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1. Introduction

In this paper, we consider the second-order periodic Ambrosetti-Prodi-type problem composed by
the differential equation

v′′(x) + f
(
x, v(x), v′(x)

)
= λ g(x), x ∈ [a, b], (1.1)

where f : [a, b] × R2 → R and g : [a, b] → R+ are continuous functions, λ ∈ R, and the periodic
boundary conditions

v (a) = v (b) ,
v′ (a) = v′ (b) .

(1.2)
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Periodic problems are an important field of research, not only from a theoretical point of view but
also by the huge sort of applications. They have been studied by many authors with different goals
and applying a large panoply of methods. We mention only a few examples: results of nonexistence
and multiplicity of solutions for strongly nonlinear differential equations [3]; sufficient conditions for
the existence of periodic orbits as solutions of the φ-Laplacian generalized Liénard equations [9], or
as limit cycles [6]; solvability of higher-order fully differential equations [10], nonlinear oscillations
of even-order differential equations [11]; cones theory applied to singular third order problems [12];
problems with anti-periodic boundary conditions [21].

Equations involving parameters as in (1.1) allow a so-called Ambrosetti-Prodi alternative, as it
was introduced in [1]: There are values λ0 and λ1, of the real parameter λ, such that the problem
has no solution for λ < λ0, at least one if λ = λ0, or two solutions, for λ0 < λ < λ1. Since then,
these problems have been studied in several cases and contexts, such as separated two-point or three-
point boundary value problems [13, 20]; Neuman’s type conditions [19]; the periodic case [8, 16, 22];
parametric problems with the nonlinear Robin (p, q)-Laplace operator [18]; with adequate asymptotic
properties [5]; applied to the fractional Laplacian [2], with asymptotic sign-changed nonlinearities [17],
among others.

Recently, in [14, 15], the authors suggested a method to apply lower and upper solutions to third-
order periodic Ambrosetti-Prodi problems, based on a speed-growth condition on the nonlinearity,
requiring that it grows with different velocities in the several variables. In this paper, we prove that
such speed condition is no need for second-order periodic problems and the monotone properties on
the nonlinearities are more general and not necessarily periodic.

This work is organized as follows: Section 2 contains the definitions of lower and upper functions,
the Nagumo condition used, the corresponding a priori bound for the first derivative, and a classic
localization theorem existent in the literature. In Section 3, a first discussion on the parameter is done,
about the existence and non-existence of solution, and, in Section 4, this discussion is extended to the
multiplicity of solutions. The last section contains a model to study the oscillation of a damped and
forced pendulum, using a technique to estimate the critical values λ0 and λ1 of the parameter.

2. Definitions and preliminary results

The functional frame work, followed in the paper, is the usual space of continuous functions C2[a, b]
with the correspondent norm

max
{∥∥∥u(i)

∥∥∥ , i = 0, 1, 2
}
,

where
‖w‖ := max

t∈[a,b]
|w(t)| .

Lower and upper functions are considered as in the next definition:

Definition 2.1. The function α ∈ C2[a, b] is a lower solution of problems (1.1) and (1.2) if:

(i) α′′ (x) + f (x, α (x) , α′ (x)) ≥ λ g(x),
(ii) α (a) ≤ α (b) , α′ (a) ≥ α′ (b) .

The function β ∈ C2[a, b] is an upper solution of problems (1.1) and (1.2) if:
(iii) β′′ (x) + f (x, β (x) , β′ (x)) ≤ λg(x),

AIMS Mathematics Volume 8, Issue 6, 12986–12999.



12988

(iv) β (a) ≥ β (b) , β′ (a) ≤ β′ (b) .

The only growth condition to require to the nonlinearity in (1.1) is given by a Nagumo-type
condition:

Definition 2.2. A continuos function h : [0, 1] × R2 → R verifies a Nagumo-type condition relatively
to some continuos functions γ,Γ,such that

γ (x) ≤ Γ (x) , for every x ∈ [a, b],

in the set
S =

{
(x, y0, y1) ∈ [a, b] × R2 : γ (x) ≤ y0 ≤ Γ (x)

}
,

if there is a continuos function ψS : [0,+∞[→ ]0,+∞[ such that

|h (x, y0, y1)| ≤ ψS (|y1|) ,∀ (x, y0, y1) ∈ S , (2.1)

with ∫ +∞

0

τ

ψS (τ)
dτ = +∞. (2.2)

The a priori estimation provided by the Nagumo condition is given by next lemma, which proof is
a particular case (n = 2) of [7], Lemma 1.

