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Abstract: Let Fq be the finite field with q = pk elements, and p1, p2 be two distinct prime numbers
different from p. In this paper, we first calculate all the q-cyclotomic cosets modulo p1 pt

2 as a
preparation for the following parts. Then we give the explicit generator polynomials of all the
constacyclic codes of length p1 pt

2 ps over Fq and their dual codes. In the rest of this paper, we determine
all self-dual cyclic codes of length p1 pt

2 ps and their enumeration. This answers a question recently
asked by B. Chen, H.Q.Dinh and Liu. In the last section, we calculate the case of length 5`ps as an
example.
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1. Introduction

As a generalization of cyclic codes and negacyclic codes, constacyclic codes were first introduced
by Berlekamp in 1968 [3]. Given a nonzero element λ in a finite filed Fq, a linear code C of
length n over Fq is called λ-constacyclic if (λcn−1, c0, · · · , cn−2) ∈ C for every (c0, c1, · · · , cn−1) ∈ C.
Constacyclic codes over finite fields form a remarkable class of linear codes, as it includes the
class of cyclic codes and the class of negacyclic codes as proper subclasses. Constacyclic codes
have rich algebraic structure so that they can be efficiently encoded and decoded by means of shift
registers. Repeated-root constacyclic codes were a special class of constacyclic codes. Repeated-root
constacyclic codes were first studied by Castagnoli et al. [4] and van Lint [13], and they showed that
repeated-root cyclic codes have a concatenated construction and are not asymptotically good.

Recently, repeated-root constacyclic codes have been studied by many authors. To determine the
generator polynomials of all constacyclic codes of arbitrary length over finite fields is an important
problem. Dinh studied repeated-root constacyclic codes of lengths 2ps, 3ps, 4ps and 6ps in a series
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of papers [8–11]. He determined the algebraic structure of these repeated-root constacyclic codes over
finite fields in terms of their generator polynomials. In [7], Chen et al. introduced an equivalence
relation called isometry for the nonzero elements of Fq to classify constacyclic codes of length n
over Fq. They have the same distance structures and the same algebraic structures for belonging to
the same equivalence classes induced by isometry. Furthermore, in [5], Chen et al. considered a more
specified relationship than isometry that enabled us to obtain more explicit description of generator
polynomials of all constacyclic codes. According to the equivalence classes, all constacyclic codes
of length `ps over Fqm and their dual are characterized, where ` is a prime different from p and
s is a positive integer. In 2012, Bakshi and Raka [1] also determined all Λ-constacyclic codes of
length 2t ps(t ≥ 1, s ≥ 0 are integers) over Fpr using different methods from Chen et al.. In 2015,
Chen et al. [6] determined the algebraic structure of all constacyclic codes of length 2`m ps over Fpr

and their dual codes in terms of their generator polynomials, where `, p are distinct odd primes and
s,m are positive integers. In the conclusion of the paper [6], they proposed an open problem to study
all constacyclic codes of length k`m ps over Fq, where p is the characteristic of Fq, ` is an odd prime
different from p, and k is a prime different from ` and p. Batoul et al. [2] investigated the structure of
constacyclic codes of length 2ampr over Fps with a ≥ 1 and (m, p) = 1. They also provided certain
sufficient conditions under which these codes are equivalent to cyclic codes of length 2ampr over Fps .
Sharma [16] determined all constacyclic codes of length `t ps over Fpr and their dual codes, where `, p
are distinct primes, ` is odd and s, t, r are positive integers. In 2016, Sharma et al. [17] determine
generator polynomials of all constacyclic codes of length 4`m pn over the finite field Fq and their dual
codes, where p, ` are distinct odd primes, q is a power of p and m, n are positive integers. Working in
the same direction, Liu et al. obtained generator polynomials of all repeated-root constacyclic codes
of length 3`ps over Fq in [14], where ` is an odd prime different from p and 3. In 2017, Liu et al. [15]
explicitly determine the generator polynomials of all repeated-root constacyclic codes of length n`ps

over Fq and their dual codes, where ` is an odd prime different from p, and n is an odd prime different
from both ` and p such that n = 2h + 1 for some prime h. In 2019, Wu and Yue et al. [19,20] explicitly
factorize the polynomial xn − λ for each λ ∈ Fq . As applications, they obtain all repeated-root λ-
constacyclic codes and their dual codes of length nps over Fq.

In this paper, we answer the question of B. Chen, H. Dinh and Liu. That is we determine all the
constacyclic codes of length p1 pt

2 ps over Fq, where p is the characteristic of Fq, p1 is an odd prime
different from p, and p1 is a prime different from p2 and p. We give the explicit generator polynomials
of all the constacyclic codes of length p1 pt

2 ps over Fq and their dual codes, and determine all self-dual
cyclic codes of length p1 pt

2 ps and their enumeration.

The remainder of this paper is organized as follows. In Section 2 we give a brief background on
some basic results which we need in the following parts. In Section 3, we calculate the q-cyclotomic
cosets modulo p1 pt

2 as a preparation for giving the generator polynomials of constacyclic codes of
length p1 pt

2 ps over Fq. In Section 4, we first describe a general method to obtain the generator
polynomials of constacyclic codes, and then with this method and the results of q-cyclotomic cosets
modulo p1 pt

2 we give the explicit generator polynomials of all the constacyclic codes of length p1 pt
2 ps.

And in Section 5, all the self-dual cyclic codes of length p1 pt
2 ps over Fq are given. In the last section,

as an example we calculate the case of length 5`ps, where ` is a prime different from 5 and p.
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2. Preliminaries

In this section, we first review some basic results in number theory and finite fields, which we will
in the following parts, and then give a brief introduction to the λ-constacyclic codes. For a positive
integer n, we denote by Zn the ring of integers module n throughout this paper. Let p be a prime
number, and q be a power of p. We denote by Fq the finite field with q elements, and fix a generator
element ξ of the multiplicative group F∗q, that is, F∗q = 〈ξ〉. In this paper, we mainly deal with the
repeated-root constacyclic codes of length p1 pt

2 ps over Fq, where p1 and p2 are two distinct odd prime
numbers different from p. For any positive integer d and i = 1, 2, we write fi,d = ordpd

i
(q) for the

multiplicative order of q modulo pd
i , and set gi,d =

φ(pd
i )

fi,d
, where φ is the Euler’s phi function. When

d = 1, we write fi = fi,1 and gi = gi,1 for simplicity. For i = 1, 2, there are positive integers ui and wi

such that q fi = 1 + pui
i wi and pi - wi. Following the lifting-the-exponent lemma, we immediately have

fi,d = fi p
max{0,d−ui}

i .

Lemma 2.1. [12] Assume that r is a primitive root of the odd prime p and (r + tp)p−1 is not congruent
to 1 modulo p2. Then r + tp is a primitive root of pk for each k ≥ 1.

Lemma 2.2. [18] Let n ≥ 2 be an integer, and λ be a nonzero element in Fq with multiplicative order
k = ord(λ). The binomial xn − λ is irreducible over Fq if and only if

(1) Every prime divisor of n divides k, but not q−1
k ;

(2) If 4 | n, then 4 | (q − 1).

Let λ be a nonzero element in Fq. A λ-constacyclic code of length n is a linear code C such that
(c0, c1, · · · , cn−1) ∈ C implies (λcn−1, c0, · · · , cn−2) ∈ C. This definition is a natural generalization of
cyclic code and negacyclic code. A λ-constacyclic code C of length n over Fq can be regarded as
an ideal (g(x)) of the quotient ring Fq[x]/(xn − λ), where g(x) is a divisor of xn − λ. Let C be a λ-
constacyclic code of length n over Fq, then the dual code of code C is given by C⊥ = {x ∈ Fn

q :
x · y = 0,∀y ∈ C}, where x · y denotes the Euclidean inner product of x and y. If C is generated by
a polynomial g(x) satisfying g(x) | xn − λ, and h(x) is given by h(x) = xn−λ

g(x) , then h(x) is called the
parity check polynomial of code C. It is a classical result that the dual code C⊥ is generated by h(x)∗,
where h(x)∗ = h(0)−1xdeg(h(x))h(x−1) is the reciprocal polynomial of h(x). The code C is called to be a
self-orthogonal if C ⊆ C⊥ and a self-dual code if C = C⊥. For self-dual cyclic code, a well-known
result states that there exist self-dual cyclic codes of length n over Fq if and only if n is even and the
characteristic of Fq is p = 2.

There are q − 1 classes of constacyclic codes of length n over Fq. However, some of them are
turned out to be equivalent in the sense that they have the same structure. To be explicit, two elements
λ, µ ∈ F∗q are called n-equivalent in F∗qif there exists a ∈ F∗q such that anλ = µ.

Lemma 2.3. [5] For any λ, µ ∈ F∗q, the following four statements are equivalent:

(1) λ and µ are n-equivalent in F∗q.

