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Abstract: Let M be an o-minimal expansion of a densely linearly ordered set and (S ,+, ·, 0S , 1S ) be
a ring definable in M. In this article, we develop two techniques for the study of characterizations of
S -modules definable in M. The first technique is an algebraic technique. More precisely, we show
that every S -module definable inM is finitely generated. For the other technique, we prove that every
S -module definable in M admits a unique definable S -module manifold topology. As consequences,
we obtain the following: (1) if S is finite, then a module A is isomorphic to an S -module definable
in M if and only if A is finite; (2) if S is an infinite ring without zero divisors, then a module A is
isomorphic to an S -module definable in M if and only if A is a finite dimensional free module over
S ; and (3) ifM is an expansion of an ordered divisible abelian group and S is an infinite ring without
zero divisors, then every S -module definable in M is definably connected with respect to the unique
definable S -module manifold topology.
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1. Introduction

Throughout this paper, let M be a fixed (but arbitrary) o-minimal expansion of a densely linearly
ordered set (M, <) (that is, every unary definable set is a finite union of open intervals and points).
We assume the reader’s familiarity with basic model theory and o-minimality. We refer to [1, 7] for
more on model theory and [2, 6, 13, 14] for more on o-minimality. Here, the word “definable” means
“definable inM possibly with parameters” and the word “0-definable” means “definable inM without
parameters”. Recall that we may equip M with the order topology induced by <; therefore, every
subset of Mn can be equipped with the subspace topology induced by the product topology on Mn.
Unless indicated otherwise, topological properties on a subset of Mn are considered with respect to
this topology. For natural numbers m ≤ n, let Π(n,m) denote the set of all coordinate projections
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from Mn to Mm. For any set X ⊆ Mn, let dim X denote the largest natural number m such that π(X)
has nonempty interior for some π ∈ Π(n,m). We say that a subset Y of X is a large subset of X if
dim(X \ Y) < dim X.

Let (G, ∗, e) be a group with the group operation ∗ and the identity e. We say that the group (G, ∗, e)
is a definable group if the set G and the group operation ∗ are definable. We will simply write G if the
group operation and the identity are clear from the context. Note that every finite group is isomorphic
to a definable group. In [5], E. Hrushovski showed that an algebraic group can be recovered from
birational data. Inspired by this result, A. Pillay introduced manifold topologies on definable groups
and used them to study characterizations of infinite definable groups (see [12]).

Let X be a definable set and τ be a topology on X. For a definable set I, we say that a collection
{Yi}i∈I of subsets of X is a definable collection if

⋃
{{i} × Yi : i ∈ I} is definable. We say that τ is a

definable topology if there is a definable collection of subsets of X that generates τ. We call every
element of τ a τ-open set. A map from Xn to Xm is τ-continuous if the map is continuous with respect
to the product topologies on Xn and Xm generated by τ. Next, let G be a definable group. Obviously,
we may equip G with the subspace topology induced by the order topology on (M, <) or the discrete
topology. These topologies are definable topologies on G. In addition, for each k ∈ N, we say that a
definable topology τ on G is a definable group k-manifold topology if both the group operation and the
inversion map are τ-continuous, and there exist definable τ-open subsets D1, . . . ,Dn of G and definable
maps φ1, . . . , φn such that

⋃
{Di : i = 1, . . . , n} = G and each φi : Di → Mk is a homeomorphism from

Di onto its image. Interestingly, it has been shown in [12] that every definable group admits a unique
definable group (dim G)-manifold topology, τG. In [15], V. Razenj proved that if dim G = 1 and G is
definably τG-connected, then G is isomorphic to either

⊕
i∈I Q or

⊕
p∈P Zp∞ ⊕

⊕
i∈I Q, for some index

set I, where P is the set of all primes. Characterizations of 2-dimensional and 3-dimensional definable
groups are studied in [8]. We know that if dim G = 2 and G is a definably τG-connected, non-abelian
definable group, then there is a real closed field T such that G is isomorphic to a semidirect product of
the additive group of T and the multiplicative group of the positive elements of T ; and if dim G = 3 and
G is a non-solvable, centerless, definably τG-connected definable group, then there is a real closed field
T such that G is isomorphic to either PS L2(T ) or S O3(T ). In [3], M. Edmundo introduced a notion of
definable G-modules and used them to study definable solvable groups.