Lemma 2.1. Let h : [a, b] × R2 → R be a continuous function verifying the Nagumo-type
conditions (2.1) and (2.2) in S .Then there is r > 0 such that every solution y (x) of (1.1) verifying

γ (x) ≤ y (x) ≤ Γ (x) ,∀x ∈ [a, b] (2.3)

satisfies
‖y′‖ < r.

Remark 2.1. This “a priori” bound is independently of λ, since λ belongs to a bounded set.

The existence and localization result will be based on Theorem 5.3 of [4] adapted to the Nagumo
conditions (2.1) and (2.2), for the values of the parameter λ such that there are upper and lower solutions
of (1.1) and (1.2) according to Definition 2.1.

Theorem 2.1. [4] Let f : [a, b] × R2 → R and g : [a, b] → R+ be continuous functions. Assume
that there are lower and upper solutions of problems (1.1) and (1.2), α(x) and β(x), respectively,
accordingly Definition 2.1, such that

α(x) ≤ β(x), for x ∈ [a, b],

and f verifies Nagumo-type conditions (2.1) and (2.2) in

S =
{
(x, y0, y1) ∈ [a, b] × R2 : α(x) ≤ y0 ≤ β(x)

}
.

Then (1.1) and (1.2) have at least a solution v(x) ∈ C2([0, 1]) such that

α(x) ≤ v(x) ≤ β(x),∀x ∈ [a, b].
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The following example stresses how the localization provided by the lower and upper solutions
technique could be helpful for the estimation of the parameter variation.

Example 2.1. Consider the problem composed by the differential equation

v′′(x) +
3
√

v(x) − 5
(
v′(x)

)2
= λ, x ∈ [0, π] , (2.4)

together with the periodic conditions

v (0) = v (π) , v′ (0) = v′ (π) . (2.5)

The functions α, β : [0, π]→ R defined by

α (x) = −

(
x −

π

2

)2
+
π

4
,

β (x) = (x − 5)2
− 2.7,

are, respectively, lower and upper solutions of problems (2.4) and (2.5) for

−66.164 ≤ λ ≤ −52. 537.

The above problem is a particular case of the initial one (1.1) and (1.2) with

f (x, v, v′) =
3√v − 5

(
v′
)2 ,

g(x) ≡ 1, a = 0, and b = π.

As the assumptions of Theorem 2.1 are verified, then there is a solution v(x) of (2.4) and (2.5),
for −66.164 ≤ λ ≤ −52.537, lying in the strip

−

(
x −

π

2

)2
+
π

4
≤ v(x) ≤ (x − 5)2

− 2.7,∀x ∈ [0, π] .

As it is illustrated graphically in Figure 1, this solution is not a trivial one, as no constant function is
inside the strip.

1 2 3
0
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20

30

x

v

Figure 1. Localization of v1.
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3. Existence and non-existence result

A first discussion on λ about the existence and non-existence of a solution will be done in this
section.

Theorem 3.1. Consider the assumptions of Theorem 2.1, f : [a, b] × R2 → R and g : [a, b] → R+

continuous functions, satisfying a Nagumo-type condition and assume that there are λ1 ∈ R and m > 0
such that

f (x, 0, 0)
g(x)

< λ1 <
f (x, y0, 0)

g(x)
, (3.1)

for every x ∈ [a, b] and y0 ≤ −m.
Then there is λ0 < λ1 (eventually λ0 = −∞) such that:

• for λ < λ0, the problems (1.1) and (1.2) has no solution;
• for λ0 < λ ≤ λ1, the problems (1.1) and (1.2) has at least one solution.

Proof. Defining

λ∗ := max
{

f (x, 0, 0)
g(x)

, x ∈ [a, b]
}
,

by (3.1), there exists x∗ ∈ [a, b] such that

f (x, 0, 0)
g(x)

≤ λ∗ =
f (x∗, 0, 0)

g(x∗)
< λ1,∀x ∈ [a, b] .