(2) λ−1µ ∈ 〈ξn〉.

(3) (λ−1µ)d = 1, where d =
q−1

gcd(n,q−1) .
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(4) There exists an a ∈ F∗q such that

ϕa : Fq[X]/(Xn − µ)→ Fq[X]/(Xn − λ); f (X) 7→ f (aX)

is an Fq-algebra isomorphism. In particular, there are gcd(n, q − 1) n-equivalence classes in F∗q.

We conclude this section with the introduction of q-cyclotomic coset which is important in the
computation of constacyclic codes. Let n be a positive integer relatively prime to n. For 0 ≤ s ≤ n − 1,
the q-cyclotomic coset of s modulo n is defined to be

Cs = {s, sq, · · · , sqns−1},

where ns is the least positive integer such that sqns ≡ s (mod n). It is obvious to see that ns is equal
to the multiplicative order of q modulo n

gcd(s,n) . Notice that if sqa ≡ s′qb (mod n) for some positive
integers a, b, then

s ≡ sqa+(ns−a) ≡ s′qb+(ns−a) (mod n).

It follows that for 0 ≤ s, s′ ≤ n − 1, Cs ∩ Cs′ , ∅ if and only if Cs = Cs′ . Therefore the q-cyclotomic
cosets give a classification of the element in Zn.

If α is a primitive nth root of unit in some extension field of Fq, then the polynomial

Cs(x) =
∏
i∈Cs

(x − αi)

is exactly the minimal polynomial of αs over Fq, and

xn − 1 =
∏

s

Cs(x)

gives the irreducible factorization of xn − 1 over Fq, where s runs over all representations of distinct
q-cyclotomic cosets modulo n. We call Cs(x) the polynomial associated to Cs.

Let Cs = {s, sq, · · · , sqns−1} be any q-cyclotomic coset modulo n. The reciprocal coset of Cs is
defined to be

C∗s = {−s,−sq, · · · ,−sqns−1}.

We say that the coset Cs is self-reciprocal if Cs = C∗s . One can check that the polynomial C∗s(x)
associated to the reciprocal coset C∗s is exactly the reciprocal polynomial of Cs(x).

3. q-cyclotomic cosets modulo pt1
1 pt2

2

The q-cyclotomic cosets modulo p1 pt
2 plays an important role in determining all the constacyclic

codes of length p1 pt
2 ps. In this section we consider a more general case that classifies all the q-

cyclotomic cosets modulo pt1
1 pt2

2 , where p1 and p2 are two distinct odd prime numbers not dividing q,
and t1, t2 are positive integers.

Let ` be a prime number not dividing q, and µ be a generator of the cyclic group Z∗` . It is obvious
that all the q-cyclotomic cosets modulo ` are given by C0 = {0} and

Ck = {µk, µkq, · · · , µkqord`(q)−1}, 1 ≤ k ≤
` − 1

ord`(q)
.
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For different odd prime numbers p1 and p2, we claim that there exists an integer µ1 satisfying that:
(1) µ1 is a primitive root modulo pd

1 for all d ≥ 1; and
(2) µ1 ≡ 1 (mod p2).
We begin with a random primitive root η

′

1 modulo p1. If p2
1 - η

′

1
p1−1
− 1, we let η1 = η

′

1, otherwise

we let η1 = η
′

1 + p1. It is trivial to see that η1 satisfies the condition gcd( η
p1−1
1 −1

p1
, p1) = 1. Let µ1 =

η1 + (1 − η1)pp2−1
1 , then

µ
p1−1
1 − 1 ≡ (η1 + (1 − η1)pp2−1

1 )p1−1 − 1 ≡ ηp1−1
1 − 1 (mod p2

1).

It follows that

gcd(
µ

p1−1
1 − 1

p1
, p1) = gcd(

η
p1−1
1 − 1

p1
, p1) = 1.

Following Lemma 2.1, µ1 is a primitive root modulo pd
1 for all d ≥ 1 such that µ1 ≡ 1 (mod p2). By

the symmetric argument, we can find an integer µ2 satisfying that
(1) µ2 is a primitive root modulo pd

2 for all d ≥ 1; and
(2) µ2 ≡ 1 (mod p1).
We fix such a pair of integers µ1 and µ2.

Theorem 3.1. Let p1 and p2 be two different odd prime numbers not dividing q, and t1 and t2 be
positive integers. Then all the distinct q-cyclotomic cosets module pt1

1 pt2
2 are given by

C
µ

k1
1 µ

k2
2 pr1

1 pr2
2

= {µk1
1 µ

k2
2 pr1

1 pr2
2 , µ

k1
1 µ

k2
2 pr1

1 pr2
2 q, · · · , µk1

1 µ
k2
2 pr1

1 pr2
2 qcr1 ,r2 }

for 0 ≤ r1 ≤ t1, 0 ≤ r2 ≤ t2, 0 ≤ k1 ≤ g1,t1−r1 − 1 and 0 ≤ k2 ≤ g2,t2−r2 · gcd( f1,t1−r1 , f2,t2−r2) − 1, where
cr1,r2 = ordpt1−r1

1 pt2−r2
2

(q) = lcm( f1,t1−r1 , f2,t2−r2).

Proof. First we prove that the given q-cyclotomic cosets are all distinct. If C
µ

k1
1 µ

k2
2 pr1

1 pr2
2

= C
µ

k′1
1 µ

k′2
2 p

r′1
1 p

r′2
2

for

some 0 ≤ r1, r′1 ≤ t1, 0 ≤ r2, r′2 ≤ t2, 0 ≤ k1, k′1 ≤ g1,t1−r1−1 and 0 ≤ k2, k′2 ≤g2,t2−r2 ·gcd( f1,t1−r1 , f2,t2−r2)−1,
then there exists a positive integer m such that

µ
k′1
1 µ

k′2
2 pr′1

1 pr′2
2 ≡ µ

k1
1 µ

k2
2 pr1

1 pr2
2 qm (mod pt1

1 pt2
2 ). (3.1)

Since µ1, µ2 and q are relatively prime to pt1
1 pt2

2 , clearly we have r1 = r′1 and r2 = r′2, and Eq (3.1) can
be reduced to

µ
k′1
1 µ

k′2
2 ≡ µ

k1
1 µ

k2
2 qm (mod pt1−r1

1 pt2−r2
2 ).

Remembering that µ1 ≡ 1 (mod p2) and µ2 ≡ 1 (mod p1), then by the Chinese remainder theorem,
we have

µ
k1−k′1
1 ≡ qm (mod pt1−r1

1 ) (3.2)

µ
k2−k′2
2 ≡ qm (mod pt2−r2

2 ) (3.3)

Equation (3.2) implies that

µ
(k1−k′1) f1,t1−r1
1 ≡ qm· f1,t1−r1 ≡ 1 (mod pt1−r1

1 ),
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and therefore φ(pt1−r1
1 ) | (k1 − k′1) f1,t1−r1 . Since 0 ≤ k1, k′1 ≤ g1,t1−r1 − 1, one must have k1 = k′1. Notice

that k1 = k′1 indicates that qm ≡ 1 (mod pt1−r1
1 ), then f1,t1−r1 | m, which together with Eq (3.3) leads to

µ

(k′2−k2)·
f2,t2−r2

gcd( f1,t1−r1 , f2,t2−r2)
2 ≡ q

m·
f2,t2−r2

gcd( f1,t1−r1 , f2,t2−r2) ≡ 1 (mod pt2−r2
2 ).

Thus φ(pt2−r2
2 ) | (k′2 − k2) ·

f2,t2−r2

gcd( f1,t1−r1 , f2,t2−r2)
. Since 0 ≤ k2, k′2 ≤ g2,t2−r2 · gcd( f1,t1−r1 , f2,t2−r2) − 1, we

have k2 = k′2.
On the other hand, there are in total

∑
0≤r1≤t1

∑
0≤r2≤t2

φ(pt1−r1
1 )

f1,t1−r1

·
φ(pt2−r2

2 )
f2,t2−r2

· gcd( f1,t1−r1 , f2,t2−r2) · lcm( f1,t1−r1 , f2,t2−r2)

=
∑

0≤r1≤t1

∑
0≤r2≤t2

φ(pt1−r1
1 )φ(pt2−r2

2 ) = pt1
1 pt2

2

(3.4)

elements in these q-cyclotomic cosets, therefore they are all the distinct q-cyclotomic cosets
module pt1

1 pt2
2 . �

In particular, when t1 = 1 and t2 = t, the classification of the q-cyclotomic cosets modulo p1 pt
2 is

given as follow.

