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Abstract: Intraday high frequency data have shown important values in econometric modeling and
have been extensively studied. Following this point, in this paper, we study the linear regression model
for variables which have intraday high frequency data. In order to overcome the nonstationarity of
the intraday data, intraday sequences are aggregated to the daily series by weighted mean. A lower
bound for the trace of the asymptotic variance of model estimator is given, and a data-driven method
for choosing the weight is also proposed, with the aim to obtain a smaller sum of asymptotic variance
for parameter estimators. The simulation results show that the estimation accuracy of the regression
coefficient can be significantly improved by using the intraday high frequency data. Empirical studies
show that introducing intraday high frequency data to estimate CAPM can have a better model fitting
effect.
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1. Introduction

With the development of electronic technology, intraday high frequency data become easily
available. Such data are valuable in statistical modeling and financial risk assement [1–4]. By utilizing
high frequency data, potential risks can be identified more efficiently and accurately due to an increased
level of detail in the analysis of the markets. However, due to the nonstationarity and periodicity of
the intraday high frequency data, generally it is not appropriate to directly introduce these data into
a stationary model [5]. A possible way is aggregating the intraday high frequency data to a daily
stationary quantity or constructing a low frequency stationary proxy [6, 7]. To illustrate this idea, we
plot three return series related to CSI (China Shanghai-Shenzhen) 300 index in Figure 1. We collected
the returns of the CSI 300 index from 01 Sep 2017 to 12 July 2019, including 466 daily observations.
There are 240 observations each day based on the intrady sampling frequency of 1 min. Subplot (a) in
the Figure 1 is the time series plot of the intraday sequence on the seventh day of the data set, which
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shows an obvious time trend and nonstationarity; subplot (b) is the time series plot of the seventh
intraday observation for the first 240 days of the data set; subplot (c) is the time series plot of the mean
of intraday sequences for the first 240 days of the data set. It is seen that the series in subplots (b) and
(c) tend to be stationary sequences, which implies the fact that although the intraday sequence can be
nonstationary while its aggregation (weighted mean) might be stationary.
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Figure 1. (a) is the time series plot of the intraday sequence on the seventh day of the data
set; (b) is the time series plot of the seventh intraday observation for the first 240 days of the
data set; (c) is the time series plot of the mean of intraday sequences for the first 240 days of
the data set.

Linear regression model has been extensively applied in the area of daily financial time series
analysis, such as ARMA model, linear pricing model, factor model and other linear forecasting models,
see [8–18]. Let yt be the observation of dependent variable and Xt = (1, xt1, · · · , xtp)τ be the the
observation of independent variable vector at day t. Then the classic linear regression model has the
form

yt = Xτ
t β + εt, (1.1)

where β = (β0, β1, · · · , βp)τ is the regression coefficient vector and εt is the error term. To avoid the
spurious regression problem, {yt, Xt} are normally assumed to be stationary [19].

The main goal of this paper is to study the following linear regression model with intraday high
frequency data

yt(ui) = Xτ
t (ui)β + εt(ui), (1.2)

where yt(ui), Xτ
t (ui), εt(ui) are the observations at time ui on the t-th day, 1 ≤ i ≤ k, ui is the scaled time

with 0 ≤ ui ≤ 1. When ui = 1, the series become the daily sequence, namely, (yt(1), Xτ
t (1), εt(1)) =

(yt, Xτ
t , εt). εt(u) is assumed to be an independent and identically distributed errors process with zero
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mean and finite variance for each fixed u. For model (1.2), one can directly use the daily data (yt, Xτ
t )

to estimate the coefficient without introducing the intraday data information. However the information
is not efficiently used in this occasion. Alternatively, one can aggregate the intraday high frequency
data to a daily quantity and then obtain a more precise parameter estimator for the model.

