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1. Introduction

In the present paper, we focus on the geometry of log-concave measure which is defined as follows:
Definition A.1 (Log-concave Measure(see [12, 34, 43])). A measure µ is called log-concave if its
density dµ(x)

dx is log-concave, that is, dµ(x)
dx = e− f (x) for some convex function f which means that

µ(E) =

∫
E

e− f (x)dx (1.1)

for every Borel set E ⊆ Rn+1 and some convex function f .
Now, we provide some examples of log-concave measures.

Examples A.2 (i) Gauss measure. The Gauss measure γn on Rn is defined as follows,

dγn =
1

(2π)
n+1

2

e−
|x|2
2 dx (1.2)
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which characterizes the Gaussian generalized random processes in stochastic analysis, see
Bogachev [4].

(ii) The weighted Bergman measure in Siegel domain. The domain

Ω2 = {z = (z′, zn+1) ∈ Cn+1 : Im(zn+1) > |z′|2}. (1.3)

is a pseudo-convex domain in Cn+1. In order to analyze some potential theory on Ω2, such as the
estimates of Cauchy-Szegö kernel on Ω2, the suitable Bergman space X(Ω2) may be chosen provided
the Bergman norm ‖ · ‖X(Ω2) is well-defined where

‖g‖X(Ω2) =

∫
Cn+1
|g(z)|2e−4πλ|z|2dV(z) (1.4)

for any holomorphic function g in Cn+1, see pp. 45–66 of Chang and Tie [9]. We may call the measure

dV̄(z) = e−4πλ|z|2dV(z)

be the weighted Bergman measure associated with the Siegel domain Ω2 and it is easy to see that dV̄
is a log-concave measure for any fixed λ > 0.

(iii) Gibbs measure of some nonlinear Schrödinger equation. The Gibbs measure P(du) of some
nonlinear Schrödinger equation is defined as follows:

P(du) = e−H(u)du (1.5)

where
H(u) =

1
2

∫
Rn
|∇u|2dx. (1.6)

That is, H(u) is the Hamilton functions for the following Schrödinger equation with unit mass,

i∂tu = −∆u, (1.7)

(see a similar description of [17]). The Gibbs measures play an important role in quantum field theory
and regularity and asymptotic behaviors of the Cauchy problem for some Schrödinger equations, see
[17, 19, 35] and their references.

It may be interesting to mention that some of the classical concepts and results in integral geometry
have been generalized to the log-concave measures, such as the support function and Steiner type
formulas. Moreover, the convexity of f can be used to deduce some interesting geometric inequalities
for the measure e− f (x)dx, such as Brunn-Minkowski inequality, Prékopa-Leindler inequalities or
Blaschke-Santaló inequalities and so on, see [4, 5, 7, 12, 14, 18, 34, 43]. Naturally, the prescribed log-
concave measure problem has also been posed and studied which is called the Lp Minkowski problem
of the log-concave measure in the present paper, see [12, 15, 30, 38]. The works of [12, 15, 30, 38] can
be formulated in the following way:
Problem A.3. For any fixed n ≥ 1 and p ∈ R, given any Borel measures 1

ψ(x)dx, find a convex function
u such that

(∇u)](
up−1

ψ(x)
dx) = e− f (|y|2)dy. (1.8)
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In particular, if the measure dµ and e− f (x)dx are both supported on the whole space Rn+1, Problem
A.3 is the so-called Lp Minkowski problem for log-concave measure and has been analyzed, see [12,
15, 43].

If N = Sn and the support set of the measure e− f (|x|2)dx lies on the boundary of a hypersurface M,
noting that in smooth case, the normal mapping ν and the support function u of a hypersurface M
satisfies

ν−1 = ∇u, (1.9)

Problem A.3 can be stated as follows,
Problem A.4 (A Minkowski problem for log-concave measure). For any fixed n ≥ 1 and p ∈ R,
given a non-negative, finite Borel measure dµ = 1

ψ(ξ)dξ defined on the unit sphere Sn, find a convex
hypersurface M ⊆ Rn+1 such that

ν](u1−pe− f (|x|2)dσ(x)) = dµ(ξ), (1.10)

where ν, u and dσ are the normal mapping, support function and surface measure of a convex
hypersurface M ⊆ Rn+1 respectively, f is convex.

In particular, if f ≡ 0, Problem A.4 becomes the following classical Minkowski problem for p-
curvature function which is also called Lp Minkowski problem.
Problem A.5 (The classical Minkowski problem for p-curvature function). For any fixed n ≥ 1
and p ∈ R, given a non-negative, finite Borel measure µ defined on the unit sphere Sn, find a convex
hypersurface M ⊆ Rn+1 such that

ν](u1−pdσ(x)) = dµ(ξ), (1.11)

where ν, u and dσ are the normal mapping, support function and surface measure of a convex
hypersurface M ⊆ Rn+1 respectively.

In particular, if p = 1, Problem A.5 was posed and analyzed by Minkowski for his wonderful
construction of the Gaussian curvature (measure) via natural arguments in convex and integral
geometry provided the measure dµ is the sum of the delta measure or the measure dµ is absolutely
continuous with respect to the spherical Lebesgue measure whose density is continuous, see [44].
Later, Aleksandrov (see [44]) and Fenchel and Jensen (see [44]) generated the result of Minkowski for
the general Borel measure on the unit sphere independently. Later, with the help of PDEs, Problem
A.5 was resolved by Lewy, Nirenberg, Pogorelov, Cheng and Yau and so on, (see [44]).

Noting that Gaussian curvature is the Jocabian of normal mapping,
Problem A.6 (A prescribed Gaussian curvature problem). For any fixed n ≥ 1 and p ∈ R, find a
smooth convex hypersurface M ⊆ Rn+1 such that

u1−pe− f (ρ2)

K
=

1
ψ(ξ)

, (1.12)

where u, ρ andK are the support function, radial function and Gaussian curvature function of a convex
hypersurface M ⊆ Rn+1, f is convex.

