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Abstract: In this paper, we investigate the exact solutions of several fractional-order Helmholtz
equations using the homotopy perturbation transform method. We specify sufficient requirements for
its convergence and provide error estimations. The homotopy perturbation transform method yields
a quickly converging succession of solutions. Solutions for various fractional space derivatives are
compared to present approaches and explained using figures. Appropriate parameter selection produces
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friendly, dependable, and highly effective.
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1. Introduction

In recent years, fractional differential equations have gained prominence due to their proven
usefulness in several unrelated scientific and engineering fields. For example, the nonlinear oscillations
of an earthquake can be characterized by a fractional derivative, and the fractional derivative of the
traffic fluid dynamics model can solve the insufficiency resulting from the assumption of continuous
traffic flows [1–3]. Numerous chemical processes, mathematical biology, engineering, and scientific
problems [4–7] are also modeled with fractional differential equations. Nonlinear partial differential
equations (NPDEs) characterize various physical, biological, and chemical phenomena. Current
research is focused on developing precise traveling wave solutions for such equations. Exact
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and explicit solutions help scientists understand the complicated physical phenomena and dynamic
processes portrayed by NPDEs [8–10]. In the past four decades, numerous essential methodologies for
attaining accurate solutions to NPDEs have been proposed [11, 12].

The Helmholtz equation (HE) derives from the elliptic and wave equations. In a multi-dimensional
nonhomogeneous isotropic standard with velocity c, the wave result is υ(ξ, ψ), which corresponds to a
source of harmonic (ξ, ψ) vibrating at a given frequency and satisfying the Helmholtz equation in the
area R. The classical order HE is

D2
ξυ(ξ, ψ) + D2

ψυ(ξ, ψ) + ευ(ξ, ψ) = −υ(ξ, ψ). (1.1)

Here, υ is a suitable boundary differentiable term of R, is a known function, and the wave number with
wavelength 2/ξ = 0 renders Eq (1.1) homogeneous. If (1.1) is expressed as

D2
ξυ(ξ, ψ) + D2

ψυ(ξ, ψ) − ευ(ξ, ψ) = −υ(ξ, ψ).

Then it explains mass transfer with density biochemical processes of the 1st order. Equation (1.1) is
investigated using the decomposition method [13], the finite element approach [14], the differential
transform method [15], the Trefftz method [16], and the spectral collocation method [17], among
others [18–20].

The Helmholtz equation is a partial differential equation that describes wave phenomena in various
fields of physics, such as electromagnetism, acoustics, and fluid mechanics. Traditionally, the
Helmholtz equation has been formulated using integer-order derivatives. However, in recent years,
there has been a growing interest in the use of fractional-order derivatives to describe complex
phenomena more accurately. In particular, fractional-order space Helmholtz equations are derived
directly from mathematical formulas that involve fractional derivatives, rather than being generalized
from integer-order space derivative Helmholtz equations. These equations can provide a more accurate
description of wave propagation in complex media, such as porous materials, biological tissues, and
fractal structures. Fractional-order space Helmholtz equations have attracted significant attention
due to their potential applications in a wide range of fields, including medical imaging, geophysics,
and telecommunications. They offer a promising avenue for understanding the behavior of waves in
complex media and developing new technologies for wave-based sensing and imaging [21–23].

It is advantageous to utilize fractional differential equations in physical problems due to
their nonlocal features. Non-locality characterizes fractional-order derivatives, whereas locality
characterizes integer-order derivatives [24–27]. It demonstrates that the future state of the physical
system depends on all of its previous states in addition to its current state. Consequently, fractional
models are more accurate. In fractional differential equations, the response expression has a parameter
that specifies the fractional derivative of the variable order, which may vary to achieve many
responses [28–30].