Corollary 3.1. Let the notations be as above. Then all the distinct q-cyclotomic cosets modulo p1 pt
2

are

C0 = {0};

C
µ

k1
1 µ

k2
2 pr

2
= {µk1

1 µ
k2
2 pr

2, µ
k1
1 µ

k2
2 pr

2q, · · · , µk1
1 µ

k2
2 pr

2q
ordp1 pt−r

2
(q)−1
}

for 0 ≤ r ≤ t − 1, 0 ≤ k1 ≤ g1 − 1 and 0 ≤ k2 ≤ g2,t−r · gcd( f1, f2,t−r);

Cµk
1 pt

2
= {µk

1 pt
2, µ

k
1 pt

2q, · · · , µk
1 pt

2q f1−1}

for 0 ≤ k ≤ g1 − 1; and

Cµk′
2 p1 pr

2
= {µk′

2 p1 pr
2, µ

k′
2 p1 pr

2q, · · · , µk′
2 p1 pr

2q f2,t−r−1}

for 0 ≤ r ≤ t − 1 and 0 ≤ k′ ≤ g2,t−r − 1.

Corollary 3.2. Let the notations be as aboved. Then the irreducible factorization of xp1 pt
2 ps
− 1 over Fq

is given by

xp1 pt
2 ps
− 1 = C0(x)ps

t−1∏
r=0

g1−1∏
k1=0

g2,t−r gcd( f1, f2,t−r)−1∏
k2=0

C
µ

k1
1 µ

k2
2 pr

2
(x)ps

g1−1∏
k=0

Cµk
1 pt

2
(x)ps

t−1∏
r=0

g2,t−r−1∏
k′=0

Cµk′
2 p1 pr

2
(x)ps

.
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4. Constacyclic codes of length p1 pt
2 ps with their dual codes

In this section, we will determine the generator polynomials of all constacyclic codes of length
p1 pt

2 ps over Fq and their dual codes. For λ ∈ F∗q, we identify a λ-constacyclic code of length p1 pt
2 ps

with an ideal (g(x)) of the quotient ring Fq[x]/(xp1 pt
2 ps
− λ), where g(x) is a divisor of xp1 pt

2 ps
− λ. By

Lemma 2.3, there are gcd(p1 pt
2, q − 1) p1 pt

2 ps-equivalence classes in F∗q, which corresponds to the
cosets of 〈ξp1 pt

2〉 in F∗q = 〈ξ〉.
Before doing the explicit computation, we present a general method to factorize xn − λ. Let q = pk

for k > 0, and n = pe pe1
1 · · · p

em
m be the prime factorization of n. Assume that pe1

1 · · · p
em
m | q − 1, i.e.,

vpi(q − 1) ≥ ei for i = 1, · · · ,m. In this case we have

F∗q = 〈ξ〉 = 〈ξpe1
1 ···p

em
m 〉 ∪ 〈ξpe1

1 ···p
em
m 〉ξpe

∪ · · · ∪ 〈ξpe1
1 ···p

em
m 〉ξpe(pe1

1 ···p
em
m −1).

For λ ∈ 〈ξpe1
1 ···p

em
m 〉ξ j·pe

, where 0 ≤ j ≤ pe1
1 · · · p

em
m − 1, there exists an element a ∈ F∗q such that

anλ = ξ j·pe
.

We first factorize xn − ξ jpe
, 0 ≤ j ≤ pe1

1 · · · p
em
m − 1. Notice that j can be written as j = y · pv1

1 · · · p
vm
m ,

where vi = min{ei, vpi( j)}. Then we have

xn − ξ j·pe
= (xpe1

1 ···p
em
m − ξy·pv1

1 ···p
vm
m )pe

= ξ j·pe
((

xpe1−v1
1 ···pem−vm

m

ξy )pv1
1 ···p

vm
m − 1)pe

.

Since pv1
1 · · · p

vm
m | q − 1, δ = ξ

q−1

p
v1
1 ···p

vm
m is a primitive pv1

1 · · · p
vm
m -th root of unit. Then

xn − ξ j·pe
= ξ j·pe

( xp
e1−v1
1 ···pem−vm

m

ξy − 1)pe
· ( xp

e1−v1
1 ···pem−vm

m

ξy − δ)pe
· · · ( xp

e1−v1
1 ···pem−vm

m

ξy − δpv1
1 ···p

vm
m −1)pe

= (xpe1−v1
1 ···pem−vm

m − ξy)pe
(xpe1−v1

1 ···pem−vm
m − δξy)pe

· · · (xpe1−v1
1 ···pem−vm

m − δpv1
1 ···p

vm
m −1ξy)pe

.

For 0 ≤ i ≤ pv1
1 · · · p

vm
m − 1, δiξy = ξ

y+i· q−1

p
v1
1 ···p

vm
m , and then we have

ord(δiξy) =
q − 1

gcd(q − 1, y + i · q−1
pv1

1 ···p
vm
m

)
,

and
q − 1

ord(δiξy)
= gcd(q − 1, y + i ·

q − 1
pv1

1 · · · p
vm
m

).

For each pi | p
e1−v1
1 · · · pem−vm

m , we have that ei > vi and vi = vpi( j), thus pi - y. Since vpi(q− 1) ≥ ei >

vi, pi |
q−1

pv1
1 ···p

vm
m

, which indicates that pi - y+ i · q−1
pv1

1 ···p
vm
m

and pi |
q−1

y+i· q−1

p
v1
1 ···p

vm
m

. Moreover if 4 | pe1−v1
1 · · · pem−vm

m ,

then 4 | pe1
1 · · · p

em
m | q − 1. Hence by Lemma 2.2 each xpe1−v1

1 ···pem−vm
m − ξyδi is irreducible over Fq.

Notice that anλ = ξ jpe
, then the irreducible factorization of xn − λ follows immediately:

xn − λ = (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m ξy)pe
(xpe1−v1

1 ···pem−vm
m − a−pe1−v1

1 ···pem−vm
m δξy)pe

·

· · · · (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m δpv1
1 ···p

vm
m −1ξy)pe

,

We summerize the above discussions into the following theorem.
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Theorem 4.1. Let p, p1, · · · , pm be distinct prime numbers. Let q = pk and n = pe pe1
1 · · · p

em
m , where

k, e, e1, · · · , em are positive integers. Suppose that for 1 ≤ i ≤ m, vpi(q − 1) ≥ ei. Then for any λ ∈ F∗q,
there exists an element a ∈ F∗q such that anλ = ξ jpe

, 0 ≤ j ≤ pe1
1 · · · p

em
m . Furthermore, writing j in the

form j = y · pv1
1 · · · p

vm
m , where vi = min{ei, vpi( j)}, then

xn − λ = (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m ξy)pe
(xpe1−v1

1 ···pem−vm
m − a−pe1−v1

1 ···pem−vm
m δξy)pe

·

· · · · (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m δpv1
1 ···p

vm
m −1ξy)pe

,

gives the irreducible factorization of xn − λ over Fq.

Now we turn to the case that pe1
1 · · · p

em
m - q − 1. Sinve gcd(pe1

1 · · · p
em
m , q) = 1, thus there exists a

least positive integer d such that pe1
1 · · · p

em
m | qd −1. By the lifting-the-exponent lemma, if d′ is the least

positive integer such that p1 · · · pm | qd′ − 1, then d = d′pv1
1 · · · p

vm
m , where vi = max{ei − vpi(q

d′ − 1), 0}.
Let λ be a nonzero element in Fq. To obtain the irreducible factorization of xn − λ over Fq, we first

consider the factorization over Fqd . By Theorem 4.1, there exists a ∈ Fqd such that anλ = ζ jpe
, 0 ≤ j ≤

pe1
1 · · · p

em
m − 1. Writing j as j = y · pv1

1 · · · p
vm
m , where vi = min{ei, vpi( j)}, then

xn − λ = (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m ζy)pe
(xpe1−v1

1 ···pem−vm
m − a−pe1−v1

1 ···pem−vm
m δζy)pe

·

· · · · (xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m δpv1
1 ···p

vm
m −1ζy)pe

,

gives the irreducible factorization of xn − λ over Fqd , where δ is a primitive pv1
1 · · · p

vm
m -th root of unit.

Hence each irreducible factor of xn − λ over Fq is of the form

(xpe1−v1
1 ···pem−vm

m − a−pe1−v1
1 ···pem−vm

m δiζy)pe
(xpe1−v1

1 ···pem−vm
m − a−qpe1−v1

1 ···pem−vm
m δqiζqy)pe

·

· · · · (xpe1−v1
1 ···pem−vm

m − a−qzi−1 pe1−v1
1 ···pem−vm

m δi·qzi−1
ζy·qzi−1

)pe
,

where zi is the least positive integer such that a−qzi pe1−v1
1 ···pem−vm

m δi·qziζy·qzi
= a−pe1−v1

1 ···pem−vm
m δiζy.

Now we determine the generator polynomials of all constacyclic codes of length p1 pt
2 ps and their

duals explicitly. We decompose the problem into three cases.