It may be worth mention that the arguments of Minkowski are based on some convex analysis of
volume under the Minkowski sum, such as Brunn-Minkowski inequality and Hadamard variational
formula, see [8, 21, 44]. A natural generalization of Minkowski sum is the so-called p-sum posed by
Firey [16] for any fixed p ≥ 1 due to the convexity of the function g(t) = tp for p ≥ 1. Based on the
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concept of p-sum posed by Firey, Lutwak [39] introduced to p-Gaussian curvature function and posed
and studied Problem A.5 which is called Lp Minkowski problem later. More results on Lp Minkowski
problem can be referred to [6, 11, 22, 26–28, 31, 32, 40, 41]

On the one hand, recently, more and more researchers have been focusing on prescribed curvature
problem in Riemannian manifolds, see [10, 24, 37] and so on. In the point of view of development
of geometric analysis, it is interesting to focus on geometric problems for log-concave measures in
Riemannian manifolds.

On the other hand, recently, classical stochastic analysis has been developing in Riemannian
manifolds [3, 13, 29, 45]. It follows from Example A.2 that the log-concave measures have their origin
in stochastic analysis, it is also interesting to focus on the theory of integral geometry of log-concave
measures in Riemannian manifolds.

The main focus of the present paper is on Problem A.3 when the support set of the log-concave
measure e− f (|x|2)dx enjoys a more interesting metric structure. Among them, one interesting object is
the so-called warped product space forms.

In the polar coordinate system, the metric of the hypersurface M satisfies

ds2 = dρ2(ξ) + ρ2(ξ)dξ2. (1.13)

where ρ is the so-called radial function defined in (1.2). As a generalization to (1.13), one may consider
a hypersurface M in Rn+1 whose metric satisfies

ds2 = dρ2(ξ) + ϕ2(ρ)(ξ)dξ2 (1.14)

for any given function ϕ : (0,∞) 7→ R, see [2]. In particular, if ϕ(ρ) = ρ, M is a hypersurface
in Euclidean Space. Motivated by the work of Aleksandrov’s construction of integral Gaussian
curvature, Oliker [42] focused on the existence of hypersurface which was prescribed the so-called
integral Gaussian curvature and zero sectional curvature in a smooth frame. The works of Aleksandrov
and Oliker provided new motivations on the geometric analysis of the warped product space forms,
see [2, 23, 25, 33, 36, 46] and so on.

It is worth mentioning that the target hypersurfaces of [30, 38] both lie in Rn+1, that is, ϕ(ρ) = ρ

provided we suppose the metric of M with the form (1.14). It is natural to analyze Problem A.3 when
the metric of the hypersurface M satisfies (1.14) for a given function ϕ.

In a smooth frame, if the sectional curvature of the hypersurface M is zero, we know that the
Gaussian curvature K and the support function u of M can be written as follows:

K =
det(−ρi j +

2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

ϕn−2(ρ)(ϕ2(ρ) + |∇ρ|2)
n
2 +1

(1.15)

and

u =
ϕ2(ρ)√

ϕ2(ρ) + |∇ρ|2
(1.16)

(see Lemma A in Appendix). Therefore, we focus on the existence of smooth solutions to the Eq (1.1)
on the unit sphere Sn:

det(−ρi j +
2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= ψ(ξ)e f (ρ2)ϕn−2p(ρ). (1.17)
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Before stating the main result of the present paper, we assume the following conditions hold.
(A.1.) f , ϕ and ψ are both C2 positive functions,

‖ f ‖C2(R) + ‖ψ‖C2(R) + ‖ϕ‖C2(R) < ∞ (1.18)

and 
lim
ρ→∞

e− f (ρ2) ϕn+1−p(ρ)
(ϕ′(ρ))n = 0;

lim
ρ→0

e− f (ρ2) ϕn+1−p(ρ)
(ϕ′(ρ))n = ∞.

(1.19)

(A.2.) The function e− f (t2)ϕn+1+p(t) is non-increasing on (0,∞).
(A.3.) inf

t>0
ϕ′′(t) ≥ 0 and there exists a positive number γ such that

ntϕ′′(t) ≤ γϕ′(t) (1.20)

for any t > 0.
The main result of the present paper can be stated as follows,

Theorem 1.1. For any fixed n ≥ 1 and p > −n− 1, suppose that the assumptions (A.1.) ∼ (A.3.) holds,
then there exists a ρ ∈ C2(Sn) to Eq (1.17) satisfying

‖ρ‖C2(Sn) ≤ c, (1.21)

where c is independent of ρ.
Remark 1.2. It follows from (1.1) that the equation is associated to the so-called prescribed Gauss
curvature problem for the log-concave measure e− f (|x|2)dx which may be an attempt on more differential
geometric analysis for the log-concave measure e− f (|x|2)dx. In particular, if f (t) = n+1

2 ln(2π) + t
2 , some

of these topics have been focused on, see [4, 5, 7, 8, 18].
The rest of the paper is organized as follows: In Section 2, we get the a priori bounds of solutions.

In Section 3, we prove Theorem 1.1. In the Appendix, we list some basic geometric quantity associated
to the discussion.

2. A priori bounds

Section 2 devotes to the a priori bounds of solutions to the following equation on the unit sphere Sn:

det(−ρi j +
2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= ψ(ξ)e f (ρ2)ϕn−2p(ρ). (2.1)

We let the set of the positive continuous function on the unit sphere Sn be C+(Sn) and

C = {ρ ∈ C2,σ(Sn) : (−ρi j +
2ϕ′(ρ)
ϕ(ρ)

ρiρ j + ϕ(ρ)ϕ′(ρ)δi j) is positive definite}. (2.2)

This main result of this section can be stated as follows,
Theorem 2.0. For any fixed n ≥ 1 and p > −n − 1, let ρ ∈ C ∩ C+(Sn) be a solution to (2.1) and f , ϕ
and ψ satisfy the condition (A.1.). Then there exists a positive constant c, independent of ρ, such that

0 < c−1 ≤ ‖ρ‖C2,σ(Sn) ≤ c < ∞, (2.3)
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where σ ∈ (0, 1).
Now, we divide the proof of Theorem 2.0 into following several of lemmas.

