + o51(1)dBs(1).

Here we only consider the dynamics of system (5.4) and establish the following theorem.

Theorem 4. Assume that Ry > 1 and the following conditions hold
0 < F < min{m(S*)*, my(I")*, m3(Q")*}, (5.5)

where

— 2
my=p— oy,

m2:s+u+y—7—;—0'§—20'§, (5.6)

my=p+é—3-03,

Qu+e+y)1 +a(*)?)
2B

F=0a1(S*) + (05 + 20)(I")* + 03(Q0°)* + I'(05 +03) (5.7)

are all positive constants.
Then for any initial value (S(0),1(0), Q(0)) € R3, there is a stationary distribution n(-) for
system (5.4). Especially, we have

lim sup 115 f [m (S () — S)? + my(I(u) — I')? + my(Q(u) — Q*)*]du < F, (5.8)
0

t—00 t
where E* = (S*, I, Q") is the unique endemic equilibrium of (1.1).

Proof. To prove the existence of stationary distribution of model (5.4), we need to verify Lemma 1.
We can rewrite system (5.4) as the following form

S(f) A — pS (1) - 280 a0
d( 1(7) ] BOY —(e+pu+ I |dt +[ 0 ]dBl(t)
() yI(t) = (u + &) QD) 0 (5.9)
0 0 0
+[ o I(f) ]de(t) + [ 0 ]dB3(t) + [ —os1(7) ]dB5(t).
0 o30(t) os1(1)
Here the diffusion matrix is
O'fS 2 0 0
AX) = [ 0 (2+0d)P -0 ] (5.10)
0 —o3l? o30% + ol
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There is a positive number M = min{oS?, 217,020, (S, 1, Q) € U} such that for all (S,1,Q) € U
and £ € R®, we have

Zijzl aij(0EE; = 0188 + (05 + oDIPE
+(2Q% + oHPE - 205125253

= 0'25262 + 0'212§2 + 0'3 Q2§3 + 0'512(§2 &)? (5.11)
> O'%S 252 + Uzlzfz + 03 Q2§3
> min{o S %, 0317, R Q*MEP = MIEP,

which implies that Lemma 1 (i) is satisfied.
Since Ry > 1, then there exists a unique positive equilibrium E* = (S*, I*, Q%) of system (1.1) and
the components satisfy
A=uS+ BS*I*

o T+a(I")°
Bim = E+u+nl, (5.12)
Y=+ 90"

To verify Lemma 1 (ii), we define a C>-function V

%12
VS (1), 1), 0) = V() + A ET y;(l eI )y i+ vy, (5.13)

where
Vi(1) = 2(Q(1) — Q) + 10,
Va(t) = I(t) - I In 12, (5.14)
Vi) = 2(S(-S* + I(t) —I)?+ 1S+ ).

Using Itd’s formula, we have

Qu+e+y)(1+a(l)?)
B

Making use of differential operator L on V; (i=1,2,3), we have

dV(S @), I1(1), Q1)) = dV,(1) + dV, (1) + dVi(2). (5.15)

LVi(Q) =(Q -0y -(u+&Q0]+3030" + %o%lz
=Q-0)yU-I)—u+HQ-0)]+ U%(Q O + 0 +3 0'5(1 I'+ry
:—(/1+§)(Q O + vy - I*)(Q 0)+305(Q -0 + Q) + 305U - I" + I')?