Analogously, definable rings are also studied in [9]. Let (S ,+, ·, 0S , 1S ) (or simply write S if it is
clear from the context) be a ring. We say that S is a definable ring if the set S , the addition + and the
multiplication · are definable. For each k ∈ N, a topology τ on S is a definable ring k-manifold topology
if the addition, the additive inversion and the multiplication are τ-continuous and there exist definable
τ-open subsets D1, . . . ,Dn of S and definable maps φ1, . . . , φn such that

⋃
{Di : i = 1, . . . , n} = S and

each φi : Di → Mk is a homeomorphism from Di onto its image. It has been shown in [9] that S admits
a unique definable ring (dim S )-manifold topology, τS . In [10], Y. Peterzil and C. Steinhorn proved
that if S is an infinite definable ring without zero divisors, then there is a real closed field T such that S
is definably isomorphic to either T , T (

√
−1), or H(T ) where H(T ) denote the ring of quaternions over

T ; therefore, S is a division ring.
Inspired by these results, we are interested in an intermediate step. To be more precise, the main

question of this article is to find characterizations of definable modules. Let (S ,+, ·, 0S , 1S ) be a
definable ring and (A,⊕, 0A, λS ) be a left (right) S -module where λS : S × A → A is the left (right)
scalar multiplication. We say that A is a definable left (right) S -module if (A,⊕, 0A) is a definable
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group and λS is definable. For the sake of readability, we will write λ instead of λS if the ring S is
clear from the context. To study characterizations of definable left (right) S -modules, we develop two
techniques. The following techniques work for both left and right S -modules. For simplicity, we will
consider only left S -modules and, from now on, the word “S -module” means “left S -module”. For
the first approach, we consider the generators of A as S -module. The key step is to show that every
definable S -module is finitely generated (see Section 2). As a result, we obtain:

Theorem A. 1. If S is a finite ring and A is an S -module, then A is isomorphic to a definable
S -module if and only if A is finite.

2. Suppose S is an infinite definable ring without zero divisors and A is an S -module. Then A is
isomorphic to a definable S -module if and only if A is a finite dimensional free module over S .

In addition, by the fundamental theorem of finite abelian groups, the characterization of infinite
definable rings without zero divisors, and Theorem A, we have:

Corollary A. 1. Suppose S is a finite ring and A is a definable S -module. Then A is isomorphic as
a group to a direct product of cyclic groups of prime-power order.

2. Suppose S is an infinite definable ring without zero divisors and A is a definable S -module. Then
there exist a definable real closed field T and a natural number k such that T is a subring of S
and A is definably isomorphic (as S -modules) to either T k, T (

√
−1)k or H(T )k.

Next, since manifold topologies on algebraic structures are important tools to study
characterizations, we also develop a result on the existence of definable module manifold topologies,
which will be introduced in Section 3, and use it to give an alternative proof of (2) in Theorem A (when
M is an expansion of an ordered divisible abelian group). Interestingly, this proof implies that ifM is
an expansion of an ordered divisible abelian group, then every definable module over infinite definable
ring without zero divisors is connected with respect to the unique definable group manifold topology.

Conventions and notations

In this paper, k, m, n and p will range over the set N = {0, 1, 2, 3, . . . } of natural numbers.
Throughout, we fix a definable ring (S ,+, ·, 0S , 1S ) and an S -module (A,⊕, 0A, λ).

2. Generators of modules

Let a1, . . . , an ∈ A. The span of {a1, . . . , an} is the set

SpanS {a1, . . . , an} = {λ(s1, a1) ⊕ · · · ⊕ λ(sn, an) : s1, . . . , sn ∈ S }.