Lemma 2.1. For any fixed n ≥ 1, let ρ ∈ C ∩ C+(Sn) be a solution to (2.1) and f , ϕ and ψ satisfy the
condition (A.1.). Then there exists a positive constant c, independent of ρ, such that

0 < c−1 ≤ ρ(ξ) ≤ c < ∞,∀ξ ∈ Sn. (2.4)

Proof. We consider the following extremal problem,

R = max
ξ∈Sn

ρ(ξ). (2.5)

It follows from the compactness of Sn and the continuity of ρ that there exists ξ1 ∈ S
n such that

R = ρ(ξ1). (2.6)

It follows from (2.1) that at the point ξ = ξ1,

(ϕ′(R))n

ϕ1+p(R)
=

(ϕ′(R)ϕ(R))n

ϕn+1+p(R)

≤
det(−ρi j +

2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= ψ(ξ1)e f (R2)ϕn−2p(R),
(2.7)

that is,

e f (R2)ϕ
n+1−p(R)

(ϕ′(R))n ≥
1

ψ(ξ1)
≥

1
max
ξ∈Sn

ψ(ξ)
> 0. (2.8)

However, there exists a contradiction between (2.8) and (1.19) provided R is sufficiently large. This
implies there exists a positive constant c > 0 such that

R ≤ c < ∞. (2.9)

Adopting a similar argument, we also get

r ≥
1
c
> 0. (2.10)

(2.9) and (2.10) yield the desired conclusion of lemma 2.1.
The following lemma can be referred to [2]. For the sake of the completeness, we give the proof

here.
Lemma 2.2. We let ρ be a solution of (2.1) and v(ξ) =

ϕ′(ρ(ξ))
ϕ(ρ(ξ)) , then v solves the following equation,

det(vi j + vδi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= ψ(ξ)e f (ρ2)ϕ−n−2p(ρ). (2.11)
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Proof. By the definition of v, we have,

vi = −
ρi

ϕ2(ρ)
, vi j = −

ρi j

ϕ2(ρ)
+

2ϕ′(ρ)
ϕ3(ρ)

ρiρ j (2.12)

and
vi j + vδi j =

1
ϕ2(ρ)

(−ρi j +
2ϕ′(ρ)
ϕ(ρ)

ρiρ j + ϕ(ρ)ϕ′(ρ)δi j). (2.13)

Therefore,

u1−pe f (ρ2)ψ(ξ) = K =
det(−ρi j +

2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

ϕn−2(ρ)(ϕ2(ρ) + |∇ρ|2)
n+2

2

=
det(vi j + vδi j)

ϕ−n−2(ρ)(ϕ2(ρ) + |∇ρ|2)
n+2

2

.

(2.14)

Noting that

u =
ϕ2(ρ)√

ϕ2(ρ) + |∇ρ|2
(2.15)

we have,

det(vi j + vδi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= ψ(ξ)e f (ρ2)ϕ−n−2p(ρ). (2.16)

This is the desired conclusion of Lemma 2.2.
In the rest of this section, we will consider the a priori bounds of solutions to Eq (2.11).
It is easy to see that

ρ ∈ C ⇔ v ∈ {v ∈ C2,σ(Sn) : (vi j + δi jv) is positive definite} , C̄. (2.17)

Lemma 2.3. For any fixed n ≥ 1 and p > −n − 1, we let v ∈ C̄ ∩ C+(Sn) be the solution of (2.11).
Suppose that f , ϕ and ψ satisfy the condition (A.1.). Then there exists a positive constant c, independent
of ρ, such that

0 ≤ |∇v(ξ)| ≤ c,∀ξ ∈ Sn. (2.18)

Thus,
0 ≤ |∇ρ(ξ)| ≤ c,∀ξ ∈ Sn. (2.19)

Proof. The proof follows from the argument of Oliker [42]. Let {ξi}
n
i=1 be a system of smooth local

orthogonal coordinates on Sn, we therefore get

|dξ|2 = δi jdξidξ j, (2.20)

where δi j is the Dirac notation. It is easy to see that

|∇v|2 = δi j
∂v
∂ξi

∂v
∂ξ j

=

n∑
i=1

|
∂v
∂ξi
|2, (2.21)
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(see pp. 812 of Oliker [42]). We let

u =
v2 + |∇v|2

2
.

Suppose that there exists ξ2 ∈ S
n such that

u(ξ2) = max
ξ∈Sn

u(ξ).

Then, for any fixed i ∈ {1, 2, · · · , n}, at the point ξ2,

0 = ui =

n∑
j=1

(vi j + vδi j)
∂v
∂ξ j

. (2.22)

It follows from Lemma 2.1 that there exists a positive constant c such that

det(vi j + vδi j) = ψ(ξ)e f (ρ2)ϕ−n−2p(ρ)(ϕ2(ρ) + |∇ρ|2)
n+1+p

2 ≥ c > 0 (2.23)

at the point ξ0. This means that the matrix (vi j + vδi j)n×n is nonsingular at the point ξ2. Therefore,
combining with (2.22), we get

vk(ξ2) = 0

for any fixed k ∈ {1, 2, · · · , n} . Therefore, it follows from Lemma 2.1 that there exists a positive
constant c such that

1
2
|∇v|2(ξ) ≤ u(ξ) ≤ u(ξ2) =

1
2

max
ξ

v(ξ) ≤ c,∀ξ ∈ Sn.

