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1. Introduction

The axioms of the probability theory in the sense of A. Kolmogorov required three conditions in
order to define a rigorous notion of the probability measure on a measurable space. To this end we
introduce a set Ω called the universe, and the sets of all possible events are encoded by a Borel
σ-algebra B(Ω). Among these three classical conditions, is the requirement that a probability measure
takes nonnegative values. If we drop-off this positivity condition, this gives rise to the notion of
quasiprobability.

Definition 1.1 (Quasiprobability). A quasiprobability measure on (Ω,B(Ω)) is a real valued measure
defined on the Borel σ-algebra of Ω, in other words a map

P̃ : B(Ω)→ R

satisfying the conditions.
(1) P̃ : (Ω) = 1.
(2) For any countable sequence A1, . . . , An, . . . of disjoint sets,

P̃
 ∞⋃

n=1

An

 =∑
n≥1

P̃(An).
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In the sequel, we will only consider discrete quasiprobabilities i.e. Ω = N. Given any discrete
random variable X : Ω→ N which is distributed following a density fX i.e. fX(n) = P̃(X = n) then the
condition (1) of the definition above just reads,∑

n≥1

fX(n) = 1.

The main issue is that fX(n) is now allowed to take negative values. This idea to relax the axioms of
probabilities leading to the notion of negative probabilities has been already raised by P.A.M. Dirac
and was also formulated in a more precise way by R. Feynmann. We have chosen to focus on is based
on Bernoulli numbers and Bernoulli polynomials. These objects unexpectedly appear within the field
of quantum statistical physics (see e.g. [14] §2.3.1). Indeed, a central result in this theory is given
by Planck’s law of energy radiation of a black-body. It states that the density of energy radiation in
function of the wave frequency ν at constant temperature T is given by the formula

f (ν) =
2hν3

c2

1

e
hν
kT − 1

,

where h the Planck constant, k the Boltzmann constant, and c the speed of light.
Using Eq (4) we obtain a series expansion for f (ν) for some constant C independent of ν,

f (ν) = C
∑
n≥0

Bn

n!

(
hν
kT

)n+2

,

where (Bn)n≥0 is the sequence of Bernoulli numbers defined by the relation

tet

et − 1
=

∑
n≥0

Bn
tn

n!
. (1)

The sum obtained is among all the energy microstates in the quantum formalism.
Let us define for each n ≥ 0 and a fixed ν, the function

f (n; ν) =
1

f (ν)
C

Bn

n!

(
hν
kT

)n+2

.

By definition
∑

n≥0 f (n; ν) = 1 so that can interpret fn(ν) as a local density of energy radiation for a
microstate at fixed frequency ν. This observation suggests that f (n, ν) defines a discrete density of
probability. Unfortunately, a major obstacle is that Bernoulli numbers assume both positive and
negative values, and therefore bringing us outside the field of the probability theory. Therefore this
density can be seen as the distribution of a quasiprobability discrete variable in the sense of
Definition 1.1 given above.

2. The Poly-Bernoulli quasiprobability distribution

The so-called Bernoulli polynomials and their related numbers arose in many parts in mathematics.
Their definition is simply characterised by the relation:
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tetx

et − 1
=

∑
n≥0

Bn(x)
tn

n!
. (2)

The series in the right hand side is entire in the open disc |t| < 2π. These polynomials enjoy nice
properties, an important one is the following differential equation

B′n(x) = nBn−1(x). (3)

Thus Bn(x) defines a polynomial of degree n which can be computed by induction, the first Bernoulli
polynomials are given by B0(x) = 1, B1(x) = x − 1

2 and B2(x) = x2 − x + 1
6 . The Bernoulli polynomials

have received considerable attention giving rise to a plethora of remarkable relations (see e.g. [12]
Chap. 24). The Bernoulli numbers are just the constant terms of the Bernoulli polynomial i.e. Bn =

Bn(0), accordingly the first terms are given by B0 = 1, B1 = −
1
2 and B2 =

1
6 . A remarkable fact is that

B2n+1 = 0 for any integer n ≥ 1. In some sense Bernoulli numbers are considered as much important
as the polynomials.

We introduce the main object which is a discrete quasiprobability distribution with two parameters.