Thus β (x) ≡ 0 is an upper solution of (1.1) and (1.2). Moreover, the function α (x) ≡ −m is a lower
solution of (1.1) and (1.2), as by (3.1),

α′′ (x) = 0 > λ1g (x) − f (x,−m, 0) (3.2)
> λ∗g (x) − f (x,−m, 0) .

Therefore, by Theorem 2.1, there is at least a solution of (1.1) and (1.2) with λ = λ∗.
Next we show that the set of the parameters for which there is a solution, is a continuous set, that

is assuming that the problem (1.1) and (1.2) have a solution for λ = ξ < λ1, then it has at least one
solution for λ ∈

[
ξ, λ1

]
.

Suppose that (1.1) and (1.2) have a solution vξ (x), for ξ ≤ λ1, that is
v′′ξ (x) + f

(
x, vξ (x) , v′ξ (x)

)
= ξg (x) ,

vξ (a) = vξ (b) , v′ξ (a) = v′ξ (b) .

For m > 0 given by (3.1), take M > 0, large enough such that

M ≥ m, vξ (a) = vξ (b) ≥ −M. (3.3)

As in (3.2), the function α (x) = −M is a lower solution of (1.1) and (1.2) for λ ≤ λ1, and β (x) = vξ (x)
is an upper solution of (1.1) and (1.2), for every λ ∈

[
ξ, λ1

]
, because, for ξ ≤ λ, we have

v′′ξ (x) + f
(
x, vξ (x) , v′ξ (x)

)
= ξg (x) ≤ λg (x) .
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To apply Theorem 2.1, it remains to prove that

−M ≤ vξ (x) ,∀x ∈ [a, b] .

Suppose the inequality is not true. So, there is x ∈ [a, b] such that

− M > vξ (x) , (3.4)

and define
vξ (x0) := min

x∈[a,b]
vξ (x) < −M.

By (3.3), x0 ∈ ]a, b[, v′ξ (x0) = 0 and v′′ξ (x0) ≥ 0. So, by (3.1), we obtain the following contradiction:

0 ≤ v′′ξ (x0) = ξg (x0) − f
(
x0, vξ (x0) , v′ξ (x0)

)
≤ λg (x0) − f

(
x0, vξ (x0) , 0

)
≤ λ1g (x0) − f

(
x0, vξ (x0) , 0

)
< 0.

Therefore, by Theorem 2.1, the problems (1.1) and (1.2) have at least a solution v (x) for every λ such
that ξ ≤ λ ≤ λ1.

Consider now the set

S = {λ ∈ R : (1.1), (1.2) has at least a solution}

As λ∗ ∈ S , then S , ∅ and define
λ0 := inf S .

Clearly, (1.1) and (1.2) have no solution for λ < λ0 and, by the continuity of the parameters set, it
has at least a solution for λ ∈ [λ0, λ1].

Remark that, if λ0 = −∞ then (1.1) and (1.2) have a solution for every λ < λ1.

4. Multiplicity theorem

The multiplicity of solutions is proven by topological degree theory applied to a homotopic,
modified and perturbed problem.

Theorem 4.1. Let f : [a, b] × R2 → R be a continuous function verifying the assumptions of
Theorem 3.1, together with the monotone condition

y1 ≥ y2 =⇒ f (x, y1, z) ≥ f (x, y2, z) ,∀ (x, z) ∈ [a, b] × R.

If there are B > 0 such that every solution v of (1.1) and (1.2) with λ ≤ λ1, verifies

|v (x)| ≤
B
2
,∀x ∈ [a, b] , (4.1)

and θ ∈ R such that
f (x, y0, y1) ≥ θg (x) , (4.2)

for every (x, y0, y1) ∈ [a, b] × [−m, B] × R, with m given by (3.1), then λ0, in Theorem 3.1, is finite and:
(1) If λ < λ0, (1.1) and (1.2) have no solution;
(2) If λ = λ0,(1.1) and (1.2) have at least one solution;
(3) If λ ∈ ]λ0, λ1], (1.1) and (1.2) have at least two solutions.
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Proof. For clarity, we divide the proof into several steps.

Step 1. Every solution v of problems (1.1) and (1.2) for λ ∈ [λ0, λ1], satisfies

−m < v (x) <
B
2
,∀x ∈ [a, b] ,

with m given by (3.1) and B by (4.1).