This completes the proof of Lemma 2.3.
We first let Wi j = (vi j + δi jv), G(Wi j) = (det Wi j)

1
n and

Ψ(ξ) = (ψ(ξ)e f (ρ2)ϕ−n−2p(ρ)(ϕ2(ρ) + |∇ρ|2)
n+1+p

2 )
1
n ,

then Eq (2.11) becomes
G(Wi j) = Ψ. (2.24)

Lemma 2.4. For any fixed n ≥ 1 and p > −n − 1, let ρ ∈ C ∩ C+(Sn) be a solutions of (2.1). Suppose
that f , ϕ and ψ satisfy the condition (A.1.). Then there exists a positive constant c, independent of ρ,
such that

− ∆ρ ≤ c. (2.25)

Proof. Let H =
∑

i Wii = ∆v + nv. By the commutator identity, we have,

Hii = ∆Wii − nWii + H. (2.26)

Suppose that H achieves it maximum at the point ξ = ξ3. Without loss of generality, we may (Hi j)n×n

is diagonal at the point ξ = ξ3. Therefore, at the point ξ = ξ3,

0 ≥ Gi jHi j = Gii(∆Wii) − nGii + HΣiG
ii. (2.27)
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It follows from (2.25) that

Gi jWi jα = Ψα,G
i j,rsWi jαWrsα + Gi j∆Wi j = ∆Ψ (2.28)

By the concavity of G, we have
Gi j,rsWi jαWrsα ≤ 0. (2.29)

This implies that
Gii∆Wii ≥ G

i j,rsWi jαWrsα + Gi j∆Wi j = ∆Ψ. (2.30)

Putting (2.30) into (2.27), we have, at the point ξ = ξ3,

0 ≥ ∆Ψ − nΨ + HΣiG
ii. (2.31)

It follows from Newton-MacLaurin inequality that

ΣiG
ii ≥ 1, (2.32)

see [26].
Now, we claim that at the point ξ = ξ3,

∆Ψ

Ψ
≥

n + 1 + p
2n

min
ξ∈Sn

ϕ2(ρ(ξ))
ϕ2(ρ(ξ)) + |∇ρ(ξ)|2

∑
kα

ρ2
kα − c. (2.33)

Indeed, it follows from the definition of Ψ that

log Ψ =
1
n

logψ(ξ) −
n + 2p

n
logϕ(ρ) +

1
n

f (ρ2)

+
n + 1 + p

2n
log(ϕ2(ρ) + |∇ρ|2).

(2.34)

For any fixed α ∈ {1, 2, · · · , n}, taking α-th partial derivatives on both sides of (2.34) twice, we have

Ψα

Ψ
= (

1
n

(logψ(ξ))′ −
n + 2p

n
(logϕ)′)ρα +

2
n

f ′(ρ2)ρρα

+
n + 1 + p

n
(ϕ(ρ)ϕ′(ρ)ρα + ρkρkα)

ϕ2(ρ) + |∇ρ|2

(2.35)

and

∆Ψ

Ψ
−
|∇Ψ|2

Ψ2 = Σα
Ψαα

Ψ
−

Ψ2
α

Ψ2

= Σα(
1
n

(logψ)′′ −
n + 2p

n
(logϕ)′ραα

−
n + 2p

n
(logϕ)′′ρ2

α +
2 f ′(ρ2)

n
(ρ2

α + ρραα)

+
4 f ′′(ρ2)

n
ρ2ρ2

α +
n + 1 + p

n
(ϕ(ρ)ϕ′′(ρ) + (ϕ′(ρ))2)ρ2

α + ϕ(ρ)ϕ′(ρ)ραα
ϕ2(ρ) + |∇ρ|2

+
n + 1 + p

n

∑
k ρ

2
kα +
∑

k ρkααρk

ϕ2(ρ) + |∇ρ|2

−
n + 1 + p

n
(ϕ(ρ)ϕ′(ρ)ρα +

∑
k ρkρkα)2

(ϕ2(ρ) + |∇ρ|2)2 ) =

4∑
j=1

I j.

(2.36)
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where

I1 = (−
n + 2p

n
(logϕ)′ +

n + 1 + p
n

ϕ(ρ)ϕ′(ρ)
ϕ2(ρ) + |∇ρ|2

+
2
n

f ′(ρ2)ρ)∆ρ, (2.37)

I2 = (logψ)′′ + (−
n + 2p

n
(logϕ)′′ +

2
n

f ′(ρ2) +
4
n

f ′′(ρ2)ρ2

+
n + 1 + p

n
(ϕ(ρ)ϕ′′(ρ) + (ϕ′(ρ))2)

ϕ2(ρ) + |∇ρ|2

−
n + 1 + p

n
(ϕ(ρ)ϕ′(ρ))2

(ϕ2(ρ) + |∇ρ|2)2 )|∇ρ|2,

(2.38)

I3 = −
n + 1 + p

n
(
∑
α(
∑

k ρkρkα)2

(ϕ2(ρ) + |∇ρ|2)2 +
2
∑

kα ρkραρkαϕ(ρ)ϕ′(ρ)
(ϕ2(ρ) + |∇ρ|2)2 ) (2.39)

and

I4 =
n + 1 + p

n
(
∑

kα ρ
2
kα

ϕ2(ρ) + |∇ρ|2
+
∇ρ · ∇∆ρ

ϕ2(ρ) + |∇ρ|2
). (2.40)

We first estimate the term I1. It follows from Hölder inequality that

|I1| ≤ c∆ρ = cΣiρii

≤
(n + 1 + p)ε

n
Σiρ

2
ii +

c
2ε

≤
(n + 1 + p)ε

n
Σkαρ

2
kα +

c
2ε
.

