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Abstract: By constructing an appropriate example, we show that the class of heavy-tailed distributions
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their minimum is not heavy tailed. In addition, we establish a few properties of the distributions
considered in the example.

Keywords: heavy-tailed distribution; closure properties; minimum of random variables; closure
under minimum; generalized long-tailed distribution
Mathematics Subject Classification: 26E40, 46F10, 60E05

1. Introduction

We say that distribution F is heavy-tailed and write F ∈H if∫ ∞

−∞

eλxdF(x) = ∞ for any λ > 0.

If F(x) = P(X 6 x), then random variable X is called heavy-tailed. It is well known (see, for instance,
Theorem 2.6 in [10]) that F ∈H if and only if

lim sup
x→∞

eδxF(x) = ∞ for any δ > 0.

Here F(x) = 1 − F(x) denotes the right tail of F(x). We say that distribution F is strongly heavy-tailed
and write F ∈H ∗ if

lim
x→∞

eδxF(x) = ∞ for any δ > 0.
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Obviously, H ∗ ⊂ H and one can check that H \H ∗ , ∅. For discussion on classes H , H ∗ and
examples F ∈H \H ∗ see [2, 15, 16] among others.

Concerning other properties of heavy-tailed distribution class, it is easy to see that H is closed
under convolution, mixing, maximum and product-convolution.

Let us denote the convolution of distributions F1 and F2 by

F1 ∗ F2(x) =

∫ ∞

−∞

F1(x − y)dF2(y).

We say that some class of distributions B is closed under convolution if for any two distributions F1

and F2 it holds that

F1 ∈ B, F2 ∈ B ⇒ F1 ∗ F2 ∈ B. (1.1)

The relation (1.1) for class of distributions B = H follows immediately from definition of H .
Namely, by supposing that F1, F2 are distributions of independent random variable X1 and X2, we get

F1 ∗ F2 ∈H ⇔ Eeλ(X1+X2) = EeλX1EeλX2 = ∞ for any λ > 0
⇔ F1 ∈H or F2 ∈H .

Similarly, we say that a class of distributions B is closed under mixing if for p ∈ (0, 1)

F1 ∈ B, F2 ∈ B ⇒ pF1 + (1 − p)F2 ∈ B.

Since for any λ > 0∫ ∞

−∞

eλxd
(
pF1 + (1 − p)F2

)
(x) = p

∫ ∞

−∞

eλxdF1(x) + (1 − p)
∫ ∞

−∞

eλxdF2(x),

we get a stronger assertion

F1 ∈H or F2 ∈H ⇔ pF1 + (1 − p)F2 ∈H for p ∈ (0, 1).

It is said that class of distributions B is closed under maximum if F1, F2 ∈ B implies

FX1∨X2 = F1F2 ∈ B.

Like in the case of convolution, a stronger assertion on closure under maximum follows

F1 ∈H or F2 ∈H ⇔ F1F2 ∈H

because

F1F2(x) = F1(x) + F2(x) − F1(x)F2(x)

∼
x→∞

F1(x) + F2(x).

Considering the closure under the product-convolution, we present the following result:

F1 ∈H , F2(−0) = 0, F2(0) < 1 ⇒ F1 ⊗ F2 ∈H , (1.2)
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where symbol ⊗ denotes the product-convolution, i.e., F1 ⊗ F2(x) = P(X1X2 6 x) for independent
random variables X1 and X2 with distributions F1 and F2. For the proof of (1.2) it suffices to observe
that

E eλX1X2 > E eλX+
1 X2 > E eλX+

1 X21{X2>a} > E eλaX+
1 P(X2 > a),

where λ > 0 is an arbitrary constant, and a > 0 is such that P(X2 > a) > 0.
Studies of other interesting properties of heavy-tailed distributions can be found in [2–4, 7–10]

among others.
The problem whether class H is closed with respect to minimum is much more difficult and, to

our knowledge, was not solved. In this paper, we prove that class H is not closed under minimum.
We construct two independent random variables X and Y with the corresponding distributions F ∈H
and G ∈ H , such that their minimum X ∧ Y = min{X,Y} is not heavy tailed, i.e., FX∧Y = 1 − F G =

F + G − FG <H .

2. Main results

Consider the distribution tail F(x) of the following form:

F(x) = 1(−∞,0)(x) + e−x
1[0,1)(x) +

∞∑
n=1

e−x
n∏

j=1

e(2 j)!−(2 j−1)!
1[(2n)!,(2n+1)!)(x)

+

∞∑
n=1

e−(2n−1)!
n−1∏
j=1

e(2 j)!−(2 j−1)!
1[(2n−1)!,(2n)!)(x). (2.1)

This distribution and distribution in (2.5) below will be used for the main result on the minimum of
heavy-tailed r.v.s. Our first result yields several properties of the distribution F.