Definition 2.1. Given two real parameters r ≥ 0 and θ ∈ (0; 2π), we define a quasiprobability
distribution X supported on N given by the density function,

fX(n) :=
eθ − 1
θeθr

Bn(r)
θn

n!
.

We denote by PB(r, θ) such distribution and we call it the poly-Bernoulli distribution with parameters
r and θ.

The prefix poly-simply means polynomial and it has nothing to do with the classical Bernoulli
probability distributions. The fact that

∑
n∈N fX(n) = 1 comes immediately from (4) and our definition

involves two parameters θ and r. If we consider the case when r = 0, then the distribution P(0, θ) has
the property that only even integers contribute in our computation, in other words, fX(2k + 1) = 0 for
any positive integer k. Moreover, using relation (8) we remark that the density fX assumes both negative
and positive value and thus it defines a quasiprobability distribution in the sense of Definition 1.1.

The use of special numbers and special functions in order to define new distribution is not new.
Regarding random distribution involving special numbers one has the work of Kim et al. (see for
example [5–7, 10, 11]). For another kind of random variables involving polynomials one has [8] for
Dowling polynomials, [9] for Lah-Bell polynomials and [3] for derangements polynomials.

We give the first moments of this distribution, the mean and the variance in the sense of
quasiprobrobilities. We also focus on the case when r = 0 which is seems already giving interesting
relations regarding the distribution of the sum of such distributions.

3. General properties of Bernoulli polynomials and numbers

Bernoulli polynomials are defined by the generating series

tetx

et − 1
=

∑
n≥0

Bn(x)
tn

n!
. (4)
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The corresponding Bernoulli numbers which are the constant coefficients of Bn(x), namely Bn = Bn(0)
has generating series obtained by specialiazing the Eq (4) for x = 0, thus

t
et − 1

=
∑
n≥0

Bn
tn

n!
. (5)

Let us consider

u(t) =
t

et − 1
−

t
e−t − 1

=
t

et − 1
−

tet

1 − et =
t(et + 1)
et − 1

=
∑
n≥0

Bn
(1 + (−1)n)tn

n!
.

Thus,
t(et/2 + e−t/2)
et/2 − e−t/2 = 2

∑
n≥0

B2n
t2n

(2n)!
. (6)

From (6), we can easily deduces the series expansion

t
2

coth(
t
2

) =
∑
k≥0

B2k
t2k

(2k)!
. (7)

The even Bernoulli numbers coming into play in (11) are related to the Riemann-zeta function,
indeed using basic Fourier analysis (see [2]), one can obtain that for every n ≥ 1

B2n

(2n)!
= (−1)n+1 2ζ(2n)

(2π)2n . (8)

One has the following nice relation (e.g. 24.14.2 of [12])
n∑

k=0

(
n
k

)
Bk Bn−k = (1 − n)Bn − nBn−1. (9)

3.1. Density of PB-distributions

The following proposition provides the properties of PB-distributions.

Proposition 3.1. Given any nonnegative integer n, and X a PB(0, θ) distribution. Then, one has the
following properties,

(1) fX(2n + 1) = 0.

(2) fX(2n) = (−1)n+1 eθ − 1
θ

2ζ(2n)
(
θ

2π

)2n

.

(3) sgn ( fX(2n)) = (−1)n+1.

Proof. (1) This is an immediate consequence of the fact that B2n+1 = 0 for any positive integer n > 0.
(2) By definition,

fX(2n) :=
eθ − 1
θ

B2n
θ2n

(2n)!
.

Using (8), we have the required identity.
(3) Since θ > 0 and ζ(2n) > 0, the previous identity in (2) proves that the sign of fX(2n) is given by
(−1)n+1.

AIMS Mathematics Volume 8, Issue 6, 12819–12829.



12823

3.2. Comparison with the Poisson distribution

Let Y be a Poisson random variable of parameter θ > 0 with density function fY (see e.g. [1] 20.7),
and X with density f (n; r, θ), then we can write

f (n; r, θ) = mn(r, θ) fY(n) where mn(r, θ) =
eθ − 1
θeθ(r−1) Bn(r).