(2.41)

for some ε to be chosen later. Therefore,

I1 ≥ −
(n + 1 + p)ε

n
Σkαρ

2
kα +

c
2ε
. (2.42)

Now, we turn to the estimate of the term I2. It follows from Lemma 2.2 that

I2 ≥ −c. (2.43)

Now, we estimate the term I3. It follows from Hölder inequality and Lemma 2.2 that

|
2
∑

kα ρkραρkαϕ(ρ)ϕ′(ρ)
(ϕ2(ρ) + |∇ρ|2)2 | ≤ c|∇ρ|2(

∑
kα

ρkα)2)
1
2

≤ c(
∑
kα

ρkα)2)
1
2

≤
(n + 1 + p)ε

n

∑
kα

ρ2
kα +

c
4ε

(2.44)

for the same ε as in (2.41) and∑
α(
∑

k ρkρkα)2

(ϕ2(ρ) + |∇ρ|2)2 ≤
|∇ρ|2

(ϕ2(ρ) + |∇ρ|2)2

∑
kα

ρ2
kα (2.45)
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Putting (2.44) and (2.45) into (2.36), we have

I3 ≥ −
n + 1 + p

n
(

|∇ρ|2

(ϕ2(ρ) + |∇ρ|2)2 + ε)
∑
kα

ρ2
kα − c. (2.46)

Now, we estimate the term I4. Since
vi = −

ρi

ϕ2(ρ)
, (2.47)

we have
vii = −

ρii

ϕ2(ρ)
+

2ϕ′(ρ)
ϕ3(ρ)

ρ2
i (2.48)

and thus,

∆ρ =
2ϕ′(ρ)
ϕ(ρ)

|∇ρ|2 − ϕ2(ρ)∆v. (2.49)

Moreover, since
H = ∆v + nv, (2.50)

we have,

∆ρ = (−H + nv)ϕ2(ρ) +
2ϕ′(ρ)
ϕ(ρ)

|∇ρ|2. (2.51)

Therefore, for any i ∈ {1, 2, · · · , n}, we have

(∆ρ)i = −Hiϕ
2(ρ) + nϕ2(ρ)vi − 2ϕ(ρ)(H − nv)ϕ′(ρ)ρi

+ (
2ϕ′′(ρ)
ϕ(ρ)

−
2(ϕ′(ρ))2

ϕ2(ρ)
)ρi|∇ρ|

2 +
2ϕ′(ρ)
ϕ(ρ)

∑
l

ρlρli

= −Hiϕ
2(ρ) − nρi − 2ϕ(ρ)(H − nv)ϕ′(ρ)ρi

+ (
2ϕ′′(ρ)
ϕ(ρ)

−
2(ϕ′(ρ))2

ϕ2(ρ)
)ρi|∇ρ|

2 +
2ϕ′(ρ)
ϕ(ρ)

∑
l

ρlρli

(2.52)

and

∇ρ · ∇∆ρ = −∇ρ · ∇Hϕ2(ρ) − n|∇ρ|2 − 2ϕ(ρ)(H − nv)ϕ′(ρ)|∇ρ|2

+ (
2ϕ′′(ρ)
ϕ(ρ)

−
2(ϕ′(ρ))2

ϕ2(ρ)
)|∇ρ|4 +

2ϕ′(ρ)
ϕ(ρ)

∑
li

ρlρiρli

= −n|∇ρ|2 − 2ϕ(ρ)(H − nv)ϕ′(ρ)|∇ρ|2

+ (
2ϕ′′(ρ)
ϕ(ρ)

−
2(ϕ′(ρ))2

ϕ2(ρ)
)|∇ρ|4 +

2ϕ′(ρ)
ϕ(ρ)

∑
li

ρlρiρli

(2.53)

at the point ξ = ξ3 since ξ3 is a critical point of H. It follows from Lemma 2.2 that

− n|∇ρ|2 − 2ϕ(ρ)(H − nv)ϕ′(ρ)|∇ρ|2 + (
2ϕ′′(ρ)
ϕ(ρ)

−
2(ϕ′(ρ))2

ϕ(ρ)2 )|∇ρ|4 ≥ −c (2.54)

at the point ξ = ξ3. It follows from Hölder inequality that

2ϕ′(ρ)
ϕ(ρ)

∑
li

ρlρiρli ≤
(n + 1 + p)ε

n

∑
li

ρ2
li +

c
4ε

(2.55)
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for the same ε as in (2.41). Therefore, at the point x = x3, we have,

n + 2 − p
n

∇ρ · ∇∆ρ

ϕ2(ρ) + |∇ρ|2
≥ −

(n + 1 + p)ε
n

∑
li

ρ2
li −

c
4ε
− c. (2.56)

Putting (2.56) into (2.40), we have,

I4 ≥
n + 1 + p

n
(

1
ϕ2(ρ) + |∇ρ|2

− ε)
∑

li

ρ2
li +

c
2ε
− c. (2.57)

Therefore,

∆Ψ

Ψ
≥

4∑
j=1

I j

≥
n + 1 + p

n
(

1
ϕ2(ρ) + |∇ρ|2

−
|∇ρ|2

(ϕ2(ρ) + |∇ρ|2)2 − 2ε)
∑

li

ρ2
li +

c
2ε
− c

≥
n + 1 + p

n
(

ϕ2(ρ)
ϕ2(ρ) + |∇ρ|2

− 2ε)
∑

li

ρ2
li −

c
2ε
− c.

(2.58)

Let ε0 = min
ξ∈Sn

ϕ2(ρ(ξ))
ϕ2(ρ(ξ))+|∇ρ(ξ)|2 , for any ε ∈ (0, 4ε0), we have,

∆Ψ

Ψ
≥

n + 1 + p
2n

min
ξ∈Sn

ϕ2(ρ(ξ))
ϕ2(ρ(ξ)) + |∇ρ(ξ)|2

∑
li

ρ2
li − c. (2.59)

(2.31), (2.32) and (2.59) yields that there exists a positive constant c such that

Σliρ
2
li ≤ c (2.60)

at the point ξ = ξ3. Therefore, it follows from Hölder inequality that

− ∆ρ = −Σlρll ≤
√

n
√

Σlρ
2
ll ≤
√

n
√

Σliρ
2
li ≤ c (2.61)

at the point ξ = ξ3. This completes the proof of Lemma 2.4.
Now, we are in a position the prove Theorem 2.0.