Standard HEs can be generalized to fractional-order Helmholtz equations by extending the Caputo
fractional-order space derivative to the integer-order space derivative. The fractional Helmholtz
equation in space is

D%
ξυ(ξ, ψ) + D2

ψυ(ξ, ψ) + ευ(ξ, ψ) = −ψ(ξ, ψ),

with υ(0, ψ) = g(ψ) as the initial condition (IC). Gupta et al. [31] solved the multi-dimensional
fractional Helmholtz equation using the homotopy perturbation approach. In contrast, Abuasad

AIMS Mathematics Volume 8, Issue 6, 13205–13218.



13207

et al. [14] recently solved a fractional model of the Helmholtz problem using the reduced differential
transform method.

2. Preliminary concepts

This section describes the properties of the fractional derivatives and a few essential details
concerning the Yang transform.

Definition 2.1. The fractional derivative in terms of Caputo is as follows

D%
ψυ(ξ, ψ) =

1
Γ(k − %)

∫ ψ

0
(ψ − %)k−%−1υ(k)(ξ, %)d%, k − 1 < % ≤ k, k ∈ N. (2.1)

Definition 2.2. The YT is represented as follows

Y{υ(ψ)} = M(u) =

∫ ∞

0
e
−ψ
u υ(ψ)dψ, ψ > 0, u ∈ (−ψ1, ψ2), (2.2)

having inverse YT as follows
Y−1{M(u)} = υ(ψ). (2.3)

Definition 2.3. The nth derivative YT is stated as follows

Y{υn(ψ)} =
M(u)

un −

n−1∑
k=0

υk(0)
un−k−1 , ∀ n = 1, 2, 3, · · · (2.4)

Definition 2.4. The YT of derivative having fractional-order is stated as follows

Y{υ%(ψ)} =
M(u)

u%
−

n−1∑
k=0

υk(0)
u%−(k+1) , 0 < % ≤ n. (2.5)

3. General implementation of the method

Consider the general fractional partial differential equations,

D%
ψυ(ξ, ψ) + Mυ(ξ, ψ) + Nυ(ξ, ψ) = h(ξ, ψ), ψ > 0, 0 < % ≤ 1,

υ(ξ, 0) = g(ξ), ν ∈ <.
(3.1)

Using Yang transform of Eq (3.1), we get

Y[D%
yυ(ξ, ψ) + Mυ(ξ, ψ) + Nυ(ξ, ψ)] = Y[h(ξ, ψ)], ψ > 0, 0 < % ≤ 1,

υ(ξ, ψ) = sg(ξ) + s%Y[h(ξ, ψ)] − s%Y[Mυ(ξ, ψ) + Nυ(ξ, ψ)].
(3.2)

Now, applying inverse Yang transform, we have

υ(ξ, ψ) = F(ξ, ψ) − Y−1 [
s%Y{Mυ(ξ, ψ) + Nυ(ξ, ψ)}

]
, (3.3)
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where
F(ξ, ψ) = Y−1 [

sg(ξ) + s%Y[h(ξ, ψ)]
]

= g(ν) + Y−1 [
s%Y[h(ξ, ψ)]

]
. (3.4)

The parameter p is perturbation technique and p ∈ [0, 1] defined as

υ(ξ, ψ) =

∞∑
k=0

pkυk(ξ, ψ), (3.5)

The nonlinear function is expressed as

Nυ(ξ, ψ) =

∞∑
k=0

pkHk(υk), (3.6)

where Hn are He‘s polynomials in term of υ0, υ1, υ2, · · · , υn, and can be calculated as

Hn(υ0, υ1, · · · , υn) =
1

%(n + 1)
Dı

p

N  ∞∑
ı=0

pıυı


p=0

, (3.7)

where Dı
p = ∂ı

∂pı .

Putting Eqs (3.6) and (3.7) in Eq (3.3), we achieved as

∞∑
ı=0

pıυı(ξ, ψ) = F(ξ, ψ) − p ×

Y−1

s%Y{M
∞∑
ı=0

pıυı(ξ, ψ) +

∞∑
ı=0

pıHı(υı)}


 . (3.8)

Comparison both sides of coefficient p, we get

p0 : υ0(ξ, ψ) = F(ξ, ψ),
p1 : υ1(ξ, ψ) = Y−1 [

s%Y(Mυ0(ξ, ψ) + H0(υ))
]
,

p2 : υ2(ξ, ψ) = Y−1 [
s%Y(Mυ1(ξ, ψ) + H1(υ))

]
,

...

pı : υı(ξ, ψ) = Y−1 [
s%Y(Mυı−1(ξ, ψ) + Hı−1(υ))

]
, ı > 0, ı ∈ N.