4.1. gcd(q − 1, p1 pt
2 ps) = 1

As gcd(q−1, p1 pt
2 ps) = 1, all constacyclic codes of length p1 pt

2 ps are equivalent to a cyclic code. By
the factorization of xp1 pt

2 ps
−1 given in Corollary 3.2, we have the following result. For any polynomial

F = a0 + a1x + · · · + anxn, an , 0,

we set F̂ = a−1
n F to be the monic polynomial associated to F.

Proposition 4.1. Assume that gcd(q − 1, p1 pt
2 ps) = 1. Then any nonzero element λ in Fq is p1 pt

2 ps-
equivalent to 1, that is, there is an element a ∈ F∗q such that ap1 pt

2 ps
λ = 1. Furthermore, the irreducible

factorization of xp1 pt
2 ps
− λ over Fq is given by

xp1 pt
2 ps
− λ = Ĉ0(ax)ps

t−1∏
r=0

g1−1∏
k1=0

g2,t−r gcd( f1, f2,t−r)−1∏
k2=0

Ĉ
µ

k1
1 µ

k2
2 pr

2
(ax)ps

g1−1∏
k=0

Ĉµk
1 pt

2
(ax)ps

t−1∏
r=0

g2,t−r−1∏
k′=0

Ĉµk′
2 p1 pr

2
(ax)ps

.
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Therefore all the constacyclic codes of length p1 pt
2 ps are

C =

Ĉ0(ax)u
t−1∏
r=0

g1−1∏
k1=0

g2,t−r gcd( f1, f2,t−r)−1∏
k2=0

Ĉ
µ

k1
1 µ

k2
2 pr

2
(ax)

v
µ

k1
1 µ

k2
2 pr

2

g1−1∏
k=0

Ĉµk
1 pt

2
(ax)

w
µk

1 pt
2

t−1∏
r=0

g2,t−r−1∏
k′=0

Ĉµk′
2 p1 pr

2
(ax)

x
µk′

2 p1 pr
2

 ,
where 0 ≤ u, v

µ
k1
1 µ

k2
2 pr

2
,wµk

1 pt
2
, xµk′

2 p1 pr
2
≤ ps, with duals

C⊥ =

Ĉ0(a−1x)ps−u
t−1∏
r=0

g1−1∏
k1=0

g2,t−r gcd( f1, f2,t−r)−1∏
k2=0

Ĉ
µ

k1
1 µ

k2
2 pr

2
(a−1x)

ps−v
µ

k1
1 µ

k2
2 pr

2

g1−1∏
k=0

Ĉµk
1 pt

2
(a−1x)

ps−w
µk

1 pt
2

t−1∏
r=0

g2,t−r−1∏
k′=0

Ĉµk′
2 p1 pr

2
(a−1x)

ps−x
µk′

2 p1 pr
2

 .
4.2. gcd(q − 1, p1 pt

2 ps) = p1 pt
2

For this case, since p1 pt
2|q − 1, the following proposition follows straightly from Theorem 4.1.

Theorem 4.2. Assume that gcd(q − 1, p1 pt
2 ps) = p1 pt

2. Then for any λ ∈ F∗q, there exists an element
a ∈ F∗q such that ap1 pt

2 ps
λ = ξ j·ps

, 0 ≤ j ≤ p1 pt
2 − 1. Writing j as j = y · pv1

1 pv2
2 , where v1 = min{1, vp1( j)}

and v2 = min{t, vp2( j)}, then

xp1 pt
2 ps
− λ = (xp1−v1

1 pt−v2
2 − a−p1−v1

1 pt−v2
2 ξy)ps

(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δξy)ps

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δpv1
1 pv2

2 −1ξy)ps

gives the irreducible factorization of xp1 pt
2 ps
− λ over Fq. Therefore all the λ-constacyclic codes of

length p1 pt
2 ps and their dual codes are given by

C =

(
(xp1−v1

1 pt−v2
2 − a−p1−v1

1 pt−v2
2 ξy)u1(xp1−v1

1 pt−v2
2 − a−p1−v1

1 pt−v2
2 δξy)u2

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δpv1
1 pv2

2 −1ξy)
u

p
v1
1 p

v2
2

)
,

and

C⊥ =

(
(xp1−v1

1 pt−v2
2 − ap1−v1

1 pt−v2
2 ξ−y)ps−u1(xp1−v1

1 pt−v2
2 − ap1−v1

1 pt−v2
2 δ−1ξ−y)ps−u2

· · · (xp1−v1
1 pt−v2

2 − ap1−v1
1 pt−v2

2 δ1−pv1
1 pv2

2 ξ−y)
ps−u

p
v1
1 p

v2
2

)
,

where 0 ≤ u1, u2, · · · , unv1`v2 ≤ ps.

4.3. gcd(q − 1, p1 pt
2 ps) = pr

2 for some 0 < r ≤ t

In this case, for any d ≥ 1 we have f2,d = pmax{0,d−r}
2 , and f = lcm( f1, f2,t) is the least positive integer

such that q f ≡ 1 (mod p1 pt
2). By the bais results of finite fields, there is a primitive element ζ in F∗q f

such that ξ = ζ
q f −1
q−1 = ζ1+q+···+q f−1

. Then we have

F∗q = 〈ξ〉 = 〈ξpr
2〉 ∪ 〈ξpr

2〉ξps
∪ · · · ∪ 〈ξpr

2〉ξ(pr
2−1)ps
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and
F∗q f = 〈ζ〉 = 〈ζ p1 pt

2〉 ∪ 〈ζ p1 pt
2〉ζ ps

∪ · · · ∪ 〈ζ p1 pt
2〉ζ(p1 pt

2−1)ps
.

By the assumption that p1 pt
2 | q f − 1 and vp1(q − 1) = 0, vp2(q − 1) = r, we have that p1 pt−r

2 |

(1 + q + · · · + q f−1). Therefore ξpr
2 = ζ pr

2(1+q+···+q f−1) ∈ 〈ζ p1 pt
2〉. Furthermore, for 0 ≤ j ≤ pr

2 − 1,
there exists some 0 ≤ j

′

≤ p1 pt
2 − 1 such that jps(1 + q + · · · + q f−1) ≡ j

′

ps (mod p1 pt
2), that is,

ξ jps
∈ 〈ζ p1 pt

2〉ζ j
′
ps

. Hence we have the following theorem.

Theorem 4.3. Assume that gcd(q − 1, p1 pt
2 ps) = pr

2, 0 < r ≤ t. For any 0 ≤ j ≤ pr
2 − 1, there exists an

element a ∈ F∗q f such that ap1 pt
2 ps
ξ j·ps

= ζ j′·ps
. Moreover, each irreducible factor of xp1 pt

2 − ξ j over Fq is
of the form

(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δiζy′)(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qδiqζy′q)

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qzi−1
δiqzi−1

ζy′qzi−1
),

where j′ = y′pv1
1 pv2

2 , v1 = min{1, vp1( j′)}, v2 = min{t, vp2( j′)}, and zi is the least positive integer such
that a−qzi p1−v1

1 pt−v2
2 δiqziζy′qzi

= ap1−v1
1 pt−v2

2 δiζy′ .

For any 0 ≤ i, i
′

≤ pv1
1 pv2

2 − 1, we define a relation ∼ to be such that i ∼ i
′

if and only if
a−qm p1−v1

1 pt−v2
2 δiqm

ζy′qm
= ap1−v1

1 pt−v2
2 δi

′

ζy′ for some nonnegative integers m. It is obvious to see that ∼ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0, 1, · · · , pv1

1 pv2
ffl
− 1} relative to this relation ∼. For any i ∈ S we denote the irreducible polynomial

(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δiζy′)(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qδiqζy′q)

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qzi−1
δiqzi−1

ζy′qzi−1
),

by Mi(x). Then we have the following corollary.

Corollary 4.1. Assume that gcd(q − 1, p1 pt
2 ps) = pr

2. For any 0 ≤ j ≤ pr
2 − 1, there exists an element

a ∈ F∗q f such that ap1 pt
2 ps
ξ j·ps

= ζ j′·ps
. Then

xp1 pt
2 ps
− ξ jps

=
∏
i∈S

Mi(x)ps

gives the irreducible factorization of xp1 pt
2 ps
− ξ jps

over Fq. Furthermore we have that

C =

∏
i∈S

Mi(x)ui

 ,
and

C⊥ =

∏
i∈S

M∗
i (x)ps−ui

 ,
where 0 ≤ ui ≤ ps, for i ∈ S .
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4.4. gcd(q − 1, p1 pt
2 ps) = p1 pr

2 for some 0 < r < t

The same argument as in the last section can be applied in this situation, only noticing that the least
positive integer f such that q f ≡ 1 (mod p1 pt

2) is f = f2,t = pmax{0,t−r}
2 . We find a primitive element ζ

in F∗q f such that ξ = ζ
q f −1
q−1 = ζ1+q+···+q f−1

, then

F∗q = 〈ξ〉 = 〈ξp1 pr
2〉 ∪ 〈ξp1 pr

2〉ξps
∪ · · · ∪ 〈ξp1 pr

2〉ξ(pr
2−1)ps

and
F∗q f = 〈ζ〉 = 〈ζ p1 pt

2〉 ∪ 〈ζ p1 pt
2〉ζ ps

∪ · · · ∪ 〈ζ p1 pt
2〉ζ(p1 pt

2−1)ps
.