Different from the well known mixed data sampling (MIDAS) regression model of
Ghysels et al. [20], the dependent and independent variables in model (1.2) have the same sampling
frequency which makes the regression coefficients keep unchanged after the high frequency data are
aggregated by a weighted mean form. Such a property enables us to estimate low frequency regression

yt = Xτ
t β + εt, namely, yt(1) = Xτ

t (1)β + εt(1)

by taking the intraday high frequency data into account.
The contributions of this paper are as follows. First, this paper proposes a linear regression model

which aggregates the intraday high-frequency data to a daily quantity. Second, a lower bound for the
trace of the asymptotic variance of model estimator is given. Third, we propose a simple data-driven
method for choosing the weight for aggregation of the high frequency data, with the aim to obtain a
smaller sum of asymptotic variance for parameter estimators. Different from the existent methods, the
weight is not restricted to certain parametric form and can be obtained by simple restricted quadratic
programming.

The rest of the paper is organized as follows. Section 2 introduces the model and estimation.
Section 3 investigates the estimation performance based on simulation studies. An empirical study
is provided in Section 4. We conclude the paper in Section 5.

2. Model and estimation

2.1. A lower bound for least squared estimator

For model (1.1), define

Y =


y1

y2
...

yn

 , X =


1 x11 · · · x1p

1 x21 · · · x2p

· · · · · · · · · · · ·

1 xn1 · · · xnp

 =


Xτ

1
Xτ

2
...

Xτ
n

 , β̂ =


β̂0

β̂1
...

β̂p

 .
The least squared estimator for β is given by

β̂ = (XτX)−1XτY (2.1)

and under regularity conditions, the following asymptotic normality holds:

β̂ ∼ N(β, (XτX)−1σ2), (2.2)

where σ2 is the variance of εt in (1.1) and it is also equivalent to var(yt|Xt). In practice, we always hope
the asymptotic variance of each parameter will not be too large. Equivalently, we hope the trace of the
asymptotic variance matrix tr[(XτX)−1σ2] is small. The following proposition gives an approximate
lower bound for tr[(XτX)−1σ2] based on the samples {yt, Xt}

n
t=1.
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Proposition 1. Suppose {yt, Xt} are stationary processes and all the eigenvalues of XτX are positive,
for fixed sample size n, then a lower bound for tr[var(β̂)] is given by

var(yt|Xt)
E(Xτ

t Xt)
(p + 1)2

n
(1 + op(1)).

Proof. Before the statement of detailed proof, we first list two properties of matrix trace.

P1 Suppose A is a symmetric m×m matrix and all the the eigenvalues of A are positive, then tr(A−1) ≥
m2

tr(A) .
P2 Suppose A is a s × m matrix and B is a m × s matrix, then tr(AB) = tr(BA).

According to P1,

tr[(XτX)−1] ≥
(p + 1)2

tr(XτX)
. (2.3)

By ergodicity theorem for stationary time series,

XτX = n
1
n

n∑
t=1

XtXτ
t = n[E(XtXτ

t ) + op(1)]

and
(p + 1)2

tr(XτX)
=

(p + 1)2

n
1 + op(1)

tr[E(XtXτ
t )]
. (2.4)

Further, according to P2,

tr[E(XtXτ
t )] = E[tr(XtXτ

t )] = E[tr(Xτ
t Xt)] = E[Xτ

t Xt]. (2.5)

Recall tr[var(β̂)] = tr[(XτX)−1σ2] = tr[(XτX)−1var(yt|Xt)]. Then the result of Proposition 1 is proved
based on (2.3)–(2.5).

2.2. Aggregation of intraday high frequency data

Denote {yt(ui), xt1(ui), · · · , xtp(ui), εt(ui)} to be observations at time ui on the t-th day, 1 ≤ i ≤ k,
namely there are k intraday observations for each variable. For demonstration, we rewrite (1.2) as
followed:

yt(ui) = β0 + β1xt1(ui) + β2xt2(ui) + · · · + βpxtp(ui) + εt(ui). (2.6)

Let y∗t =
k∑

i=1
yt(ui)wi, x∗tq =

k∑
i=1

xtq(ui)wi(q = 1, 2, · · · , p), ε∗t =
k∑

i=1
εt(ui)wi,

k∑
i=1

wi = 1,wi ≥ 0. From (2.6),

y∗t = β0 + β1x∗t1 + β2x∗t2 + · · · + βpx∗tp + ε∗t . (2.7)

It is easy to see that ε∗t is still i.i.d sequence with zero mean and finite variance based on the assumption
on εt(ui) and the daily sequences y∗t , x

∗
tq(q = 1, 2, · · · , p) are supposed to be stationary after aggregation.