(3.9)

Finally, present the obtained solution and check it with any available analytical or numerical solutions
for the given PDE. The υı(ξ, ψ) components can be calculated easily which quickily converges to series
form. We can get p→ 1,

υ(ξ, ψ) = lim
M→∞

M∑
ı=1

υı(ξ, ψ). (3.10)

4. Applications

Problem 4.1. Consider the space fractional Helmholtz equation

∂%υ(ξ, ψ)
∂ξ%

+
∂2υ(ξ, ψ)
∂ψ2 − υ(ξ, ψ) = 0, 1 < % ≤ 2, (4.1)
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with the ICs
υ(0, ψ) = ψ and υξ(0, ψ) = 0. (4.2)

Using the Yang transform of Eq (4.1), we obtained as

1
s%

Y[υ(ξ, ψ)] = υ(0, ψ)s1−% − Y
{
∂2υ(ξ, ψ)
∂ψ2 − υ(ξ, ψ)

}
, (4.3)

Y[υ(ξ, ψ)] = sυ(0, ψ) − s%Y
{
∂2υ(ξ, ψ)
∂ψ2 − υ(ξ, ψ)

}
, (4.4)

Taking inverse Yang Transformation, we have

Y[υ(ξ, ψ)] = ψ − Y−1
[
s%Y

{
∂2υ(ξ, ψ)
∂ψ2 − υ(ξ, ψ)

}]
, (4.5)

Implemented HPM in Eq (4.5), we can achieve as

∞∑
ı=0

pıυı(ξ, ψ) =ψ − p

Y−1

s%Y


 ∞∑
ı=0

pıυı(ξ, ψ)


ψψ

−

∞∑
ı=0

pıυı(ξ, ψ)



 . (4.6)

On both sides comparing coefficients of p, we get

p0 : υ0(ξ, ψ) = ψ,

p1 : υ1(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ0(ξ, ψ)
∂ψ2 − υ0(ξ, ψ)

}]
=

ξ%

Γ(% + 1)
ψ,

p2 : υ2(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ1(ξ, ψ)
∂ψ2 − υ1(ξ, ψ)

}]
=

ξ2%

Γ(2% + 1)
ψ,

p3 : υ3(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ2(ξ, ψ)
∂ψ2 − υ2(ξ, ψ)

}]
=

ξ3%

Γ(3% + 1)
ψ,

p4 : υ4(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ3(ξ, ψ)
∂ψ2 − υ3(ξ, ψ)

}]
=

ξ4%

Γ(4% + 1)
ψ,

...

(4.7)

The series type result of the first problem example is

υ(ξ, ψ) = υ0(ξ, ψ) + υ1(ξ, ψ) + υ2(ξ, ψ) + υ3(ξ, ψ) + υ4(ξ, ψ) + · · ·

υ(ξ, ψ) = ψ

[
1 +

ξ%

Γ(% + 1)
+

ξ2%

Γ(2% + 1)
+

x3%

Γ(3% + 1)
+

ξ4%

Γ(4% + 1)
+ · · ·

]
.

(4.8)

The exact solution is
υ(ξ, ψ) = ψ cosh ξ.

Similarly y-space can be calculated as:

∂%υ(ξ, ψ)
∂ψ%

+
∂2υ(ξ, ψ)
∂ξ2 − υ(ξ, ψ) = 0, (4.9)
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with the IC

υ(ξ, 0) = ξ. (4.10)

Thus, the solution of the above Eq (4.9) is obtain as

υ(ξ, ψ) = ξ

(
1 +

ψ%

Γ(% + 1)
+

ψ2%

Γ(2% + 1)
+

ψ3%

Γ(3% + 1)
+

ψ4%

Γ(4% + 1)
+ . . .