~p+E-L—0DQ- QP+ (& +oDU- TV +0HQV + 05(1*)2
(5.16)
where 1(a + b)* < a®* + b* forany a,b € Rand y(I - I')(Q — Q") < 72—2(1 - I')* + 1(Q — Q") are used.
Similarly

LVs(S,I) =(S =S*+1=I)[A—puS — (s +pu+Il + L0252 + 02 + 021
=(S ST+ I-)[-pu(S =) —(e+u+y)U-1]
+103(S = ST+ SV + 2ot +oHU - + ') (5.17)
<—(U-0)S =SV +0XS V- (s +pu+y—02—oB)I - I')
—Qu+E+Y)S =S = T') + (02 + TP,
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LV, =(I- 1*)[”‘,,2 @ u+ )+ 503+ oD

=(-1 )(1+a/12 - 1+a(1 ) + 2(0-2 + o)l (5.18)
_ * BSa(P=(I")%) BES=87) 1 * .
= ({s_s{ )()1[1 )(l+a]2)(l+oz(l w l+a(1*)2] 2(0_2 + 0_5)1
< 'BH_W + (0'2-1-0'5)1>k
BSa(P—(INY)U-I*) _ BSa(+I*)(I-I*)?
where (IraP)(+a?) . (+aP)1+al")) 20 o o
Making use of the differential operator L on (5.13) and substituting (5.16)—(5.18) into it lead to

LV(S.1.Q) < ~(u+&=3=0DQ =0 + (% + oD =+ 0XQ) + o3I')
(2“+8+7)[(31+a(1 ) ),B(Slil()l(l)z[ ) + (2;1+£+y)2(ﬁl+0z(1 ) )(0_2 + O'S)I
—(u — 0'%)(5' -S*)? + 0'2(S Y —(e+pu+y-— 0'2 - 0'5)(1 I)?
-Qu+e+y)(S-SHU-TI')+ (0'2 + 0'5)(1"‘)2
= (=S =SV~ ety -3 r -3 =290 - 17
(€= 5= oDQ - Q) +0NS Y+ 020 )2 T (02 + 202)(I")?

+(2;1+8+y)22+a(1 ) )( % + 0_5)1*
2 —m(S(1) = 8*) —my(I(t) = I')* = m3(Q(1) = Q*)* + F

(5.19)

namely
LV(S,1,0) = —mi(S(t) = S*)* — my(I(t) = I')* = m3(Q(t) — 0")* + F. (5.20)

Therefore

dV(t) < —mi(S(®) = S*) = mo(I(t) = I')* = m3(Q(t) - Q*)* + F
+ S @) =S*+ 1) = I')(01S (1)dB,(t) + 021(1)dB,(t) — o51(t)dBs(1)) (5.21)
+(I(1) = I")(02dB,(1) — 075dBs (1)) + (Q(1) — Q") (o3 0(1)dB3(1) + o51(1)dBs (1))

where m;, m,, m3 and F are defined in Theorem 4 respectively. Integrating (5.21) from O to ¢

V(S (), 1(1), (1) = V(S (0),1(0), Q(0))

" 22
< [[Tomi(S () = S = ma(I(w) — I'P — ms(Q(w) — O"Vldu + Fr + H(1) 622

where H(¢) is a local martingale defined by

H(t) = fot(S () =S8 + I(w) — I")(o1 S (w)dB; (1) + o2l (u)d B, (1) — o51(u)dBs(u))
+ [ () = I")o2dBo(u) + [ (1) = I*)osdBs(u) (5.23)
+ [0 ~ 003 Qw)dBs(w) + [(I(u) — I*)orsI(u)dBs(u).

Then taking the expectation on both sides of (5.22) yields
EV(S (1), I(1), Q1)) — EV(S(0), 1(0), Q(0)) <

' 24
B [ Tomy(S (@) — §*F = mo(I(®) — I'P — ms(Q(1) — 0°)*1du + Fi. -2
Hence we get
lim sup lE f [, (S (u) = S + my(I(u) — I')? + my(Q(u) — Q°)*1du < F. (5.25)
—00 0
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Noting that the condition of theorem
0 < F < min{m,(S*)*, my(I")*, m3(Q")*), (5.26)

then the ellipsoid

my(S (u) = S + my(I(u) = I')* + my(Q(u) - Q°)* = F (5.27)

lies entirely in R?. We can choose U as any neighborhood of the ellipsoid such that U ¢ R3, where U
is the closure of U. Therefore we can derive that LV(S, I, Q) < 0 for any (S, 1, Q)ERi \U, which shows
that the condition (ii) in Lemma 1 also holds. The proof is thus completed. O

6. Numerical simulations

Numerical simulations are presented for supporting our theoretical findings of model (1.2) through
the Milstein method, which can be found in [30].