Assume, by contradiction, that there is a solution v of (1.1) and (1.2) for λ ∈ [λ0, λ1] , and τ ∈ [a, b]
such that

v (τ) := min
x∈[a,b]

v (x) ≤ −m.

If τ ∈ ]a, b[, then v′ (τ) = 0, v′′ (τ) ≥ 0, and, by (3.1) this contradiction holds

0 ≤ v′′ (τ) = λg (τ) − f
(
τ, v (τ) , v′ (τ)

)
≤ λ1g (τ) − f

(
τ, v (τ) , v′ (τ)

)
< 0.

If τ = a or τ = b,
min

x∈[a,b]
v (x) = v (a) = v (b) ,

then
0 ≤ v′ (a) = v′ (b) ≤ 0,

and therefore,
v′ (a) = v′ (b) = 0, v′′ (a) ≥ 0 and v′′ (b) ≥ 0.

Applying an analogous technique as in the previous theorem, it can be proved similar contradictions.
So, every solution v of (1.1) and (1.2) with λ ∈ [λ0, λ1] , verifies

v (x) > −m,∀x ∈ [a, b] ,

and, therefore, by (4.1),

−m < v (x) <
B
2
,∀x ∈ [a, b] .

Step 2. λ0 is finite.

Assume that λ0 = −∞. So, by Theorem 3.1, for every λ ≤ λ1, the problems (1.1) and (1.2) has at
least a solution.

Define
g1 := min

x∈[a,b]
g (x) > 0,

and take λ sufficiently small such that

θ − λ > 0 and
(
b − a

4

)2

(θ − λ) g1 > B. (4.3)

For every solution v of (1.1) and (1.2), by (4.2),

v′′ (x) = λg (x) − f
(
x, v (x) , v′ (x)

)
≤ (́λ − θ) g (x) ,
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and, by (1.2), there exists ξ ∈ ]a, b[ such that v′ (ξ) = 0.
For x < ξ

v′ (x) = −

∫ ξ

x
v′′ (τ) dτ ≥

∫ ξ

x
(θ − λ) g (τ) dτ ≥ (θ − λ) (ξ − x) g1.

For x ≥ ξ

v′ (x) =

∫ x

ξ

v′′ (τ) dτ ≤ (λ − θ) (x − ξ) g1.

Choose J =
[
a, 3a+b

4

]
, or J =

[
a+3b

4 , b
]
, such that |ξ − x| ≥ b−a

4 , for every x ∈ J. If J =
[
a, 3a+b

4

]
, then

v′ (x) ≥
b − a

4
(θ − λ) g1,∀x ∈ J,

for J =
[

a+3b
4 , b

]
,

v′ (x) ≤
b − a

4
(λ − θ) g1,∀x ∈ J.

In the first case, by (4.1) and (4.3),

0 =

∫ b

a
v′ (τ) dτ =

∫ 3a+b
4

a
v′ (τ) dτ +

∫ b

3a+b
4

v′ (τ) dτ

≥

∫ 3a+b
4

a

(
(b − a)

4
(θ − λ) g1

)
dt + v (b) − v

(
3a + b

4

)
≥

b − a
4

(θ − λ)
(
b − a

4

)
g1 −

B
2
− v

(
3a + b

4

)
=

(
b − a

4

)2

(θ − λ) g1 −
B
2
− v

(
3a + b

4

)
> B −

B
2
− v

(
3a + b

4

)
=

=
B
2
− v

(
3a + b

4

)
,

which contradicts (4.1).
For J =

[
a+3b

4 , b
]

a similar contradiction is achieved, and, therefore, λ0 is finite.

Step 3. For λ ∈ ]λ0, λ1], (1.1) and (1.2) has at least two solutions.

As λ0 is finite, by Theorem 3.1, for λ−1 < λ0, the problems (1.1) and (1.2), have no solution
for λ = λ−1.

By Lemma 2.1 and Step 1, we can take m1 > 0 large enough such that ‖v′‖ < m1, for every solution
v of (1.1) and (1.2), with λ ∈ ]λ−1, λ1] .