By the assumption that p1 pt
2 | q

f − 1 and vp2(q − 1) = r, we have that pt−r
2 | (1 + q + · · · + q f−1), and

ξp1 pr
2 = ζ p1 pr

2(1+q+···+q f−1) ∈ 〈ζ p1 pt
2〉. Furthermore, for 0 ≤ j ≤ p1 pr

2−1, there exists some 0 ≤ j
′

≤ p1 pt
2−1

such that jps(1 + q + · · · + q f−1) ≡ j
′

ps (mod p1 pt
2), that is, ξ jps

∈ 〈ζ p1 pt
2〉ζ j

′
ps

. Hence we have the
following theorem.

Theorem 4.4. Assume that gcd(q − 1, p1 pt
2 ps) = p1 pr

2 for 0 < r < t, then for any 0 ≤ j ≤ pr
2 − 1, there

exists an element a ∈ F∗q f such that ap1 pt
2 ps
ξ j·ps

= ζ j′·ps
. Moreover, each irreducible factor of xp1 pt

2 − ξ j

over Fq is of the form

(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δiζy′)(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qδiqζy′q)

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qzi−1
δiqzi−1

ζy′qzi−1
),

where j′ = y′pv1
1 pv2

2 , v1 = min{1, vp1( j′)}, v2 = min{t, vp2( j′)}, and zi is the least positive integer such
that a−qzi p1−v1

1 pt−v2
2 δiqziζy′qzi

= ap1−v1
1 pt−v2

2 δiζy′ .

For any 0 ≤ i, i
′

≤ pv1
1 pv2

2 − 1, we define a relation ∼ to be such that i ∼ i
′

if and only if
a−qm p1−v1

1 pt−v2
2 δiqm

ζy′qm
= ap1−v1

1 pt−v2
2 δi

′

ζy′ for some nonnegative integers m. It is obvious to see that ∼ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0, 1, · · · , pv1

1 pv2
2 − 1} relative to this relation ∼. For any i ∈ S we denote the irreducible polynomial

(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 δiζy′)(xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qδiqζy′q)

· · · (xp1−v1
1 pt−v2

2 − a−p1−v1
1 pt−v2

2 ·qzi−1
δiqzi−1

ζy′qzi−1
),

by Mi(x). Then we have the following corollary.

Corollary 4.2. Assume that gcd(q − 1, p1 pt
2 ps) = p1 pr

2 for 0 < r < t. For any 0 ≤ j ≤ pr
2 − 1, there

exists an element a ∈ F∗q f such that ap1 pt
2 ps
ξ j·ps

= ζ j′·ps
. Then

xp1 pt
2 ps
− ξ jps

=
∏
i∈Z

Mi(x)ps

gives the irreducible factorization of xp1 pt
2 ps
− ξ jps

over Fq. Furthermore we have that

C =

∏
i∈S

Mi(x)ui

 ,
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and

C⊥ =

∏
i∈S

M∗
i (x)ps−ui

 ,
where 0 ≤ ui ≤ ps, for i ∈ S .

5. All self-dual cyclic codes of length p1 pt
2 ps over Fq

Based on the results in the last section, we now give all the self-dual cyclic codes of length p1 pt
2 ps

over Fq and their enumeration. It is a well-known conclusion that self-dual cyclic codes of length N
over Fq exists if and only if N is even and the characteristic of Fq is 2. Therefore we only consider the
case of self-dual cyclic codes of length p1 pt

2 · 2
s over F2k .

Let xp1 pt
22s
−1 = (xp1 pt

2−1)2s
= f1(x)2s

· · · fn(x)2s
h1(x)2s

· · · hm(x)2s
h∗1(x)2s

· · · h∗m(x)2s
be the irreducible

factorization of xp1 pt
22s
− 1 over Fq, where each fi(x) is a monic irreducible self-reciprocal polynomial

for 1 ≤ i ≤ n, and h∗j(x) is the reciprocal polynomial of h j(x) for each 1 ≤ j ≤ m. Now, given a cyclic
code C = (g(x)) of length p1 pt

22s, it can be written in the form

g(x) = f1(x)τ1 · · · fn(x)τnh1(x)δ1 · · · hm(x)δmh∗1(x)σ1 · · · h∗m(x)σm ,

where 0 ≤ τi, δ j, σ j ≤ 2s for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then the reciprocal polynomial h∗(x) of the
parity check polynomial h(x) of C is

h∗(x) = f1(x)2s−τ1 · · · fn(x)2s−τnh1(x)2s−σ1 · · · hm(x)2s−σmh∗1(x)2s−δ1 · · · h∗m(x)2s−δm .

Therefore it is obvious to see that the following theorem holds.

Theorem 5.1. With the above notations, we have that C is self-dual if and only if 2τi = 2s for 1 ≤ i ≤ n,
and δ j + σ j = 2s for 1 ≤ j ≤ m.

Recall the irreducible factorization of xp1 pt
2 ps
−1 given in Corollary 3.2. Now we determine for each

irreducible factor its reciprocal polynomial.

Lemma 5.1. Let the notations be defined as Corollary 3.1. Then one of the following holds.

(1) If both f1 and f2 are odd, then we have that

C∗0 = C0, C∗
µk

1 pt
2

= C−µk
1 pt

2
, C∗

µk′
2 p1 pr

2
= C−µk′

2 p1 pr
2
, C∗

µ
k1
1 µ

k2
2 pr

2

= C
−µ

k1
1 µ

k2
2 pr

2
.

(2) If f1 is odd and f2 is even, then we have that

C∗0 = C0, C∗
µk

1 pt
2

= C−µk
1 pt

2
, C∗

µk′
2 p1 pr

2
= Cµk′

2 p1 pr
2
, C∗

µ
k1
1 µ

k2
2 pr

2

= C
−µ

k1
1 µ

k2
2 pr

2
.

(3) If f1 is even and f2 is odd, then we have that

C∗0 = C0, C∗
µk

1 pt
2

= Cµk
1 pt

2
, C∗

µk′
2 p1 pr

2
= C−µk′

2 p1 pr
2
, C∗

µ
k1
1 µ

k2
2 pr

2

= C
−µ

k1
1 µ

k2
2 pr

2
.
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(4) If both f1 and f2 are even ,then we have when v2( f1) , v2( f2),

C∗0 = C0, C∗
µk

1 pt
2

= Cµk
1 pt

2
, C∗

µk′
2 p1 pr

2
= Cµk′

2 p1 pr
2
, C∗

µ
k1
1 µ

k2
2 pr

2

= C
−µ

k1
1 µ

k2
2 pr

2
,

when v2( f1) = v2( f2),

C∗0 = C0, C∗
µk

1 pt
2

= Cµk
1 pt

2
, C∗

µk′
2 p1 pr

2
= Cµk′

2 p1 pr
2
, C∗

µ
k1
1 µ

k2
2 pr

2

= C
−µ

k1
1 µ

k2
2 pr

2
.

Proof. First it is trivial that the reciprocal of C0 is always itself. For Cµk
1 pt

2
, notice that C∗

µk
1 pt

2
= Cµk

1 pt
2

if and only if the congruence equation −µk
1 pt

2 ≡ −µ
k
1 pt

2qx (mod p1 pt
2) is solvable. Since the equation

is equivalent to −1 ≡ qx (mod pr
2), then the condition holds if and only if f1 = ordp1(q) is even. In

the similar way we can check that C∗
µk′

2 p1 pr
2

= Cµk′
2 p1 pr

2
if and only if f2,t−r = f2 pmax{0,t−r}

2 is even. Notice
that by assumption p2 is odd, therefore the condition holds if and only if f2 is even. For C

µ
k1
1 µ

k2
2 pr

2
,

consider the congruence equation −µk1
1 µ

k2
2 pr

2 ≡ µ
k1
1 µ

k2
2 pr

2qx (mod p1 pt
2). It is equivalent to that −1 ≡ qx

(mod p1) and −1 ≡ qx (mod pt−r
2 ) holds simultaneously. This requires not only both f1 and f2 are even,

but also gcd( f1, f2,t−r) |
f1 − f2,t−r

2
. And it is trivial to check that the last condition holds if and only if

v2( f1) = v2( f2,t−r) = v2( f2). �

Based on the above lemma, we now determine all the self-dual cyclic codes of length p1 pt
2 and their

enumeration.

Theorem 5.2.