Consequently, β0, β1, · · · , βp can be estimated based on y∗t , x
∗
tq(q = 1, 2, · · · , p) and we denote the

corresponding estimator as β̃. It is hoped that β̃ would be more precise than β̂ which only uses low
frequency information. To construct proper y∗t , x

∗
tq(q = 1, 2, · · · , p) is equivalent to find a proper weight

vector w = (w1, · · · ,wp+1)τ. Next, we give a method to choose the weight w.
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Define

Yt(u) =


yt(u1)
yt(u2)
· · ·

yt(uk)

 , Xt(u) =


xt0(u)
xt1(u)
· · ·

xtp(u)

 =


1 1 · · · 1

xt1(u1) xt1(u2) · · · xt1(uk)
· · ·

xtp(u1) xtp(u2) · · · xtp(uk)

 .
Then

X∗t = Xt(u)w =


1 1 · · · 1

xt1(u1) xt1(u2) · · · xt1(uk)
· · ·

xtp(u1) xtp(u2) · · · xtp(uk)




w1

w2

· · ·

wk

 =



k∑
i=1

xt0(ui)wi

k∑
i=1

xt1(ui)wi

· · ·
k∑

i=1
xtp(ui)wi


, y∗t = wτYt(u) =

k∑
i=1

yt(ui)wi.

According to Proposition 1, β̃ based on y∗t , x
∗
tq(q = 1, 2, · · · , p) has the property that

tr[var(β̃)] ≥
var(y∗t |X

∗
t )

E(X∗τt X∗t )
(p + 1)2

n
(1 + op(1)).

Intuitively, if the above right bound is smaller, then we can expect to obtain a less tr[var(β̃)]. Such
an intuition gives a way to choose the weight: finding a w which can get the smallest value for
var(y∗t |X

∗
t )/E(X∗τt X∗t ). Note that when X∗t is deterministic, we have var(y∗t |X

∗
t ) = var(y∗t ). On the other

hand, from
var(y∗t ) = E[var(y∗t |X

∗
t )] + var[E(y∗t |X

∗
t )],

smaller var(y∗t ) will bring smaller var(y∗t |X
∗
t ). Consequently, the rule to choose the weight can be

transformed to that: finding a w which can get the smallest value for var(y∗t )/E(X∗τt X∗t ). Further,

var(y∗t )
E(X∗τt X∗t )

=
wτvar(Yt(u))w

wτE(Xτ
t (u)Xt(u))w

. (2.8)

Let Σyu = var(Yt(u)),Σxu = E(Xτ
t (u)Xt(u)). From the above, if the quantity

wτΣyuw
wτΣxuw

is small, then β̃ is supposed to be more precise. In practice, Σyu and Σxu can be respectively estimated
by their corresponding sample variance or sample mean, namely,

Σ̂yu =
1
n

n∑
t=1

(Yt(u) − Ȳ)(Yt(u) − Ȳ)τ, Σ̂xu =
1
n

n∑
t=1

Xτ
t (u)Xt(u),

where Ȳ is the sample mean vector of Yt(u). Hence the weight vector w is chosen as the minimizer of
the following objective function

arg min
w∈Rp+1

wτΣ̂yuw

wτΣ̂xuw
(2.9)
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such that
k∑

i=1
wi = 1,wi ≥ 0.

Theoretically, without restriction wi ≥ 0, the solution of w in (2.9) is the eigenvector of the smallest
eigenvalue for matrix Σ̂−1

xu Σ̂yu, denoted as ŵ. Hence ŵ is also the solution of

arg min
w∈Rp+1

wτΣ̂−1
xu Σ̂yuw. (2.10)

From the above, the solution in (2.9) can be approximated by the solution of the quadratic programming

in (2.10) with restrictions:
k∑

i=1
wi = 1,wi ≥ 0. More detail about the quadratic programming with

restrictions can be referred to Huyer and Neumaier [21]. The simulation studies in the following
section show that such an approximation works well.