We will say that A is finitely generated if there exist a1, . . . , an ∈ A such that SpanS {a1, . . . , an} = A. It
is easy to see that if A is a definable S -module, then SpanS {a1, . . . , an} is a definable subgroup of A.

In [11], Y. Peterzil and S. Starchenko proved:

Lemma 2.1. [11, Lemma 2.16] Suppose M is ℵ0-saturated and G is a definable group. Then there
exist g1, . . . , gk ∈ G such that the only definable subgroup of G containing g1, . . . , gk is G.
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Note that such g1, . . . , gk in the above lemma are not generators of the group G in the sense of
classical group theory since every finitely generated group must be countable. However, when we
consider in the context of definable S -modules, the above result gives us more descriptive information.

Theorem B. Suppose A is a definable S -module. Then A is finitely generated.

Proof. Let b ∈ Mp and ϕ(x, z), ψ(y, z) be formulas such that ϕ(x, b) defines the set S and ψ(y, b) defines
the set A. Let N be an elementary extension of M that is ℵ0-saturated. Then ϕ(x, b) defines the
underlying set S ′ of a ring in N and ψ(y, b) defines the underlying set A′ of an S ′-module in N. By
Lemma 2.1, there exist d1, . . . , dk ∈ A′ such that the only definable subgroup of A′ containing d1, . . . , dk

is A′. Since SpanS ′{d1, . . . , dk} is a definable subgroup of A′, we have

SpanS ′{d1, . . . , dk} = A′.

Then y ∈ A′ if and only if there exist s1, . . . , sk ∈ S ′ such that y = λ(s1, d1) ⊕ · · · ⊕ λ(sk, dk). Let
χ(y, y1, . . . , yk) be the formula representing

ψ(y, b)↔ ∃x1 . . .∃xk

k∧
i=1

ϕ(xi, b) ∧ y = λ(x1, y1) ⊕ · · · ⊕ λ(xk, yk)

Therefore, N |= ∀yχ(y, d1, . . . , dk). Hence,

N |= ∃y1 . . .∃yk∀yχ(y, y1, . . . , yk).

SinceM is an elementary substructure of N and b is in M,

M |= ∃y1 . . .∃yk∀yχ(y, y1, . . . , yk).

Therefore, A is finitely generated. �

We now give the first proof of Theorem A.

Proof of Theorem A. Obviously, every finite S -module is isomorphic to a definable S -module. If S
is finite and A is a definable S -module, by Theorem B, we have that A is also finite. Therefore, we
obtain (1) in Theorem A.

To prove (2), suppose S is an infinite definable ring without zero divisors. Obviously, each S k is
a definable S -module and every finite dimensional free module over S is isomorphic to S k (for some
k) as S -modules. Suppose A is isomorphic to a definable S -module. Without loss of generality, we
assume that A is a definable S -module. Recall that every infinite definable ring without zero divisors
is a division ring and every module over a division ring is free. By Theorem B, we have A is a finitely
generated module over S ; hence, A is a finite dimension free module over S . �

In addition, Theorem B also provides information about definable ideals of S . Observe that every
definable ideal of S is a definable S -module with respect to the induced operators from S . The
following is an immediate consequence of Theorem B and this observation.

Corollary B. Every definable ideal of S is a finitely generated ideal.
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3. Definable S -module manifold topologies

From now on, we assume A is a definable S -module and S is infinite. By [9, Lemma 4.1], let τS

be the unique definable ring (dim S )-manifold topology on S . For each topology τ on A, we say a
map f : S × A → A is τ-continuous if f is continuous with respect to the product topology τS × τ on
S × A and the topology τ on A. Let k ∈ N. A definable topology τ on A is a definable S -module k-
manifold topology if the addition, the additive inversion, and the scalar multiplication are τ-continuous
and there exist definable τ-open subsets D1, . . . ,Dn of A and definable maps φ1, . . . φn such that

⋃
{Di :

i = 1, . . . , n} = A and each φi : Di → Mk is a homeomorphism from Di onto its image.
For a definable topology τ, we say that a set is definably τ-connected if it is not a disjoint union of

two definable τ-open sets. Observe that for definable topologies τ1 and τ2, the product of a definably
τ1-connected set and a definably τ2-connected set is definably (τ1 × τ2)-connected. We know that,
by [12, Corollary 2.10] and Cell Decomposition Theorem, if τ is a definable group (dim A)-manifold
topology on A, then the definably τ-connected component containing the identity 0A, denoted by A0,
exists.