In other words, the densites of X and Y only differ up to a multiplicative factor depending on n, r, θ. For
an adequacy with Poisson’s distribution, one has to find the values of the parameters (r, θ) for which
mn(r, θ) = 1, n ≥ 1. As we have done before we consider the case r = 0, thus we get the factor
mn(θ) = Bneθ(eθ − 1)/θ. For small values of θ we have that mn(θ) ≈ Bn so that fX(n) differs from a
Poisson density P(θ), only by a factor given by Bn. To sum up, our distribution in the case where r = 0
satisfies the following asymptotic property with respect to the Poisson distribution,

lim
θ→0+

fX(n)
fY(n)

= Bn.

3.3. Asymptotic properties of the density of X when the parameter r = 0.

Let us simply denote fθ(n) instead of f (n; 0, θ). As we have seen above the density fθ is supported
only at even nonnegative integers,

fθ(2k) = (eθ − 1)
B2k

(2k)!
θ2k−1.

Then by using Eq (8) we infer that

fθ(2k) = (−1)k+1 2ζ(2k)
(2π)2k θ

2k−1(eθ − 1).

In particular the cumulative distribution function FX(x) =
∑

n≤x fθ(n) is an alternating series. Since
limk ζ(2k) = 1 +

∑
n≥2 limk n−2k = 1, we get

| fθ(2k)| ∼
2(2k)!
(2π)2k θ

2k−1(eθ − 1) as k → ∞.

Using Striling’s formula we obtain the following asymptotic estimate for | fθ(2k)|.

Proposition 3.2. For any |θ| < 2π, we have

| fX(2n)| ∼
( n
πe

)2n √
16nθ2n−1(eθ − 1) as n→ ∞.

3.4. The expectation value of X

The evaluation of the expectation value of X requires to use specific properties of Bernoulli
polynomials which are given in section §2. We first prove the following useful lemma.

Lemma 3.3. We have the following relation

∂

∂r
f (n; r, θ) = θ ( f (n − 1; r, θ) − f (n; r, θ)).
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Proof. Using Definition 2.1 and Eq (3) we have,

∂

∂r
f (n; r, θ) =

(
B′n(r)eθr − θBn(r)erθ

e2θr

)
(eθ − 1)θn−1

n!

=

(
nBn−1(r) − θBn(r)

eθr

)
(eθ − 1)θn−1

n!
=

eθ − 1
erθ

(
nBn−1(r)

θn−1

n!
− θBn(r)

θn−1

n!

)

=
eθ − 1

erθ

(
Bn−1(r)

θn−1

(n − 1)!
− θBn(r)

θn−1

n!

)
=

eθ − 1
erθ θ

(
Bn−1(r)

θn−2

(n − 1)!
− Bn(r)

θn−1

n!

)
.

Hence
∂

∂r
f (n; r, θ) = θ ( f (n − 1; r, θ) − f (n; r, θ)) .

This proves the lemma.

Theorem 3.4. Let X be a random variable with density distribution f (n; r, θ), then the mean of X is
given by

E(X) = θr + 1 −
θ

1 − e−θ
.

Proof. Let us compute the derivative of the mean of X with respect to the parameter r using the previous
lemma, for convenience we write f (n) instead of f (n; r, θ),

∂

∂r
E(X) =

∂

∂r

∑
n≥1

nP (X = n) =
∑
n≥1

n
∂

∂r
f (n) = θ

∑
n≥1

n ( f (n − 1) − f (n))

= θ f (0) + θ
∑
n≥1

(n + 1) f (n) − n f (n) = θ f (0) + θ
∑
n≥1

f (n) = θ
∑
n≥0

f (n).

Thus we get
∂

∂r
E(X) = θ. Now we perform an integration wrt r and we get that

E(X) = θr + E(X)|r=0.

Let us explicit the term E(X)|r=0 which denotes the evaluation of E(X) when r = 0.