(1) If both f1 and f2 are odd, then there exist (2s + 1)
p1 pt

2−1
2 self-dual cyclic codes of length p1 pt

2 over F2k ,
which are given by(

(x − 1)2s−1 ∏t−1
r=0

∏ g1
2 −1

k1=0

∏g2,t−r gcd( f1, f2,t−r)−1
k2=0 C

µ
k1
1 µ

k2
2 pr

2
(x)

v
µ

k1
1 µ

k2
2 pr

2 C
−µ

k1
1 µ

k2
2 pr

2
(x)

2s−v
µ

k1
1 µ

k2
2 pr

2

·
∏ g1

2 −1
k=0 Cµk

1 pt
2
(x)

w
µk

1 pt
2 C−µk

1 pt
2
(x)

2s−w
µk

1 pt
2
∏t−1

r=0
∏ g2,t−r gcd( f1 , f2,t−r )

2 −1
k′=0 Cµk′

2 p1 pr
2
(x)

x
µk′

2 p1 pr
2 C−µk′

2 p1 pr
2
(x)

2s−x
µk′

2 p1 pr
2

)
.

(2) If f1 is odd and f2 is even, then there exist (2s + 1)
p1(pt

2−1)
2 self-dual cyclic codes of length p1 pt

2 over
F2k , which are given by(

(x − 1)2s−1 ∏t−1
r=0

∏ g1
2 −1

k1=0

∏g2,t−r gcd( f1, f2,t−r)−1
k2=0 C

µ
k1
1 µ

k2
2 pr

2
(x)

v
µ

k1
1 µ

k2
2 pr

2 C
−µ

k1
1 µ

k2
2 pr

2
(x)

2s−v
µ

k1
1 µ

k2
2 pr

2

·
∏ g1

2 −1
k=0 Cµk

1 pt
2
(x)

w
µk

1 pt
2 C−µk

1 pt
2
(x)

2s−w
µk

1 pt
2
∏t−1

r=0
∏g2,t−r gcd( f1, f2,t−r)−1

k′=0 Cµk′
2 p1 pr

2
(x)2s−1

)
.

(3) If f1 is even and f2 is odd, then there exist (2s + 1)
pt

2(p1−1)
2 self-dual cyclic codes of length p1 pt

2 over
F2m , which are given by(

(x − 1)2s−1 ∏t−1
r=0

∏g1−1
k1=0

∏ g2,t−r gcd( f1 , f2,t−r )
2 −1

k2=0 C
µ

k1
1 µ

k2
2 pr

2
(x)

v
µ

k1
1 µ

k2
2 pr

2 C
−µ

k1
1 µ

k2
2 pr

2
(x)

2s−v
µ

k1
1 µ

k2
2 pr

2

·
∏g1−1

k=0 Cµk
1 pt

2
(x)2s−1 ∏t−1

r=0
∏ g2,t−r gcd( f1 , f2,t−r )

2 −1
k′=0 Cµk′

2 p1 pr
2
(x)

x
µk′

2 p1 pr
2 C−µk′

2 p1 pr
2
(x)

2s−x
µk′

2 p1 pr
2

)
.
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(4) If both f1 and f2 are even ,then we have when v2( f1) , v2( f2), there exist (2s + 1)
(p1−1)(pt

2−1)
2 self-dual

cyclic codes of length p1 pt
2 over F2m , which are given by(

(x − 1)2s−1 ∏t−1
r=0

∏g1−1
k1=0

∏ g2,t−r gcd( f1 , f2,t−r )
2 −1

k2=0 C
µ

k1
1 µ

k2
2 pr

2
(x)

v
µ

k1
1 µ

k2
2 pr

2 C
−µ

k1
1 µ

k2
2 pr

2
(x)

2s−v
µ

k1
1 µ

k2
2 pr

2

·
∏g1−1

k=0 Cµk
1 pt

2
(x)2s−1 ∏t−1

r=0
∏g2,t−r gcd( f1, f2,t−r)−1

k′=0 Cµk′
2 p1 pr

2
(x)2s−1

)
.

When v2( f1) = v2( f2), there exist only one self-dual cyclic codes of length p1 pt
2 over F2m , which is given

by (
(x − 1)2s−1 ∏t−1

r=0
∏g1−1

k1=0

∏g2,t−r gcd( f1, f2,t−r)−1
k2=0 C

µ
k1
1 µ

k2
2 pr

2
(x)2s−1

·
∏g1−1

k=0 Cµk
1 pt

2
(x)2s−1 ∏t−1

r=0
∏g2,t−r gcd( f1, f2,t−r)−1

k′=0 Cµk′
2 p1 pr

2
(x)2s−1

)
.

6. Constacyclic codes of length 5`ps over Fq

In this section, we illustrate the above process with the example of constacyclic codes of length 5`ps,
where ` is a prime number different from 5 and p. We determine all the constacyclic codes of
length 5`ps and their dual codes over Fq, and then all the self-dual codes of length 5`ps are also
given.

First we determine all the q-cyclotomic cosets modulo 5`. Let f = ord`(q), and e =
` − 1

f
. Then we

have:
(1) ord5`(q) = f , when q ≡ 1 (mod 5).
(2) ord5`(q) = f , when q ≡ 4 (mod 5) with f even.
(3) ord5`(q) = 2 f , when q ≡ 4 (mod 5) with f odd.
(4) ord5`(q) = f , when q ≡ 2 or q ≡ 3 (mod 5) with 4 | f .
(5) ord5`(q) = 2 f , when q ≡ 2 or q ≡ 3 (mod 5) with 2 | f but 4 - f .
(6) ord5`(q) = 4 f , when q ≡ 2 or q ≡ 3 (mod 5) with f odd.

As the discussion given in the Section 3, we can find a primitive root µ modulo `t for all t ≥ 1
such that µ ≡ 1 (mod 5). The following lemma give more explicit formula for the q-cyclotomic cosets
modulo 5`.

Lemma 6.1.

(1) If q ≡ 1 (mod 5), then we have that all the distinct q-cyclotomic cosets modulo 5` are given by
C0 = {0}, C` = {`}, C2` = {2`}, C−` = {−`}, C−2` = {−2`}, and Caµk = {aµk, aµkq, · · · , aµkq f−1} for
a ∈ R = {1, 2,−1,−2, 5} and 0 ≤ k ≤ e − 1.

(2) If q ≡ 4 (mod 5) and f is even, we have that all the distinct q-cyclotomic cosets modulo 5`
are given by C0 = {0}, C` = {`, `q}, C2` = {2`, 2`q}, Cµk′ = {µk′ , µk′q, · · · , µk′q f−1}, C2µk′ =

{2µk′ , 2µk′q, · · · , 2µk′q f−1} for 0 ≤ k′ ≤ 2e − 1, and C5µk = {5µk, 5µkq, · · · , 5µkq f−1} for 0 ≤ k ≤ e − 1.

(3) If q ≡ 4 (mod 5) and f is odd, we have that all the distinct q-cyclotomic cosets modulo 5`
are given by C0 = {0}, C` = {`, `q}, C2` = {2`, 2`q}, Cµk = {µk, µkq, · · · , µkq2 f−1}, C2µk =

{2µk, 2µkq, · · · , 2µkq2 f−1}, and C5µk = {5µk, 5µkq, · · · , 5µkq f−1} for 0 ≤ k ≤ e − 1.
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(4) If q ≡ 2 or 3 (mod 5) and 4 | f , we have that all the distinct q-cyclotomic cosets modulo 5` are
given by C0 = {0}, C` = {`, `q, `q2, `q3}, Cµk′ = {µk′ , µ

k′q, · · · , µk′q f−1} for 0 ≤ k′ ≤ 4e − 1, and
C5µk = {5µk, 5µkq, · · · , 5µkq f−1} for 0 ≤ k ≤ e − 1.

(5) If q ≡ 2 or 3 (mod 5) and 2 | f but 4 - f , we have that all the distinct q-cyclotomic cosets modulo 5`
are given by C0 = {0}, C` = {`, `q, `q2, lq3}, Cµk′ = {µk′ , µ

k′q, · · · , µk′q2 f−1} for 0 ≤ k′ ≤ 2e − 1, and
C5µk = {5µk, 5µkq, · · · , 5µkq f−1} for 0 ≤ k ≤ e − 1.

(6) If q ≡ 2 or 3 (mod 5) and f is odd, we have that all the distinct q-cyclotomic cosets
modulo 5` are given by C0 = {0}, C` = {`, `q, `q2, `q3}, Cµk = {µk, µ

kq, · · · , µkq4 f−1}, and C5µk =

{5µk, 5µkq, · · · , 5µkq f−1} for 0 ≤ k ≤ e − 1.