3. Simulation

In this section, we assess the finite-sample performance of the proposed estimator β̃. The sample
was simulated from the model below

yt(ui) = 0.1 + 0.3xt1(ui) + 0.4xt2(ui) + εt(ui), (3.1)

1 ≤ i ≤ 20, ui = i/20. Following Visser [7] , xt1(ui) and xt2(ui) were independently simulated from the
following process ξt(u) with different parameter setting:

dγt(u) = −δ(γt(u) − µ)du + σγdB(2)
t (u),

dξt(u) = eγt(u)dB(1)
t (u), u ∈ [0, 1]. (3.2)

The Brownian motions B(1)
t and B(2)

t were uncorrelated, ξt(0) = 0, and γ(0) was sampled from N(µ, σ2
r ).

We divided the unit time interval [0, 1] into 20 small intervals, set δ = 1/2, σγ = 1/4, µ = −1/16 for
xt1(u) and δ = 1/3, σγ = 1/5, µ = −1/14 for xt2(u). εt(ui) ∼ i.i.dN(0, 0.64), and then yt(ui) can be
obtained based on (3.1). When ui = 1, we also get the daily sample {yt(1), xt1(1), xt2(1), εt(1)}, namely
{yt, xt1, xt2, εt}, such that

yt = 0.1 + 0.3xt1 + 0.4xt2 + εt. (3.3)

Let β̃ and β̂ be the estimator from (3.1) and (3.3) respectively. Here β̃ introduces the intraday high
frequency information, as discussed in Section 2, while β̂ only uses the daily sequence. Hence, β̃ is
expected to be more precise than β̂. The sample sizes of n = 50, 100 and 150 are considered, and the
replication time is 1000. Table 1 reports the sample bias and the sample standard deviation of β̃ and β̂,
denoted as BS1, BS2, SD1 and SD2, respectively. From the table, we can receive several observations
as follows. The biases of β̃ are smaller than those of β̂, and both become smaller when the sample
size n increases. This implies that both estimators are asymptotically unbiased. The sample standard
deviations of β̃ are also significantly smaller than those of β̂, and both become smaller when the sample
size n increases. This implies that β̃ performs better than β̂ does in our simulations.

Let S σ ≡ var(y∗t )/E(X∗τt X∗t ). From (2.8), for smaller S σ, a less tr[var(β̃)] is expected. To justify
this expectation, for each replication, S σ for β̃ and β̂ are respectively estimated by sample variance and
sample mean for each sample size. Figure 2 shows the box plots of the S σ series. It can be seen that
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the median S σ values of β̃ are smaller than those of β̂, and both become smaller when the sample size
n increases. Such a result is consistent with Table 1, justifying the intuition: the smaller S σ is, the less
tr[var(β̃)] would be. According to the simulation results, it is shown that introducing the intraday high
frequency data can significantly improve the estimation of the regression coefficient.

Table 1. Bias and standard deviation of the estimator.

sample size BS1 BS2 SD1 SD2
Result for β0

n = 50 −0.0027 −0.0037 0.0791 0.1239
n = 100 −0.0026 0.0003 0.0488 0.0789
n = 150 0.0001 0.0035 0.0365 0.0700

Result for β1

n = 50 −0.0073 −0.0034 0.0066 0.0132
n = 100 −0.0048 −0.0038 0.0039 0.0086
n = 150 −0.0038 −0.0034 0.0030 0.0071

Result for β2

n = 50 −0.0091 −0.0074 0.0052 0.0124
n = 100 −0.0064 −0.0070 0.0034 0.0087
n = 150 −0.0051 −0.0072 0.0025 0.0071

†Number of replications=1000.
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Figure 2. Subplots (a), (b) and (c) are the box plots of S σ series for β̃ and β̂ (from left to
right in each subplot) under sample size n=50, 100 and 150 respectively.
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4. Empirical study

In this section, the proposed method is applied to study the relationship between single stock and
stock index based on the classic Capital Asset Pricing Model (CAPM), see Latunde et al. [22]. Denote
Pt(u) as the t-th intraday price sequence. We calculate the intraday log-return as