Theorem 2.1. Assume that F is defined in (2.1). Then F ∈H , F <H ∗ and

lim sup
x→∞

F(x − 1)

F(x)
< ∞. (2.2)

The property in (2.2) defines the class of generalized long-tailed distributions, OL , introduced
in [13]. Recall that a distribution F on R belongs to the class OL , if for any (or some) y > 0

lim sup
x→∞

F(x − y)

F(x)
< ∞. (2.3)

Thus, Theorem 2.1 says that

(H ∩ OL ) \H ∗ , ∅. (2.4)

By Proposition 2.2(ii) in [13], F ∈ OL implies that limx→∞ eδxF(x) = ∞ for some δ > 0, and
OL also admits some light-tailed distributions. Various results related to class OL can be found
in [1, 5, 6, 19, 20]. In particular, authors of [20] showed that H ∗\OL , ∅, cf. (2.4). Note that class
OL was also introduced in [14], where it was called a Semi-L class of distributions.
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Consider now another distribution with the tail G(x) of the following form:

G(x) = 1(−∞,1)(x) +

∞∑
n=1

e−x+1
n∏

j=2

e(2 j−1)!−(2 j−2)!
1[(2n−1)!,(2n)!)(x)

+

∞∑
n=1

e−(2n)!+1
n∏

j=2

e(2 j−1)!−(2 j−2)!
1[(2n)!,(2n+1)!)(x). (2.5)

Analogously to the result in Theorem 2.1, it holds that G ∈H , G <H ∗ and G ∈ OL .
The main result of the paper says that the distribution FX∧Y(x) = 1−F(x)G(x) is light-tailed. Indeed,

by construction of F and G, we have

F(x)G(x) = 1(−∞,0)(x) + e−x
1[0,∞,0)(x)

and we obtain the following assertion.

Theorem 2.2. Assume that X and Y are independent r.v.s with distribution tails F in (2.1) and G
in (2.5), respectively. Then

FX∧Y <H .

Remark 2.1. We mention two related results, which follow easily from definitions. First result says
that, although class H is not closed under minimum, it is closed in the class H ∗, i.e.,

F1 ∈H , F2 ∈H ∗ ⇒ FX1∧X2 ∈H ,

where X1 and X2 are random variables with corresponding distributions F1 and F2. Second result says
that class OL is closed under minimum:

F1 ∈ OL , F2 ∈ OL ⇒ FX1∧X2 ∈ OL .

The study of the minimum of random variables is important for problems related to various
stochastic models. For example it concerns the order statistics X1:n 6 X2:n 6 . . . 6 Xn:n of random
variables X1, X2, . . . , Xn. It is obvious that

Fk:n(x) = P
(
Xk:n 6 x

)
=

k−1∑
j=0

(
n
j

) (
FX(x)

) j(FX(x)
)n− j

in the case of independent and identically distributed random variables with common distribution FX.
We can see from this expression that properties of order statistics are related to the closure property
of random variables under minimum. The order statistics properties for various subclasses of H were
considered in [11, 12, 17, 18], for instance. The definition of the class H implies immediately the
following assertion.

Theorem 2.3. Let X1, X2, . . . , Xn be independent and identically distributed random variables with
common distribution FX. Then FXk,n ∈H for k ∈ {1, 2, . . . , n} if and only if FX ∈H .

While, it follows from Theorem 2.2 that the analogous statement to Theorem 2.3 fails even in the
case n = 2 if the random variables X1, X2, . . . , Xn are independent but possibly differently distributed.
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3. Proof of Theorem 2.1

Take the sequence xn = (2n)!, n ≥ 1. For any λ > 0 we have

eλxn F(xn) = eλ(2n)! exp{−(2n)! + (2n)! − (2n − 1)! + · · · + 2! − 1!}
= exp{λ(2n)! − (2n − 1)! + (2n − 2)! − (2n − 3)! + · · · + 2! − 1!}
> exp{(2n − 1)!(2nλ − 1)} → ∞

as n→ ∞. Hence,

lim sup
x→∞

eλxF(x) > lim
n→∞

eλxn F(xn) = ∞,

implying F ∈H .
To show that F <H ∗, define the sequence yn = ((2n)! + (2n + 1)!)/2, n > 1. Then

eλyn F(yn) = exp
{
λ

(2n)! + (2n + 1)!
2

−
(2n)! + (2n + 1)!

2
+ (2n)! − (2n − 1)! + · · · + 2! − 1!

}
= exp{(2n)!(n(λ − 1) + λ) − ((2n − 1)! − (2n − 2)!) − · · · − (3! − 2!) − 1}
6 exp{(2n)!(n(λ − 1) + λ)} → 0

as n→ ∞ for 0 < λ < 1. Hence, for such λ,

lim inf
x→∞

eλxF(x) 6 lim
n→∞

eλyn F(yn) = 0.

It remains to prove that F ∈ OL . Take x ∈ [(2n)!, (2n + 2)!) and consider the following four cases:

(a)

x ∈ [(2n + 1)!, (2n + 2)!),
x − 1 ∈ [(2n + 1)!, (2n + 2)!),

(b)

x ∈ [(2n + 1)!, (2n + 2)!),
x − 1 ∈ [(2n)!, (2n + 1)!),

(c)

x ∈ [(2n)!, (2n + 1)!),
x − 1 ∈ [(2n)!, (2n + 1)!),

(d)

x ∈ [(2n)!, (2n + 1)!),
x − 1 ∈ [(2n − 1)!, (2n)!).

In case (a) we have

F(x − 1)

F(x)
= 1.

In case (b),

F(x − 1) = e−(x−1)
n∏

j=1

e(2 j)!−(2 j−1)!, F(x) = e−(2n+1)!
n∏

j=1

e(2 j)!−(2 j−1)!,

and, therefore,

F(x − 1)

F(x)
= e−(x−(2n+1)!)+1 6 e.
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In case (c),

F(x − 1)

F(x)
= e.

In case (d),

F(x − 1) = e−(2n−1)!
n−1∏
j=1

e(2 j)!−(2 j−1)!, F(x) = e−x
n∏

j=1

e(2 j)!−(2 j−1)!

and, because x < (2n)! + 1, it holds

F(x − 1)

F(x)
= ex−(2n)! < e.

These four estimates yield

lim sup
x→∞

F(x − 1)

F(x)
= e.

Thus, F ∈ OL . 2
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