Lemma 3.1. If A admits a definable S -module (dim A)-manifold topology, then A0 is a definable S -
submodule of A.

Proof. Let τ be a definable S -module (dim A)-manifold topology on A. By [12, Proposition 2.12], we
have A0 is the smallest definable subgroup of finite index in A. Therefore, dim A0 = dim A. Recall that
S has only finitely many definably τS -connected components. Let S 1, . . . , S k enumerate all definably
τS -connected components of S . Therefore, each S i × A0 is definably (τS × τ)-connected. Since λ is τ-
continuous and 0A ∈ A0, each image λ(S i×A0) is a definably τ-connected set containing 0A. Therefore,
λ(S × A0) =

⋃
{λ(S i × A0) : i = 1, . . . , k} ⊆ A0. It follows immediately that A0 is an S -submodule of

A. �

Recall that definable groups admit the descending chain condition on definable subgroups, i.e.,
every descending family (Gi)i∈N of definable groups is eventually constant (see e.g., [12, Remark 2.13]).
As a consequence of this result, we obtain:

Lemma 3.2. Let H be a definable group and G be a definable subgroup of H. Assume that there is
b ∈ H such that kb < G for every positive integer k. Then there exists the smallest definable subgroup
G′ of H containing G ∪ {b}. In addition, we have dim G < dim G′ ≤ dim H.

Proof. Suppose to the contrary that there is no smallest definable subgroup of H containing G ∪ {b}.
We recursively define a sequence (Hi)i∈N of definable subgroups of H as follows:

Set H0 = H. Suppose H0, . . . ,Hi have been constructed. Then there exists a definable subgroup H′i
of H containing G∪ {b} such that Hi is not a subgroup of H′i . Set Hi+1 = Hi ∩H′i . Then Hi+1 is a proper
definable subgroup of Hi containing G ∪ {b}.

Therefore (Hi)i∈N is an infinite proper descending chain of definable subgroups of H. This
contradicts the descending chain condition of definable groups.

Let G′ be the smallest definable subgroup of H containing G ∪ {b}. Since there is no positive
integer k such that kb ∈ G, we have G is of infinite index in G′. By [12, Lemma 2.11], we have
dim G < dim G′ ≤ dim H. �

By the above lemmas, we can prove a key step towards an alternative proof of (2) in Theorem A.
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Lemma 3.3. SupposeM is an expansion of an ordered divisible abelian group. If A admits a definable
S -module (dim A)-manifold topology, then A is a finitely generated module over S . Moreover, if A is a
free module over S , then A is a finite dimensional free module over S .

Proof. Without loss of generality, we assume that M is ℵ1-saturated. Note that A0 is infinite and
abelian.
Claim. Let G be a definable subgroup of A0. Suppose for any a ∈ A0, there is a positive integer k such
that ka ∈ G. Then G = A0.

Proof of Claim. By saturation and compactness theorem, there is a positive integer k such that ka ∈ G
for all a ∈ A0. Since k(a ⊕ G) = ka ⊕ G = G for all a ∈ G, the quotient group A0/G is of bounded
exponent. By definable choice (see e.g., [2]), we have that A0/G is isomorphic to a definable abelian
group. By [16, Lemma 5.7], we have A0/G is finite. Since A0 is a subgroup of A of finite index, G also
has finite index in A. Since G ⊆ A0 and A0 is the smallest definable subgroup of A of finite index, we
have G = A0. �

We recursively construct a sequence (ai)i∈N as follows:
Set a0 = 0A. Suppose a0, . . . , ai have been constructed. If the smallest definable subgroup of A0

containing a0, . . . , ai is A0, then let ai+1 = 0A. Otherwise, by the above claim, let ai+1 ∈ A0 be such that
kai+1 is not contained in the smallest definable subgroup containing a0, . . . , ai for any positive integer
k.