Yt(u) = 100[logPt(u) − logPt−1(1)], u ∈ [0, 1]. (4.1)

According to the CAPM, we choose the Shanghai Composite Index as the market portfolio and
randomly choose JCHX Mining Management (stock code: 603979) as the single asset, from China
Shanghai Stock Exchange. Let rmt(u) and rt(u) be the intraday high frequency return series for
Shanghai Composite Index and JCHX Mining stock respectively, which can be computed based
on (4.1). And rmt and rt, namely rmt(1) and rt(1) are the daily return series. Classic CAPM implies
the following relationship between rmt and rt:

rt = β0 + β1 rmt + εt, (4.2)

and β1 is the famous beta coefficient used in the CAPM, and it describes the relationship between
systematic risk and expected return for assets (usually stocks). The beta coefficient can be used to help
investors understand whether a stock moves in the same direction as the rest of the market. It also
provides insights into how risky a stock is relative to the rest of the market. Consequently, it makes
sense to get a more precise estimation for the beta coefficient by using extra information. Following
this motivation, we introduce the intraday high frequency data in model (4.2):

rt(u) = β0 + β1 rmt(u) + εt(u), (4.3)

Note that models (4.2) and (4.3) share the same regression coefficient while (4.3) takes intraday high
frequency information into account and can have a more precise estimation for the parameters, as
discussed in the Sections 2 and 3.

For the considered series rmt(u) and rt(u), the data span the period from 19 Nov 2019 to 17 Jan 2020,
which consist of 43 daily observations. For each day, the intraday sampling frequency: 1min, 5min,
15min, 30min and 60min are considered. We can get the estimations for models (4.2) and (4.3) by
applying the method given in Section 2. Table 2 lists the results for (4.2) (in the last column) and (4.3)
with different sampling frequency, where CIL and CIU denote the 95% confidence lower bound and
upper bound respectively, R2 is the R-squared coefficient of linear regression, Tr is the estimated values
for var(β̂0) + var(β̂1) in Table 2.

From Table 2, different sampling frequencies get different beta values from 0.4429 to 0.7149.
According to the computed R2 and Tr, the fitting effect is the best under the sampling frequency of
1min and the estimated beta value is 0.5341, which is smaller than the value 0.6379 estimated only by
the daily information.

The above results imply that using the intraday high frequency data to estimate the CAPM can have
a better model fitting effect and this is helpful for the investor to make rational decisions. And such
empirical studies can be easily extended to other pricing models such as ICAPM and factor model,
see [23–26].
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Table 2. Estimation results for (4.2) and (4.3) with different sampling frequency.

results 1min 5min 15min 30min 60min daily
β̂0 −0.1038 −0.1319 −0.1418 −0.1185 −0.1035 0.1553
CIL for β̂0 −0.1858 −0.2240 −0.2692 −0.2921 −0.2822 −0.1026
CIU for β̂0 −0.0218 −0.0398 −0.0143 0.0551 0.0752 0.4132
β̂1 0.5314 0.5355 0.4429 0.6260 0.7149 0.6379
CIL for β̂1 0.2429 0.2273 0.0464 0.2070 0.3093 0.2519
CIU for β̂1 0.8199 0.8436 0.8394 1.0451 1.1206 1.0239
R2 0.2524 0.2310 0.1104 0.1817 0.2360 0.2136
Tr 0.0288 0.0322 0.0467 0.0602 0.0616 0.0656

5. Conclusions

It is valuable to introduce high frequency data into low frequency standard models. These data can
provide insights into trends, patterns, and correlations that may not be visible with lower frequency
data. Additionally, they can help identify anomalies or outliers that may indicate risk. Analyzing high
frequency data makes it possible to detect subtle changes or shifts.

The linear regression model for variables which have intraday high frequency data is studied in
this paper. A method is given to estimate the model based on the idea of time series aggregation.
Simulation results show the proposed approach performs well. Empirical studies imply that our model
can have many potential applications in linear forecasting models.

Our research findings will provide insights for studying other linear or nonlinear time series models,
such as threshold autoregression models. The method can be applied to different pricing and factor
models in our future study, and it is expected to perform better.
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