Final proof of Theorem 2.0. It follows from (2.24) that Eq (2.1) becomes

F (Wi j) = 0 (2.62)

provided F (Wi j) = G(Wi j) − ψ. We let Fi j = ∂F
∂Wi j

. It follows from Lemmas 2.1–2.4 that there exist
positive constants λ and Λ, independent of Wi j, such that

0 < λζ2 ≤ Fi jζiζ j ≤ Λζ2, (2.63)

for any ζ = (ζ1, ζ2, · · · , ζn) ∈ Rn. That is,
(i) (2.62) is elliptic uniformly.
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Moreover, it is easy to see that G = det
1
n is concave with respect to Wi j and therefore,

(ii) F is concave with respect to Wi j.
Then, it follows from Theorem 17.14 of Gilbarg and Trudinger [20] that there exist τ1 ∈ (0, 1) and

positive constant c, independent of W, such that

‖W‖C2,τ1 (Sn) ≤ c, (2.64)

and therefore there exist τ ∈ (0, 1) and positive constant c, independent of ρ, such that

‖ρ‖C2,τ(Sn) ≤ c, (2.65)

(see pp. 457–461 of Gilbarg and Trudinger [20]). This is the desired conclusion of Theorem 2.0.

3. The proof of Theorem 1.1.

This section devotes to the proof of Theorem 1.1.
Motivated by [42], we consider the following auxiliary problem with a parameter t ∈ [0, 1] on the

unit sphere Sn,

M(ρ) =
det(−ρi j +

2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= tψ(ξ)K(ρ) + (1 − t)g(ρ) , Kt (3.1)

where K(ρ) = e− f (ρ2)ϕn−2p(ρ) and g(ρ) =
(ϕ′(ρ))n

ϕ1+p(ρ)ρ
−γ with γ > 0.

By (A.1.) and the definition of Kt, we have
lim
ρ→∞

Kt
ϕ1+p(R)
(ϕ′(R))n = 0;

lim
ρ→0

Kt
ϕ1+p(R)
(ϕ′(R))n = ∞.

(3.2)

for any t ∈ [0, 1].
We let the set of the positive continuous function on the unit sphere Sn be C+(Sn) and

C = {ρ ∈ C2,σ(Sn) : (−ρi j +
2ϕ′(ρ)
ϕ(ρ)

ρiρ j + ϕ(ρ)ϕ′(ρ)δi j) is positive definite} (3.3)

and
I = {t ∈ [0, 1] : ρ ∈ C ∩C+(Sn), (3.1) is solvable}. (3.4)

Adopting a similar argument in Section 2, we get
Lemma 3.1. For any fixed n ≥ 1, p > −n − 1 and t ∈ [0, 1], we let ρt ∈ C ∩ C+(Sn) be a solution of
(3.1). Suppose that the condition (A.1.) holds, then there exists a constant c, independent on t, such
that

0 < c−1 ≤ |ρt|C2,σ(Sn) ≤ c,

for any t ∈ [0, 1] and some σ ∈ (0, 1).
As a corollary of Lemma 3.1, we have,
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Corollary 3.2. For any fixed n ≥ 1, p > −n − 1 and t ∈ [0, 1], we let I is the set defined in (3.4).
Suppose that f , ϕ and ψ satisfy the condition (A.1). Then I is closed.
Proof. It suffices to show that for any sequence {t j}

∞
j=1 ⊆ I satisfying

t j → t0,

as j→ ∞ for some t0 ∈ [0, 1], we need to prove t0 ∈ I.
We let ρ j be a solutions of problem (3.1) at t = t j. It follows from the conclusion of Lemma 3.1 that

there exists a positive constant c, independent of j such that

‖ρ j‖C2,σ(Sn) ≤ c.

By Ascoli-Arzela Theorem, we see that, up to a subsequence, there exists a ρ0 ∈ C2(Sn)

‖ρ j − ρ0‖C2(Sn) → 0

as j→ ∞. It is easy to see that

M(ρ j)→ M(ρ0),K(ρ j)→ K(ρ0), g(ρ j)→ g(ρ0) (3.5)

uniformly on Sn as j → ∞. Letting j → ∞, we can see that (t0, ρ0) is a solution to the following
problem:

det(−ρi j +
2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

(ϕ2(ρ) + |∇ρ|2)
n+1+p

2

= tψ(ξ)K(ρ) + (1 − t)g(ρ) (3.6)

This implies that t0 ∈ I. This is the desired conclusion of Corollary 3.2.
Lemma 3.3. For any fixed n ≥ 1, p > −n− 1 and t ∈ [0, 1], we let I is the set defined in (3.4). Suppose
that f , ϕ and ψ satisfy the conditions (A.1.), (A.1.) and (A.3.). Then I is open.
Proof. Suppose that there exists a t̄ ∈ I and a δ > 0, for any t1 ∈ Bδ(t̄) ∩ [0, 1], we need to prove that
t1 ∈ I. To achieve this goal, joint with Implicit Function Theorem, we need to analyze the kernel of
linearized equation associated to (3.1). We assume that ρ̄ is a solution to equation (3.1) at t = t̄. For
any ζ ∈ Sn, we let M[ρ̄](ζ) = d

dεM(ρ̄ + εζ)|ε=0, Kt[ρ̄](ζ) = d
dεKt(ρ̄ + εζ)|ε=0 and

Gt(ρ̄) = M(ρ̄) − Kt(ρ̄). (3.7)

It is easy to see that

Gt[ρ̄](ζ) =
d
dε

Gt(ρ̄ + εζ)|ε=0 =
d
dε

M(ρ̄ + εζ)|ε=0 −
d
dε

Kt(ρ̄ + εζ)|ε=0

= M[ρ̄](ζ) − Kt[ρ̄](ζ).
(3.8)

We first calculate M[ρ](ζ). Taking logarithm on the left hand side of (3.1), we get

M[ρ̄](ζ)
M(ρ̄)

= P̄i jB(ζ) − (n + 1 + p)
ϕ(ρ̄)ϕ′(ρ̄)ζ + ∇ρ̄ · ∇ζ

ϕ2(ρ̄) + |∇ρ̄|2
(3.9)

where (P̄i j)n×n is the inverse of the matrix (−ρ̄i j +
2ϕ′(ρ̄)
ϕ(ρ̄) ρ̄iρ̄ j + ϕ(ρ̄)ϕ′(ρ̄)δi j)n×n and