)
,

in the case when % = 2, then the solution through HPTM is

υ(ξ, ψ) = ξ coshψ. (4.11)

Figure 1 illustrates the exact and HPTM solutions in two-dimensional plots for various values of %
ranging from 2 to 1.5, with ξ values ranging from 0 to 1 and ψ set to 1. The solutions are presented in
Figure 1a and b for the exact and HPTM methods, respectively. Figure 2 displays the 3-dimensional
plots of the exact and HPTM solutions for % = 2 and analyzes the point of intersection between the two
solutions. Figure 2c and d depict the HPTM solutions at % = 1.8 and 1.6 respectively for Problem 4.1.
The fractional results were also evaluated for their convergence towards an integer-order result for
each problem. Similarly, the figures for the ψ-space can also be generated using the same approach.

Figure 1. The first graph show that the exact and approximate solution and second HPTM
solution at the different fractional-order graph of Problem 4.1.
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Figure 2. Exact and proposed method solution at various fractional orders of Problem 4.1.

Table 1. Exact and proposed method solution of Problem 4.1 at various fractional orders.

(ξ, ψ) υ(ξ, ψ) at % =1.5 υ(ξ, ψ) at % =1.75 (HPT M) at % = 2 Exact result
(0.2,0.1) 0.2102371 0.2100072 0.2100000 0.2100000
(0.4,0.1) 0.4104630 0.4100141 0.4100000 0.4100000
(0.6,0.1) 0.6106889 0.6100209 0.6100000 0.6100000
(0.2,0.2) 0.2103355 0.2100121 0.2100000 0.2100000
(0.4,0.2) 0.4106550 0.4100237 0.4100000 0.4100000
(0.6,0.2) 0.6109746 0.6100353 0.6100000 0.6100000
(0.2,0.3) 0.2104110 0.2100164 0.2100000 0.2100000
(0.4,0.3) 0.4108025 0.4100321 0.4100000 0.4100000
(0.6,0.3) 0.6111940 0.6100478 0.6100000 0.6100000
(0.2,0.4) 0.2104747 0.2100204 0.2100000 0.2100000
(0.4,0.4) 0.4109269 0.4100399 0.4100000 0.4100000
(0.6,0.4) 0.6113790 0.6100593 0.6100000 0.6100000
(0.2,0.5) 0.2105309 0.2100241 0.2100000 0.2100000
(0.4,0.5) 0.4110365 0.4100471 0.4100000 0.4100000
(0.6,0.5) 0.6115421 0.6100701 0.6100000 0.6100000
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Problem 4.2. Consider the space-fractional HE

∂%υ(ξ, ψ)
∂ξ%

+
∂2υ(ξ, ψ)
∂ψ2 + 5υ(ξ, ψ) = 0, 1 < % ≤ 2, (4.12)

with the ICs
υ(0, ψ) = ψ and υξ(0, ψ) = 0. (4.13)

Using the Yang transform of Eq (4.12), we obtain as

1
s%

Y[υ(ξ, ψ)] = υ(0, ψ)s1−% − Y
{
∂2υ(ξ, ψ)
∂ψ2 + 5υ(ξ, ψ)

}
, (4.14)

Y[υ(ξ, ψ)] = sυ(0, ψ) − s%Y
{
∂2υ(ξ, ψ)
∂ψ2 + 5υ(ξ, ψ)

}
. (4.15)

Applying the inverse Yang Transform, we get

Y[υ(ξ, ψ)] = ψ − Y−1
[
s%Y

{
∂2υ(ξ, ψ)
∂ψ2 + 5υ(ξ, ψ)

}]
, (4.16)

Using the HPM in Eq (4.16), we obtained as

∞∑
ı=0

pıυı(ξ, ψ) =ψ − p

Y−1

s%Y


 ∞∑
ı=0

pıυı(ξ, ψ)


ψψ

+ 5
∞∑
ı=0

pıυı(ξ, ψ)



 . (4.17)