Consider the operators

L : C2 ([a, b]) ⊂ C1 ([a, b]) 7−→ C ([a, b]) × R2,

and, for µ ∈ [0, 1],
Θµ : C1 ([a, b]) 7−→ C ([a, b]) × R2,
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where
Lv =

(
v′′, v (a) , v′ (a)

)
,

and

Θµv =

(
µλ g(x) − µ f (x, δ (x, v(x)) , v′(x)) + v′(x) − µδ (x, v(x)) ,

v (b) , v′ (b)

)
.

As L has a compact inverse it can be considered the completely continuous operator

Ψµ :
(
C1 ([a, b]) ,R

)
7−→

(
C1 ([a, b]) ,R

)
defined by

Ψµv =
(
L−1Θµ

)
(v) .

Let B1 := max {m, |B|} and define the set

Ω = {v ∈ domL : ‖v‖ < B1, ‖v′‖ < m1} .

By Step 1, if v is a solution of (1.1) and (1.2) with λ ∈ ]λ−1, λ1] , then v < ∂Ω, the topological degree is
well defined, and

d
(
Ψλ−1 ,Ω

)
= 0. (4.4)

Considering the convex combination of λ−1 and λ1,

Π (η) = (1 − η) λ−1 + ηλ1, with η ∈ [0, 1] ,

and the corresponding homotopic problems (1.1) and (1.2) for λ = Π (γ), the topological
degree d

(
ΨΠ(η),Ω2

)
is well defined for η ∈ [0, 1] and λ ∈ ]λ−1, λ1] .

By (4.4) and the invariance of the degree under homotopy

0 = d
(
Ψλ−1 ,Ω

)
= d (Ψλ,Ω) , (4.5)

with λ ∈ ]λ−1, λ1] .
Take s ∈ ]λ0, λ1] ⊂ ]λ−1, λ1] and, by Theorem 3.1, let vs be the correspondent solution of (1.1)

and (1.2) for λ = s.
Consider δ > 0, small enough, such that

|vs (x) + δ| < B1,∀x ∈ [a, b] . (4.6)

Then v∗ (x) := vs (x) + δ,∀x ∈ [a, b] , is an upper solution of (1.1) and (1.2), with s < λ < λ1, as

v′′∗ (x) = v′′s (x) = sg (x) − f
(
x, vs (x) , v′s (x)

)
< λg (x) − f

(
x, vs (x) , v′s (x)

)
≤ λg (x) − f

(
x, vs (x) + δ, v′s (x)

)
= λg (x) − f

(
x, v∗ (x) , v′∗ (x)

)
,

and, for the boundary conditions,

v∗ (a) = vs (a) + δ = vs (b) + δ = v∗ (b) ,
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v′∗ (a) = v′s (a) = v′s (b) = v′∗ (b) .

The constant function equal to −m, is a lower solution of (1.1), (1.2), with λ ∈ [s, λ1] , as, by (3.1),

0 > λ1g (x) − f (x,−m, 0) > sg (x) − f (x,−m, 0) ,

and the boundary conditions trivially hold.
So, by Theorem 2.1,

−m ≤ v (x) < v (x) + δ := v∗ (x) ,∀x ∈ [a, b] ,

and as λ belongs to a bounded set, by Lemma 2.1 and Remark 2.1, there are mδ > 0 and a set

Ωδ = {y ∈ dom L : −m < y < vs (x) + δ, ‖y‖ < mδ} ,

such that
d (Ψλ,Ωδ) , 0, for λ ∈ [λ0, λ1] .

Considering mδ sufficiently large such that Ωδ ⊂ Ω2, then, by (4.5) and the additivity of the topological
degree,

d (Ψλ,Ω −Ωδ) , 0, for λ ∈ [λ0, λ1] .

So, the problems (1.1) and (1.2) has at least two solutions u and v such that u ∈ Ωδ and v ∈ Ω − Ωδ

for λ ∈ [s, λ1] , for s is arbitrary in ]λ0, λ1].

Step 4. For λ = λ0, (1.1) and (1.2) has at least one solution.

Take a sequence (λn) with λn ∈]λ0, λ1] and lim λn = λ0. By Theorem 3.1, for each λ = λn, the
problems (1.1) and (1.2) has a solution vn. From the bounds given in Step 1, ‖vn‖ < B1,

∥∥∥v′n
∥∥∥ < B1

independently of n, and, by Remark 1, there is k > 0 sufficiently large such that
∥∥∥v′′n

∥∥∥ < k, independently
of n.