In deterministic system (1.1), the value of the basic reproduction number R determines persistence
or extinction of the disease. If Ry < 1, the disease will die out, while Ry > 1, the disease will be
persistent. With the help of numerical simulations, it’s pretty straightforward to see the property can
be changed by stochastic perturbations.

(1) We firstly assume that A = 2,6 = 008,u = 0.l,e = 0.1,¢ = 00l,a = 5,
o1 =02,0, =1.6,03 = 0.1, 04 = 0.5; the initial value is (S (0), 1(0), Q(0), R(0)) = (3, 3,2.5,2). Then
choose different parameters o5 and y to observe their influence on the asymptotic behavior of
solutions of the system (1.2). From Theorem 4.1, we know for any initial value
(5(0), 1(0), Q(0), R(0)) € R*, there is a positive solution (S (¢), I(¢), Q(¢), R(t)) of system (1.2) which
has the following property lim_.sup™®2 < (¢ + pu + y + 102 + LoD(Ry — 1), where
Ry = /W?‘T?%ﬁ)' If Ry < 1, then the disease I(r) goes to extinction exponentially with
probability 1, (See Figures 1 and 2 ).

Case 1: Let s = 0.5. When y = 0.13, then R ~ 4.848 > 1, Rj ~ 0.922 < 1; when y = 1.38, then
Ro = 1.013 > 1, R) ~ 0.536 < 1. With other parameters unchanged, the increase of the quarantine
rate y accelerates the velocity of extinction. we can see Figure 1 (a)y=0.13, (b)y=1.38.

Case 2: Let y = 0.15. We presumed the coefficient of quarantine 7y is subject to the environment
white noise, namely y — y + osBs(f) . With other parameters unchanged, the higher the intensities
of the white noise o5, the faster the velocity of disease extinction. We can see Figure 2 (a)o5=0.5,
(b)O’ 5 =2.

(2) We know that the system (1.2) has a unique stationary distribution under some conditions by
Theorem 5.1, which means that the diseases will prevail in the long term. We choose
A = 2, = 008u = 0le = 01,¢ = 041,y = 0.15a = 5,
o = 03,0, = 03,053 = 0.09,04 = 0.2,05 = 0.05. The system (1.2) has a unique stationary
distribution with smaller white noise for different initial values by Figure 3(a)
(5(0),1(0), O(0), R(0)) = (0.3,0.3,0.2,0.2), (b) (S(0), 1(0), Q(0), R(0)) = (0.5,0.6,0.4,0.4).
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Figure 1. The increase of the coefficient of quarantine y accelerates the velocity of extinction.
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Figure 2. The higher intensities of the white noise o5, the faster the velocity of disease

extinction. (a)os=0.5, (b)os=2.
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Figure 3. The system (1.2) has a unique stationary distribution with smaller white
(@) (5(0),1(0), Q(0),R(0)) = (0.3,0.3,0.2,0.2), (b)
(8(0),1(0), Q(0), R(0)) = (0.5,0.6,0.4,0.4).

noise for different initial values.

7. Conclusions

In this paper, we investigated a stochastic epidemic model with quarantine and non-monotone
incidence. For the deterministic system (1.1), if R < 1, the disease will die out, while R > 1, the

AIMS Mathematics
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disease will be persistent. We have proved that the property of the solutions of the system can be
changed by the stochastic perturbations. Furthermore, we assumed that the coefficient of quarantine y
is subject to the environment white noise, namely y — 7y + osBs(f). With the help of numerical
simulations, we can see that the higher intensities of the white noise o5 or the bigger of the quarantine
rate y can accelerate the extinction of the disease. This theoretically explains the significance of
quarantine strength (or isolation measures) when an epidemic erupts.
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