On both sides comparing coefficients of p, we get

p0 : υ0(ξ, ψ) = ψ,

p1 : υ1(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ0(ξ, ψ)
∂ψ2 + 5υ0(ξ, ψ)

}]
= −5ψ

ξ%

Γ(% + 1)
,

p2 : υ2(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ1(ξ, ψ)
∂ψ2 + 5υ1(ξ, ψ)

}]
= 25ψ

ξ2%

Γ(2% + 1)
,

p3 : υ3(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ2(ξ, ψ)
∂ψ2 + 5υ2(ξ, ψ)

}]
= −125

ξ3%

Γ(3% + 1)
,

p4 : υ4(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ3(ξ, ψ)
∂ψ2 + 5υ3(ξ, ψ)

}]
= 625ψ

ξ4%

Γ(4% + 1)
,

...

(4.18)

The series type result of second problem as

υ(ξ, ψ) = υ0(ξ, ψ) + υ1(ξ, ψ) + υ2(ξ, ψ) + υ3(ξ, ψ) + υ4(ξ, ψ) + · · ·

υ(ξ, ψ) = ψ

[
1 −

5ξ%

Γ(% + 1)
+

25ξ2%

Γ(2% + 1)
−

125x3%

Γ(3% + 1)
+

625ξ4%

Γ(4% + 1)
+ · · ·

]
.

(4.19)

The exact solution is
υ(ξ, ψ) = ψ cos

√
5ξ.

AIMS Mathematics Volume 8, Issue 6, 13205–13218.



13213

Now similarly, the result of y-space can be calculated with the help of homotopy perturbation

∂%υ(ξ, ψ)
∂ψ%

+
∂2υ(ξ, ψ)
∂ξ2 + 5υ(ξ, ψ) = 0, (4.20)

with the IC

υ(ξ, 0) = ξ. (4.21)

The solution of the Eq (4.20) is expressed as

υ(ξ, ψ) = ξ

(
1 −

5ψ%

Γ(% + 1)
+

25ψ2%

Γ(2% + 1)
−

125ψ3%

Γ(3% + 1)
+

625ψ4%

Γ(4% + 1)
+ · · ·

)
.

The exact solution is

υ(ξ, ψ) = ξ cos
√

5ψ. (4.22)

Figure 3 illustrates the solutions of exact and HPTM in two-dimensional plots, as shown in
Figure 3a and b for different values of %, ranging from 2 to 1.5, respectively. The interval considered
for ξ is [0, 1], while ψ is constant at 1. The results obtained from the fractional-order model converge
to the integer-order solution of the problem. In Figure 4, the 3-dimensional plots of exact and HPTM
solutions are presented in Figures (a) and (b), respectively, for % = 2. The closed contact of the two
solutions is analyzed. Additionally, Figure 4c and d depict the HPTM solutions at % = 1.8 and 1.6,
respectively, for Problem 4.2. Similarly, graphs for ψ-space can also be generated.

Figure 3. Exact and proposed method solution at various fractional orders of Problem 4.2.
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Figure 4. Exact and proposed method solution at various fractional orders of Problem 4.2.

Problem 4.3. Consider the space-fractional HE

∂%υ(ξ, ψ)
∂ξ%

+
∂2υ(ξ, ψ)
∂ψ2 − 2υ(ξ, ψ) = (12ξ2 − 3ξ4)sinψ, 1 < % ≤ 2, 0 ≤ ψ ≤ 2π, (4.23)

with the ICs
υ(0, ψ) = 0 and υξ(0, ψ) = 0. (4.24)

Applying the Yang transform of Eq (4.23), we achieve

1
s%

Y[υ(ξ, ψ)] = υ(0, ψ)s1−% − Y
{
∂2υ(ξ, ψ)
∂ψ2 − 2υ(ξ, ψ)

}
, (4.25)

Y[υ(ξ, ψ)] = sυ(0, ψ) − s%Y
{
∂2υ(ξ, ψ)
∂ψ2 − 2υ(ξ, ψ)

}
. (4.26)