Then sequences (vn) and (v′n), n ∈ N, are bounded in C([a, b]).By the Arzèla-Ascoli theorem, we can
take a subsequence of (vn) that converges in C2([a, b]) to a solution v0(t) of (1.1) and (1.2) for λ = λ0.

Therefore, there exists at least one solution for λ = λ0.

5. Oscillation of a damped and forced pendulum

Consider the oscillation of a damped and forced pendulum given by the differential equation

u′′(x) +
k
m

u′(x) −
g
r

3
√

u(x) = λp(x), x ∈ [0, 1] ,

with k < 0, where u(x) represents the angle between the string and the vertical, m, the mass of the
pendulum, g, the gravity acceleration, r the string length, λ a real parameter, and p(x) a weight positive
and continuous function, subject to the periodic conditions

u (0) = u (1) and u′ (0) = u′ (1) . (5.1)

Remark that this is a particular case of the problems (1.1) and (1.2) with

f (x, y0, y1) =
k
m

y1 −
g
r

3
√

y0,
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a = 0 and b = 1.
As a numerical example consider k = −1,m = 1, r = 5, g = 9.8 and p(x) = x2 + 3, that is, the

equation

u′′(x) − u′(x) −
9.8
5

3
√

u(x) = λ
(
x2 + 3

)
, x ∈ [0, 1] . (5.2)

Therefore the functions

α(x) =
x
5
,

β(x) = 2
(
x −

2
3

)2

+ 0.19

are, respectively, lower and upper solutions of (5.1) and (5.2), for −0.336 56 ≤ λ ≤ 0.301 99.
The function f verifies a Nagumo-type growth condition in the set

S =

(x, y0, y1) ∈ [0, 1] × R2 :
x
5
≤ y0 ≤ 2

(
x −

2
3

)2

+ 0.19

 ,
as

| f (x, y0, y1)| ≤
∣∣∣∣∣−y1 −

9.8
5

3
√

y0

∣∣∣∣∣
≤ |y1| +

9.8
5

3

√
2
(
x −

2
3

)2

+ 0.19

≤ |y1| + 2.02 := ψS (|y1|) ,

and ∫ +∞

0

τ

|τ| + 2.02
dτ = +∞.

By Theorem 2.1, there is a solution u(x) such that

x
5
≤ u(x) ≤ 2

(
x −

2
3

)2

+ 0.19, ∀x ∈ [0, 1] .

Remark that, from this localization property, it is clear that this solution u(x) is not a constant function,
that is, a trivial periodic solution, as it can be seen in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

x

u

Figure 2. Oscillation estimation
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Moreover the assumptions of Theorem 3.1 are satisfied for

0 < λ1 < 0.49 3√m,

and λ0 ≤ −0.336 56.
Restricting the set of solutions u of (5.1) and (5.2) to S , then |u(x)| ≤ 1.078 9. Condition (4.2) holds

with r > 0 given by Lemma 2.1, and θ ≤ − r+2
3 < 0, we have

f (x, y0, y1) = −y1 −
9.8
5

3

√
2
(
x −

2
3

)2

+ 0.19

≥ θ
(
x2 + 3

)
= θp(x),

for (x, y0, y1) ∈ [0, 1] × [0, 1.078 9] × [−r, r] .
So, Theorem 4.1 holds, λ0 is finite and for λ ∈]λ0, λ1], the problems (5.1) and (5.2) have at least two

solutions.

6. Discussion

The lower and upper solutions method is an adequate tool to study periodic problems, or other types
of boundary value problems, mainly because it provides, not only the existence but also, the solutions
localization. This technique plays a key role to prove the Ambrosetti-Prodi alternative, not only for the
existence and non-existence cases but also for the multiplicity.

Moreover, from the localization part, it can be easily seen if the periodic solution is, eventually,
trivial or if it is nontrivial. This happens, in the periodic case, since there are no horizontal lines inside
the admissible region.

7. Conclusions

In recent papers on third-order periodic problems [14, 15], it was shown that the nonlinearity must
have different growth speeds on some variables, to have more than one solution.

This work proves that, for second-order periodic problems, such property is not needed to discuss
the solution multiplicity, based on the parameter variation.

The example and the application suggest a method to estimate the critical values of the parameter,
exploiting the localization region, given by the lower and upper solutions method.
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