Proof. The methods to prove the above 6 situations are similar, and we will give the proof of the second
situation as a instance. First since µ is a fixed primitive root modulo l such that µ ≡ 1 (mod 5), it is
trivial to verify that C0, C`, C2`, Cµk′ , C2µk′ for 0 ≤ k′ ≤ 2e − 1 and C5µk for 0 ≤ k ≤ e − 1 are q-
cyclotomic cosets modulo 5`. And then we claim that all these cosets are all distinct. If we have that
a1µ

k1 ≡ a2µ
k2q j, where a1, a2, k1, k2 and j satisfy the definitions in (2). Since

gcd(a1, 5`) = gcd(a1µ
k1 , 5`) = gcd(a2µ

k2q j, 5`) = gcd(a2, 5`),

we have that either a1 = a2 or a1 , a2 and both a1 and a2 are not equal to 5. We divide the proof into 2
subcases.
Subcase 1. If a1 = a2, we have that µk1−k2 ≡ q j (mod `) and µ(k1−k2) f ≡ 1 (mod `), therefore φ(`) |

(k1 − k2) f and
φ(`)

f
| (k1 − k2), which indicates that k1 = k2.

Subcase 2. If a1 , a2 and none of them is equal to 5, we have that a1a−1
2 ≡ µk2−k1q j (mod 5`), but

notice that a1a−1
2 ≡ ±2 (mod 5) and µk2−k1q j ≡ ±1 (mod 5), which is a contradiction. Hence the given

cosets are all distinct, and we only need to prove they are all the q-cyclotomic cosets to complete the
proof.

Notice that

|C0|+ |C`|+ |C2`|+

2e−1∑
k′=0

|Cµk′ |+

2e−1∑
k′=0

|C2µk′ |+

e−1∑
k=0

|C5µk | = 5+2e f +2e f +e f = 5(e f +1) = 5(φ(`)+1) = 5`.

Therefore the conclusion holds. �

Theorem 6.1. The irreducible factorization of x5` − 1 over Fq is given as follows.

(1) If q ≡ 1 (mod 5), then

x5` − 1 = C0(x)C`(x)C2`(x)C3`(x)C4`(x)
∏
a∈R

e−1∏
k=0

Caµk(x),

where R = 1, 2, 3, 4, 5.

(2) If q ≡ 4 (mod 5) and f is even, then

x5` − 1 = C0(x)C`(x)C2`(x)
2e−1∏
k′=0

Cµk′ (x)C2µk′ (x)
e−1∏
k=0

C5µk(x),
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(3) If q ≡ 4 (mod 5) and f is odd, then

x5` − 1 = C0(x)C`(x)C2`(x)
e−1∏
k=0

Cµk(x)C2µk(x)C5µk(x),

(4) If q ≡ 2 or 3 (mod 5) and 4 | f , then

x5` − 1 = C0(x)C`(x)
4e−1∏
k′=0

Cµk′ (x)
e−1∏
k=0

C5µk(x),

(5) If q ≡ 2 or 3 (mod 5) and 2 | f but 4 - f , then

x5` − 1 = C0(x)C`(x)
2e−1∏
k′=0

Cµk′ (x)
e−1∏
k=0

C5µk(x),

(6) If q ≡ 2 or 3 (mod 5) and f is odd, then

x5` − 1 = C0(x)C`(x)
e−1∏
k=0

Cµk(x)C5µk(x),

With the irreducible factorization of x5` − 1, we can straightly follow the process given in Section 4
to calculate all the constacyclic codes of length 5`ps over Fq. We list the result as follow.

Theorem 6.2. Assume that gcd(q − 1, 5`ps) = 1, then λ-constacyclic codes C of length 5`ps over Fq

are equivalent to the cyclic codes, i.e., for any λ ∈ F∗q, there exists a unique element a ∈ F∗q such that
a5`ps

λ = 1. Furthermore, the irreducible factorization of x5`ps
− λ over Fq is given by

(1) If q ≡ 4 (mod 5) and f is even, then

x5`ps
− λ = Ĉ0(ax)ps

Ĉ`(ax)ps
Ĉ2`(ax)ps

2e−1∏
k′=0

Ĉµk′ (ax)ps
Ĉ2µk′ (ax)ps

e−1∏
k=0

Ĉ5µk(ax)ps
,

Therefore we have that

C =

Ĉ0(ax)ε1Ĉ`(ax)ε2Ĉ2`(ax)ε3

2e−1∏
k′=0

Ĉµk′ (ax)τk′ Ĉ2µk′ (ax)νk′

e−1∏
k=0

Ĉ5µk(ax)ρk

 ,
and

C⊥ =
(
Ĉ0(a−1x)ps−ε1Ĉ−`(a−1x)ps−ε2Ĉ−2`(a−1x)ps−ε3

×

2e−1∏
k′=0

Ĉ−µk′ (a−1x)ps−τk′ Ĉ−2µk′ (a−1x)ps−νk′

e−1∏
k=0

Ĉ−5µk(a−1x)ps−ρk

 ,
where 0 ≤ ε1, ε2, ε3, τk′ , νk′ , ρk ≤ ps, for any k

′

= 0, 1, · · · , 2e − 1, and k = 0, 1, · · · , e − 1.
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(2) If q ≡ 4 (mod 5) and f is odd, then

x5`ps
− λ = Ĉ0(ax)ps

Ĉ`(ax)ps
Ĉ2`(ax)ps

e−1∏
k=0

Ĉµk(ax)ps
Ĉ2µk(ax)ps

Ĉ5µk(ax)ps
.

Therefore we have that

C =

Ĉ0(ax)ε1Ĉ`(ax)ε2Ĉ2`(ax)ε3

e−1∏
k=0

Ĉµk(ax)τkĈ2µk(ax)νkĈ5µk(ax)ρk

 ,
and

C⊥ =
(
Ĉ0(a−1x)ps−ε1Ĉ−`(a−1x)ps−ε2Ĉ−2`(a−1x)ps−ε3

×

e−1∏
k=0

Ĉ−µk(a−1x)ps−τkĈ−2µk(a−1x)ps−νkĈ−5µk(a−1x)ps−ρk

 ,
where 0 ≤ ε1, ε2, ε3, τk, νk, ρk ≤ ps, for k = 0, 1, · · · , e − 1.

(3) If q ≡ 2 or 3 (mod 5) and 4 | f , then

x5`ps
− λ = Ĉ0(ax)ps

Ĉ`(ax)ps
4e−1∏
k′=0

Ĉµk′ (ax)ps
e−1∏
k=0

Ĉ5µk(ax)ps
.

Therefore we have that

C =

Ĉ0(ax)ε1Ĉ`(ax)ε2

4e−1∏
k′=0

Ĉµk′ (ax)τk′

e−1∏
k=0

Ĉ5µk(ax)νk

 ,
and

C⊥ =

Ĉ0(a−1x)ps−ε1Ĉ−`(a−1x)ps−ε2

4e−1∏
k′=0

Ĉ−µk′ (a−1x)ps−τk′

e−1∏
k=0

Ĉ−5µk(a−1x)ps−νk

 ,
where 0 ≤ ε1, ε2, τk′ , νk ≤ ps, for k

′

= 0, 1, · · · , 4e − 1, and k = 0, 1, · · · , e − 1.

(4) If q ≡ 2 or 3 (mod 5) and 2 | f but 4 - f , then

x5`ps
− λ = Ĉ0(ax)ps

Ĉ`(ax)ps
2e−1∏
k′=0

Ĉµk′ (ax)ps
e−1∏
k=0

Ĉ5µk(ax)ps
.

Therefore we have that

C =

Ĉ0(ax)ε1Ĉ`(ax)ε2

2e−1∏
k′=0

Ĉµk′ (ax)τk′

e−1∏
k=0

Ĉ5µk(ax)νk

 ,
and

C⊥ =

Ĉ0(a−1x)ps−ε1Ĉ−`(a−1x)ps−ε2

2e−1∏
k′=0

Ĉ−µk′ (a−1x)ps−τk′

e−1∏
k=0

Ĉ−5µk(a−1x)ps−νk

 ,
where 0 ≤ ε1, ε2, τk′ , νk ≤ ps, for k

′

= 0, 1, · · · , 2e − 1, and k = 0, 1, · · · , e − 1.
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(5) If q ≡ 2 or 3 (mod 5) and f is odd, then

x5`ps
− λ = Ĉ0(ax)ps

Ĉ`(ax)ps
e−1∏
k=0

Ĉµk(ax)ps
Ĉ5µk(ax)ps

.

Therefore we have that

C =

Ĉ0(ax)ε1Ĉ`(ax)ε2

e−1∏
k=0

Ĉµk(ax)τkĈ5µk(ax)νk

 ,
and

C⊥ =

Ĉ0(a−1x)ps−ε1Ĉ−`(a−1x)ps−ε2

e−1∏
k=0

Ĉ−µk(a−1x)ps−τkĈ−5µk(a−1x)ps−νk

 ,
where 0 ≤ ε1, ε2, τk, νk ≤ ps, for k = 0, 1, · · · , e − 1.