E(X)|r=0 =
∑
n≥1

n f (n; 0, θ) = (eθ − 1)
∑
n≥1

Bn
θn−1

(n − 1)!

and since Bn = 0 for any odd integer n > 1 and B1 = −1/2, we obtain that

E(X)|r=0 = −
1
2

(eθ − 1) + (eθ − 1)
∑
k≥1

B2k
θ2k−1

(2k − 1)!
. (10)

From (4), we have the series expansion

θ

2
coth(

θ

2
) =

∑
k≥0

B2k
θ2k

(2k)!
. (11)
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The differentiation of Eq (11) with respect to θ yields,∑
k≥1

B2k
θ2k−1

(2k − 1)!
=
∂

∂θ

(
θ

2
coth(

θ

2
)
)
=
∂

∂θ

(
θ(eθ + 1)
2(eθ − 1)

)
=

1
2
+

1
eθ − 1

−
θeθ

(eθ − 1)2 .

By replacing in (10) we obtain

E(X)|r=0 = −
1
2

(eθ − 1) + (eθ − 1)
(
1
2
+

1
eθ − 1

−
θeθ

(eθ − 1)2

)
.

Hence we finally obtain E(X)|r=0 = 1 −
θ

1 − e−θ
and the proof follows.

3.5. The moment generating function and the variance of X

Proposition 3.5. Let be given s ∈ R such that s , 0. Then the probability generating function

gX(s) = se(s−1)θr eθ − 1
esθ − 1

.

Proof.

gX(s) =
∑
n≥0

snP(X = n) =
eθ − 1
θeθr

∑
n≥0

snBn(r)
θn

n!
=

eθ − 1
θeθr

∑
n≥0

Bn(r)
(sθ)n

n!
.

By using (4) we obtain the required result

gX(s) =
eθ − 1
θeθr

sθesθr

esθ − 1
= serθ(s−1) eθ − 1

esθ − 1
.

Actually we can use this formula to recover the expectation value of X, although the next proof below
is in our opinion less instructive than the first one. Indeed let us consider the log-derivative of gX(s),

g′X(s)
gX(s)

=
1
s
+ θr −

θeθs

eθs − 1
. (12)

Taking the limit when s→ 1−, we recover immediately the expectation value of X,

E(X) = 1 + θr −
θeθ

eθ − 1
.

If we proceed to the differentiation of (12) we get,

g′′X(s)gX(s) − g′X(s)2

gX(s)2 = −
1
s2 −

d
ds

(
θ

1 − e−θs

)
= −

1
s2 +

θ2e−θs

(1 − e−θs)2 . (13)

In particular if we let s→ 1− in Eq (13) we get

g′′X(1) − g′X(1)2 = −1 +
θ2e−θ

(1 − e−θ)2 .

Reminding that Var(X) = g′′X(1) − g′X(1)2 + E(X), one obtains the following result

Corollary 3.6. The variance of X is given by,

Var(X) = θ
(
r +

(θ − 1)e−θ − 1
(1 − e−θ)2

)
.
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4. The distribution of sums of i.i.d. PB(θ)-distributions

The density of the sum of two independent and identically distributed (i.i.d.) variables in the general
case, leads to a quite complicated expression. In this section we assume that r = 0. In that case we
are able to find a closed form for the distribution of the sum of a finte number of PB(θ)-distribution.
Similary to probability theory, one defines the notion of independence of two quasiprobabilities PB(θ)-
distributions X and Y , we say that X and Y are i.i.d. if X,Y ∼ PB(θ) and fX+Y = fX ∗ fY as usual. This
definition applies analogously to finite sums with more than two variables.

Proposition 4.1. Let X and Y two i.i.d. random variables following the distribution PB(θ). Then the
law of the sum is given by

fX+Y(n) =
(
1 − eθ

θ

)
((n − 1) f (n) + θ f (n − 1)) .

Proof. By independence,

fX+Y(n) = fX ∗ fY(n) =
n∑

k=0

P̃(X = k) P̃(Y = n − k)

=

(
eθ − 1
θ

)2 n∑
k=0

Bk
θk

k!
Bn−k

θn−k

(n − k)!

=

(
eθ − 1
θ

)2  n∑
k=0

(
n
k

)
Bk Bn−k

 θnn!
.

Now we use the well-known formula 9. Therefore we get

fX+Y(n) =
(
eθ − 1
θ

)2

((1 − n)Bn − nBn−1)
θn

n!