Implementing inverse Yang transform, we get

Y[υ(ξ, ψ)] =

(
ξ4 −

ξ6

10

)
sinψ − Y−1

[
s%Y

{
∂2υ(ξ, ψ)
∂ψ2 − 2υ(ξ, ψ)

}]
. (4.27)

Applying Homotopy perturbation method in Eq (4.27), we achieved as

∞∑
ı=0

pıυı(ξ, ψ) =ψ − p

Y−1

s%Y


 ∞∑
ı=0

pıυı(ξ, ψ)


ψψ

− 2
∞∑
ı=0

pıυı(ξ, ψ)



 . (4.28)
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Both sides on comparison coefficients of p, we obtain

p0 : υ0(ξ, ψ) =

(
ξ4 −

ξ6

10

)
sinψ,

p1 : υ1(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ0(ξ, ψ)
∂ψ2 − 2υ0(ξ, ψ)

}]
= 3

(
ξ%+4

Γ(% + 5)
−

72ξ%+6

Γ(% + 7)

)
sinψ,

p2 : υ2(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ1(ξ, ψ)
∂ψ2 − 2υ1(ξ, ψ)

}]
= 3

(
ξ2%+4

Γ(2% + 5)
−

216ξ2%+6

Γ(2% + 7)

)
sinψ,

p3 : υ3(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ2(ξ, ψ)
∂ψ2 − 2υ2(ξ, ψ)

}]
= 3

(
ξ3%+4

Γ(3% + 5)
−

648ξ3%+6

Γ(3% + 7)

)
sinψ,

p4 : υ4(ξ, ψ) = −Y−1
[
s%Y

{
∂2υ3(ξ, ψ)
∂ψ2 − 2υ3(ξ, ψ)

}]
= 3

(
ξ4%+4

Γ(4% + 5)
−

1944ξ2%+6

Γ(2% + 7)

)
sinψ,

...

(4.29)

The series type result of the third problem is

υ(ξ, ψ) =υ0(ξ, ψ) + υ1(ξ, ψ) + υ2(ξ, ψ) + υ3(ξ, ψ) + υ4(ξ, ψ) + · · ·

υ(ξ, ψ) =

(
ξ4 −

ξ6

10

)
sinψ + 3

(
ξ%+4

Γ(% + 5)
−

72ξ%+6

Γ(% + 7)

)
sinψ + 3

(
ξ2%+4

Γ(2% + 5)
−

216ξ2%+6

Γ(2% + 7)

)
sinψ

+ 3
(

ξ3γ+4

Γ(3% + 5)
−

648ξ3%+6

Γ(3% + 7)

)
sinψ + 3

(
ξ4%+4

Γ(4% + 5)
−

1944ξ2%+6

Γ(2% + 7)

)
sinψ + · · · .

(4.30)

The exact solution is

υ(ξ, ψ) = ξ4 sinψ.

Figure 5a and b display the exact and HPTM solutions, respectively, in a 3-dimensional plot at
% = 2. The closed contact between the exact and HPTM solutions is examined. Figure 6 depicts the
exact and HPTM solutions in two-dimensional plot for various values of % = 2, 1.9, 1.8, 1.7, 1.6, 1.5 for
ξ ∈ [0, 1] and ψ = 1. The fractional results are observed to approach an integer-order solution of the
problem. Similarly, the graphs for ψ-space fractional-order derivative can also be plotted.

Figure 5. Exact and proposed method solution at various fractional orders of Problem 4.3.
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Figure 6. Exact and proposed method solution at various fractional orders of Problem 4.3.

5. Conclusions

In this study, fractional-order Helmholtz equations were solved using the Homotopy Perturbation
Yang transform method. Due to the great agreement between the generated approximative solution
and the precise solution, the homotopy perturbation Yang transform method was demonstrated to be
a successful method for solving partial differential equations with Caputo operators. The computation
size of the approach was compared to those required by other numerical methods to demonstrate how
tiny it is. Additionally, the procedure’s quick convergence demonstrates its dependability and marks a
notable advancement in the way linear and non-linear fractional-order partial differential equations are
solved.
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