B(ζ) = −ζi j +
2ϕ′(ρ̄)
ϕ(ρ̄)

(ρ̄iζ j + ρ̄ jζi) + ((
2ϕ′(ρ̄)
ϕ(ρ̄)

)′ρ̄iρ̄ j + (ϕ(ρ̄)ϕ′(ρ̄))′δi j)ζ. (3.10)
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We first analyze the term −(n + 1 + p)ϕ(ρ̄)ϕ′(ρ̄)ζ+∇ρ̄·∇ζ
ϕ2(ρ̄)+|∇ρ̄|2 . We let ζ = ϕ(ρ̄)η. Direct Calculation shows that

ζi = ϕ(ρ̄)ηi + ϕ′(ρ̄)ρ̄iη (3.11)

and
ζi j = ϕ(ρ̄)ηi j + ϕ′(ρ̄)(ρ̄iη j + ρ̄ jηi) + (ϕ′′(ρ̄)ρ̄iρ̄ j + ϕ′(ρ̄)ρ̄i j)η. (3.12)

We can see that

(n + 1 + p)
ϕ(ρ̄)ϕ′(ρ̄)ζ + ∇ρ̄ · ∇ζ

ϕ2(ρ̄) + |∇ρ̄|2
= (n + 1 + p)

ϕ′(ρ̄)
ϕ(ρ̄)

ζ + (n + 1 + p)
ϕ(ρ̄)∇ρ̄ · ∇η
ϕ2(ρ̄) + |∇ρ̄|2

. (3.13)

This implies that

− (n + 1 + p)
ϕ(ρ̄)ϕ′(ρ̄)ζ + ∇ρ̄ · ∇ζ

ϕ2(ρ̄) + |∇ρ̄|2
= −(n + 1 + p)

ϕ(ρ̄)∇ρ̄ · ∇η
ϕ2(ρ̄) + |∇ρ̄|2

− (n + 1 + p)ϕ′(ρ̄)η. (3.14)

Now, we move the term P̄i jB(ζ). It follows from (3.11) and (3.12) that

−ζi j +
2ϕ′(ρ̄)
ϕ(ρ̄)

(ρ̄iζ j + ρ̄ jζi) = −ϕ(ρ̄)ηi j + ϕ′(ρ̄)(ρ̄iζ j + ρ̄ jζi)

+ (−ϕ′(ρ̄)ρ̄i j + (
4(ϕ′(ρ̄))2

ϕ(ρ̄)
− ϕ′′(ρ̄))ρ̄iρ̄ j)η.

(3.15)

Noting 4(ϕ′(ρ̄))2

ϕ(ρ̄) − ϕ
′′(ρ̄) + 2ϕ(ρ̄)(ϕ

′(ρ̄)
ϕ(ρ̄) )′ =

2(ϕ′(ρ̄))2

ϕ(ρ̄) + ϕ′′(ρ̄) and

ϕ(ρ̄)(ϕ(ρ̄)ϕ′(ρ̄))′ = ϕ(ρ̄)(ϕ′(ρ̄))2 + ϕ2(ρ̄)ϕ′′(ρ̄),

we get

B(ζ) = −ϕ(ρ̄)ηi j + ϕ′(ρ̄iv j + ρ̄ jηi)

+ (−ϕ′(ρ̄)ρ̄i j + (
4(ϕ′(ρ̄))2

ϕ(ρ̄)
− ϕ′′(ρ̄) + 2ϕ(ρ̄)(

ϕ′(ρ̄)
ϕ(ρ̄)

)′)ρ̄iρ̄ j + ϕ(ρ̄)(ϕ(ρ̄)ϕ′(ρ̄))′δi j)η

= −ϕ(ρ̄)ηi j + ϕ′(ρ̄)(ρ̄iη j + ρ̄ jηi)

+ ϕ′(ρ̄)(−ρ̄i j +
2ϕ′(ρ̄)
ϕ(ρ̄)

ρ̄iρ̄ j + ϕ(ρ̄)ϕ′(ρ̄)δi j)η + ϕ′′(ρ̄)(ρ̄iρ̄ j + ϕ2(ρ̄)δi j)η.

(3.16)

Multiplying the matrix (P̄i j)n×n on both sides of (3.16), we get

P̄i jB(ζ) = −ϕ(ρ̄)P̄i jηi j + 2ϕ′(ρ̄)P̄i jρ̄iη j + nϕ′(ρ̄) + ϕ′′(ρ̄)P̄i j(ρ̄iρ̄ j + ϕ2(ρ̄)δi j)η. (3.17)

Putting (3.17) and (3.14) into (3.9), we have,

M[ρ̄](ζ) = −ϕ(ρ̄)M(ρ̄)P̄i jηi j − (n + 2)
ϕ(ρ̄)(ρ̄)M(ρ̄)∇ρ̄ · ∇η

ϕ2(ρ̄) + |∇ρ̄|2
+ 2M(ρ̄)ϕ′(ρ̄)P̄i jρ̄iη j

+ M(ρ̄)P̄i jϕ
′′(ρ̄)(ρ̄iρ̄ j + ϕ2(ρ̄)δi j)η − (1 + p)Kt(ρ̄)ϕ′(ρ̄)η.