For each i ∈ N, let Ai be the smallest definable subgroup of A0 containing a0, . . . , ai. Observe that
for every i ∈ N, Ai ⊆ SpanS {a0, . . . , ai} and, by Lemma 3.2, if ai+1 < Ai, then dim Ai < dim Ai+1 ≤

dim A0. Let n′ = dim A0. For every j ≥ n′, we have dim A j = n′ and so A j = A0. Since An′ ⊆

SpanS {a0, . . . , an′} and a0, . . . , an′ ∈ A0, by Lemma 3.1, we get A0 = SpanS {a0, . . . , an′}. Since A0

is of finite index in A, there exist b0, . . . , bp ∈ A such that A =
⋃
{b j ⊕ A0 : j = 0, . . . , p}. Hence

A = SpanS {a0, . . . , an′ , b0, . . . , bp}. This completes the proof. �

Remark. Since every finite dimensional free module over S is isomorphic to S k for some k ∈ N, if S
is definably τS -connected, then A is definably τA-connected.

To complete this alternative proof of (2) of Theorem A (when M is an expansion of an ordered
divisible abelian group), it suffices to prove the following:

Theorem C. The definable module A admits a unique definable S -module (dim A)-manifold topology.

Proof. First, we may assume that M is ℵ1-saturated, A ⊆ Mn, dim A = n, S ⊆ Mm, and dim S =

m. Let τA be the unique definable group (dim A)-manifold topology on A. By the proof of [12,
Proposition 2.5], there exist a definable large open subset X of S and a definable large open subset
V of A such that

• for every definable subset U of X and s ∈ S , s + U is τS -open if and only if U is open in X; and

• for every definable subset U′ of V and a ∈ A, a ⊕ U′ is τA-open if and only if U′ is open in V .

To complete this proof, it is enough to prove that the scalar multiplication λ is τA-continuous.
Let (x0, v0) ∈ S × A. It suffices to find a (τS × τA)-open neighbourhood of (x0, v0) where λ is τA-

continuous. Note that dim(λ(Y × W)) = dim A for every definable τS -open Y and definable τA-open
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W. By cell decomposition theorem, there exists a large open definable subset P of X × V such that λ
is continuous (with respect to the induced topology on the ambient space) on P and the image λ(P) is
a subset of V . Let US be an open definable subset of X and UA be an open definable subset of V such
that US ×UA ⊆ P. Then there exist s ∈ S and a ∈ A such that (x0 + s, v0 ⊕ a) ∈ US ×UA ⊆ P. Observe
that the map (x, v) 7→ λ(x, v) : US × UA → V is τA-continuous and

λ(x, v) = λ(x + s, v ⊕ a) ⊕ λ(x,	a) ⊕ λ(s,	a) ⊕ λ(−s, v)

for every (x, y) ∈ S × A. Without loss of generality, we may assume that a , 0A and s , 0S . Since
the map x 7→ λ(x,	a) from the additive group of S to A and the map v 7→ λ(−s, v) : A → A are
group homomorphisms (by [4, Theorem 2.6]), they are continuous with respect to their group manifold
topologies. Hence, λ is τA-continuous on ((−s) + US ) × ((	a) ⊕ UA). This completes the proof. �

We end this section by an immediate consequence of Theorem C and the remark after Lemma 3.3.

Corollary 3.4. IfM is an expansion of an ordered divisible abelian group and S is an infinite definable
ring without zero divisors, then A is definably τA-connected.

4. Open questions

4.1. Suppose S is an infinite ring. Here, we obtain a complete characterization of definable S -modules
when S has no zero divisors. However, the question is still open when S (possibly) has zero divisors.

4.2. Suppose A is a definable abelian group. Obviously, if |A| = n for some positive integer n, then A
is an Z/nZ-module. This gives rise to the question:

If A is infinite, how to determine whether A is a definable S -module for some definable ring S ?
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