=

(
eθ − 1
θ

)2

(1 − n)Bn
θn

n!
−

(eθ − 1)2

θ
Bn−1

θn−1

(n − 1)!

=

(
eθ − 1
θ

)
((1 − n) f (n) − θ f (n − 1)) .

4.1. Generalization to the sum of n i.i.d. PB(θ)-distributions

In order to generalize the previous result we need the following Lemma

Lemma 4.2 (Vandiver).∑
k1+...+kn=k

k!
k1! . . . kn!

Bk1 . . . Bkn = (−1)n−1
(

k
n

) n−1∑
i=0

[
n

n-i

]
Bk−i

where the numbers
[

n
p

]
are unsigned Stirling numbers of the first kind defined by the generating

function x(x + 1) . . . (x + n − 1) =
n∑

p=0

[
n
p

]
xp.
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Proof of the Lemma. See [13] Eq (140) or e.g. [4] Eq (1.5).
The distribution of the the sum of n i.i.d. with density PB(θ) is given by the following formula

Theorem 4.3. For any integer k ≥ n, we have

fS n(k) =
(
1 − eθ

θ

)n (
k
n

)
θk

k!

∑
i≡k[2]

[
n

n − i

]
(−1)(k−i)/2+1(k − i)!

ζ(k − i)
(2π)k−i .

We have
Proof.

fS n(k) = fX1 ∗ . . . ∗ fXn(k) =
∑

k1+...+kn=k

fX1(k1) . . . fXn(kn)

=

(
eθ − 1
θ

)n ∑
k1+...+kn=k

Bk1

θk1

k1!
. . . Bkn

θkn

kn!

=

(
eθ − 1
θ

)n
 ∑

k1+...+kn=k

k!
k1! . . . kn!

Bk1 . . . Bkn

 θkk!
.

By Lemma 4.2 we get,

fS n(k) =
(
eθ − 1
θ

)n (−1)n−1
(

k
n

) n−1∑
i=0

[
n

n − i

]
Bk−i

 θkk!

=

(
eθ − 1
θ

)n

(−1)n−1
(

k
n

) n−1∑
i=0

[
n

n − i

]
Bk−i

θk−i

(k − i)!
θi

k(k − 1) . . . (k − i + 1)
.

Hence,

fS n(k) =
(
1 − eθ

θ

)n−1 (
k
n

) n−1∑
i=0

[
n

n − i

]
θi

k(k − 1) . . . (k − i + 1)
f (k − i).

As we know the densities f (n) are supported by nonnegative even integers thus the expression of
the density of the sum takes the following accurate form

fS n(k) =
(
1 − eθ

θ

)n−1 (
k
n

) ∑
i≡k[2]

[
n

n − i

]
θi

k(k − 1) . . . (k − i + 1)
f (k − i).

Using the relation f (2k) = (−1)k+1 2ζ(2k)
(2π)2k θ

2k−1(eθ − 1) we get

fS n(k) =
(
1 − eθ

θ

)n−1 (
k
n

) ∑
i≡k[2]

[
n

n − i

]
(−1)(k−i)/2+1θiθk−i−1

k(k − 1) . . . (k − i + 1)
ζ(k − i)
(2π)k−i (eθ − 1)

=

(
1 − eθ

θ

)n (
k
n

)
θk

∑
i≡k[2]

[
n

n − i

]
(−1)(k−i)/2+1 1

k(k − 1) . . . (k − i + 1)
ζ(k − i)
(2π)k−i .

Hence we obtain

fS n(k) =
(
1 − eθ

θ

)n (
k
n

)
θk

k!

∑
i≡k[2]

[
n

n − i

]
(−1)(k−i)/2+1(k − i)!

ζ(k − i)
(2π)k−i .
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5. Conclusions

We have introduced a new class of random distributions which are have total mass one but are
not necessarily nonnegative. These quasiprobability distributions are based on Bernoulli polynomials.
One feature of this distribution is that it does not charge odd positive integers. Due to the numerous
relations involving Bernoulli polynomials, one is able to compute the expected value and the density
of the sum of independent identical PB-distributions. Also, we have obtained an asymptotic estimate
of the density as n tends to infinity. That such distribution can serve as a model for discrete statistical
distribution which charges only even integers.
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