(3.18)
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By the definition of Kt, we have

Kt[ρ̄](ζ) = K′t (ρ̄)ζ = tψ(ξ)K′(ρ̄)ϕ(ρ̄)η + (1 − t)g′(ρ̄)ϕ(ρ̄)η (3.19)

Combining (3.19), (3.18) and (3.8), we have

L(η) = G′[ρ̄](ζ) = −ϕ(ρ̄)M(ρ̄)P̄i jηi j − (n + 1 + p)
ϕ(ρ̄)M(ρ̄)∇ρ̄ · ∇η
ϕ2(ρ̄) + |∇ρ̄|2

+ 2M(ρ̄)ϕ′(ρ̄)P̄i jρ̄iη j

+ M(ρ̄)(ϕ′′(ρ̄)P̄i j(ρ̄iρ̄ j + ϕ2(ρ̄)δi j)

− tψ(ξ)(ϕ(ρ̄)
∂K
∂ρ̄

+ (1 + p)Kϕ(ρ̄)′) − (1 − t)(g′(ρ̄)ϕ(ρ̄) + (1 + p)g(ρ̄)ϕ′(ρ̄))η

, ai jηi j + biηi + Nη,

(3.20)

where
ai j = −ϕ(ρ̄)M(ρ̄)P̄i j, (3.21)

bi = −(n + 1 + p)
ϕ(ρ̄)M(ρ̄)ρ̄i

ϕ2(ρ̄) + |∇ρ̄|2
+ 2M(ρ̄)ϕ′(ρ̄)P̄ jiρ̄i (3.22)

and

N =M(ρ̄)(ϕ′′(ρ̄)P̄i j(ρ̄iρ̄ j + ϕ2(ρ̄)δi j)

− tψ(ξ)(ϕ(ρ̄)
∂K
∂ρ̄

+ (1 + p)Kϕ′(ρ̄)) − (1 − t)(g′(ρ̄)ϕ(ρ̄) + (1 + p)g(ρ̄)ϕ′(ρ̄)).
(3.23)

Since ϕ(ρ̄),Kt(ρ̄) > 0, (P̄i j)n×n is positive, we see that ai j is non-positive. It follows from Lemma 3.1
that bi is bounded. Now, we claim that

N > 0. (3.24)

Indeed, it is easy to see that the matrix (ρ̄iρ̄ j + ϕ2(ρ̄)δi j) is positive. Since (P̄i j) is positive, we have,

ϕ′′(ρ̄)M(ρ̄)P̄i j(ρ̄iρ̄ j + ϕ2(ρ̄)δi j) ≥ 0 (3.25)

provided ϕ′′(ρ̄) ≥ 0. It follows from assumption (A.2.) and (A.3.) that

ϕ(ρ̄)K′(ρ̄) + (1 + p)K(ρ̄)ϕ′(ρ̄) = ϕ−p(ρ̄)(K(ρ̄)ϕp+1(ρ̄))′ < 0 (3.26)

and

ϕ(ρ̄)g′(ρ̄) + (1 + p)g(ρ̄)ϕ′(ρ̄)
= ϕ−p(ρ̄)(g(ρ̄)ϕp+1(ρ̄))′

= (ϕ′(ρ̄))n−1ϕ−p(ρ̄)ρ̄−γ−1(nϕ′′(ρ̄)ρ̄ − γϕ′(ρ̄)) ≤ 0.
(3.27)

noting that min
ξ∈Sn

ψ(ξ) ≥ 0, (3.25), (3.26) and (3.28) imply (3.24). By Strong Maximum Principle for

elliptic equations of second order, we see that

η ≡ 0 (3.28)
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(see pp. 35 of Gilbarg and Trudinger [20]) and thus,

ζ ≡ 0 (3.29)

since ϕ(ρ̄) > 0. Then by the standard Implicit Function Theorem, for any t ∈ Bγ(t̄)∩ [0, 1], there exists
a ρ ∈ C2,σ1(Sn) such that Gt(ρ) = 0 for some σ1 ∈ (0, 1). This means that t ∈ I and completes the proof
of Lemma 3.3.

Now, we are in a position to prove Theorem 1.1.
Final proof of Theorem 1.1. It is easy to see that ρ ≡ 1 is a solution to equation (3.1) at t = 0, this
means that 0 ∈ I and thus, I is not empty. Combining this and Corollary 3.2 and Lemma 3.3, we see
that I = [0, 1]. Taking t = 1, we get the desired conclusion of Theorem 1.1.
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17. J. Fröhlich, A. Knowles, B. Schlein, V. Sohinger, Gibbs measures of nonlinear Schrödinger
equations as limits of many-body quantum states in dimensions d ≤ 3, Commun. Math. Phys.,
356 (2017), 883–980. http://doi.org/10.1007/s00220-017-2994-7

18. R. J. Gardner, A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 362
(2010), 5333–5353. http://doi.org/10.1090/S0002-9947-2010-04891-3

19. H. T. Georgii, Gibbs measures and phase transitions, De Gruyter, 2011.
http://doi.org/10.1515/9783110250329

20. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin:
Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0

21. P. M. Gruber, J. M. Wills, Convexity and its applications, Birkhäuser Basel: Springer, 1983.
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A. Appendix

In this section, we list some basic geometric quantity which has been used in the present paper and
can be referred to [2].
Lemma A. Suppose M is a hypersurface in Rn+1 with the metric ds2 = dρ2 + ϕ2(ρ)dξ2 and with zero
sectional curvature, then the following statements hold.

(a) The components of the metric g and its inverse g−1 can be expressed as follows:

gi j = ϕ2(ρ)δi j + ρiρ j, gi j =
1

ϕ2(ρ)
(δi j −

ρiρ j

ϕ2(ρ) + |∇ρ|2
) (A.1)

respectively and thus, det(gi j) = ϕ2n−2(ρ)(ϕ2(ρ) + |∇ρ|2).
(b) The coefficients of the second fundamental form bi j is given by:

bi j =
ϕ(ρ)√

ϕ2(ρ) + |∇ρ|2
(−ρi j +

2ϕ′(ρ)
ϕ(ρ)

ρiρ j + ϕ(ρ)ϕ′(ρ)δi j). (A.2)

(c) The Gaussian curvature K was given by:

K(ξ) =
det bi j

det gi j
=

det(−ρi j +
2ϕ′(ρ)
ϕ(ρ) ρiρ j + ϕ(ρ)ϕ′(ρ)δi j)

ϕn−2(ρ)(ϕ2(ρ) + |∇ρ|2)
n+2

2

. (A.3)
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