Theorem 6.3. Assume that gcd(q − 1, 5`ps) = 5`, then F∗q = 〈ξ〉 = 〈ξ5`〉 ∪ 〈ξ5`〉ξps
∪ · · · ∪ 〈ξ5`〉ξps(5`−1).

For any λ ∈ F∗q, there exists an element a ∈ F∗q such that a5`ps
λ = ξ j·ps

, where 0 ≤ j ≤ 5` − 1. Then j
can be written as j = y · 5v1`v2 , where v1 = min{1, v5( j)} and v2 = min{1, v`( j)}. And

xn − λ = (x51−v1 `1−v2
− a−51−v1`1−v2

ξy)ps
(x51−v1`1−v2

− a−51−v1`1−v2
δξy)ps

· · · (x51−v1`1−v2
− a−51−v1`1−v2

δ5v1 `v2−1ξy)ps

gives the irreducible factorization of x5`ps
− λ over Fq. Moreover, all the λ-constacyclic codes of

length 5lps and their dual codes are given by

C =
(
(x51−v1`1−v2

− a−51−v1`1−v2
ξy)ε1(x51−v1`1−v2

− a−51−v1`1−v2
δξy)ε2

· · · (x51−v1`1−v2
− a−51−v1`1−v2

δ5v1`v2−1ξy)ε5v1 `v2
)
,

and

C⊥ =
(
(x51−v1`1−v2

− a51−v1`1−v2
ξ−y)ps−ε1(x51−v1`1−v2

− a51−v1`1−v2
δ−1ξ−y)ps−ε2

· · · (x51−v1`1−v2
− a51−v1`1−v2

δ1−5v1`v2
ξ−y)ps−ε5v1 `v2

)
,

where 0 ≤ ε1, ε2, · · · , ε5v1`v2 ≤ ps.

Theorem 6.4. Assume that gcd(q − 1, 5`ps) = 5, then for any 0 ≤ j ≤ 4, there exists an element
a ∈ Fq f ∗ such that a5`ps

ξ j·ps
= ζ j′·ps

. Moreover, each irreducible factor of x5` − ξ j over Fq is of the form

(x51−v1`1−v2
− a−51−v1`1−v2

δiζy′)(x51−v1`1−v2
− a−51−v1`1−v2 ·qδiqζy′q)

· · · (x51−v1`1−v2
− a−51−v1`1−v2 ·qzi−1

δiqzi−1
ζy′qzi−1

),

where j′ = y′5v1`v2 , v1 = min{1, v5( j′)}, v2 = min{1, v`( j′)}, and zi is the least positive integer such that
a−qzi 51−v1`1−v2δiqziζy′qzi

= a51−v1`1−v2δiζy′ .
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For any 0 ≤ i, i
′

≤ 5v1`v2 − 1, we define a relation ∼ to be such that i ∼ i
′

if and only if
a−qm51−v1`1−v2δiqm

ζy′qm
= a51−v1`1−v2δi

′

ζy′ for some nonnegative integers m. It is obvious to see that ∼ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0, 1, · · · , 5v1`v2 − 1} relative to this relation ∼. For any i ∈ S we denote the irreducible polynomial

(x51−v1`1−v2
− a−51−v1`1−v2

δiζy′)(x51−v1`1−v2
− a−51−v1`1−v2 ·qδiqζy′q)

· · · (x51−v1`1−v2
− a−51−v1`1−v2 ·qzi−1

δiqzi−1
ζy′qzi−1

),

by Mi(x), and denote

(x51−v1`1−v2
− a51−v1`1−v2

δ−iζ−y′)(x51−v1`1−v2
− a51−v1`1−v2 ·qδ−iqζ−y′q)

· · · (x51−v1`1−v2
− a51−v1`1−v2 ·qzi−1

δ−iqzi−1
ζ−y′qzi−1

),

by M
′

i (x). Then we have the following corollary.

Corollary 6.1. Assume that gcd(q − 1, 5`ps) = 5. For any 0 ≤ j ≤ 4, there exists an element a ∈ Fq f ∗

such that a5`ps
ξ j·ps

= ζ j′·ps
. Then

x5`ps
− ξ jps

=
∏
i∈S

Mi(x)ps

gives the irreducible factorization of x5`ps
− ξ jps

over Fq. Furthermore we have that

C =

∏
i∈X

Mi(x)εi

 ,
and

C⊥ =

∏
i∈X

M
′

i (x)ps−εi

 ,
where 0 ≤ εi ≤ ps, for i ∈ X.

Theorem 6.5. Assume that gcd(q − 1, 5`ps) = `, then

(1) If q ≡ 4 (mod 5), for any 0 ≤ j ≤ ` − 1, the following equations

j′ ≡ 2 j (mod `) and j′ ≡ 0 (mod 5)

have a unique solution j′ up to modulo 5`. Moreover, each irreducible facotor of x5` − ξ j over Fq is of
the form

(x51−v1`1−v2
− a−51−v1`1−v2

δiζy′)(x51−v1`1−v2
− a−51−v1`1−v2 ·qδiqζy′q)

· · · (x51−v1`1−v2
− a−51−v1`1−v2 ·qzi−1

δiqzi−1
ζy′qzi−1

),

where j′ = y′5v1`v2 , v1 = min{1, v5( j′)}, v2 = min{1, v`( j′)}, and zi is the least positive integer such that
a−qzi 51−v1`1−v2δiqziζy′qzi

= a51−v1`1−v2δiζy′ .

(2) If q ≡ 2, 3 (mod 5), for any 0 ≤ j ≤ ` − 1, the following equations

j′ ≡ 4 j (mod `)
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j′ ≡ 0 (mod 5)

have a unique solution j′ up to modulo 5`. Moreover, each irreducible facotor of x5` − ξ j over Fq is of
the form

(x51−v1`1−v2
− a−51−v1`1−v2

δiζy′)(x51−v1`1−v2
− a−51−v1`1−v2 ·qδiqζy′q)

· · · (x51−v1`1−v2
− a−51−v1`1−v2 ·qzi−1

δiqzi−1
ζy′qzi−1

),

where j′ = y′5v1`v2 , v1 = min1, v5( j′), v2 = min1, v`( j′), and zi is the least positive integer such that
a−qzi 51−v1`1−v2δiqziζy′qzi

= a51−v1`1−v2δiζy′ .

For any 0 ≤ i, i
′

≤ 5v1`v2 − 1, we define a relation ∼ to be such that i ∼ i
′

if and only if
a−qm51−v1`1−v2δiqm

ζy′qm
= a51−v1`1−v2δi

′

ζy′ for some nonnegative integer m. It is obvious to see that ∼ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0, 1, · · · , 5v1`v2 − 1} relative to this relation ∼. For any i ∈ S we denote the irreducible polynomial

(x51−v1`1−v2
− a−51−v1 `1−v2

δiζy′)(x51−v1 `1−v2
− a−51−v1`1−v2 ·qδiqζy′q)

· · · (x51−v1 `1−v2
− a−51−v1`1−v2 ·qzi−1

δiqzi−1
ζy′qzi−1

),

by Mi(x), and denote

(x51−v1`1−v2
− a51−v1`1−v2

δ−iζ−y′)(x51−v1`1−v2
− a51−v1`1−v2 ·qδ−iqζ−y′q)

· · · (x51−v1`1−v2
− a51−v1`1−v2 ·qzi−1

δ−iqzi−1
ζ−y′qzi−1

),

by M
′

i (x).

Corollary 6.2. Assume that gcd(q − 1, 5`ps) = `, then

(1) If q ≡ 4 (mod 5), and j, j
′

is defined as in the first case of Theorem 5.1, then

x5`ps
− ξ jps

=
∏
i∈X

Mi(x)ps

gives the irreducible factorization of x5`ps
− ξ jps

over Fq. Furthermore we have that

C =

∏
i∈X

Mi(x)εi

 ,
and

C⊥ =

∏
i∈X

M
′

i (x)ps−εi

 ,
where 0 ≤ εi ≤ ps, for i ∈ X.

(2) If q ≡ 2, 3 (mod 5), and j, j
′

is defined as in the second case of Theorem 5.1, then

x5`ps
− ξ jps

=
∏
i∈X

Mi(x)ps
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gives the irreducible factorization of x5`ps
− ξ jps

over Fq. Furthermore we have that

C =

∏
i∈X

Mi(x)εi

 ,
and

C⊥ =

∏
i∈X

M
′

i (x)ps−εi

 ,
where 0 ≤ εi ≤ ps, for i ∈ X.

Finally we give all the self-dual constacylic codes of length 5`ps as the end of this section. Since
self-dual cyclic codes of length N over Fq exists if and only if N is even and the characteristic of Fq is
p = 2, as in the general case, we only consider the case of self-dual cyclic codes of length 5 · 2s` over
F2m .

Lemma 6.2. Assume that q ≡ 1 (mod 5). For the q-cyclotomic cosets, one of the following holds.

(1) If f = ord`(q) is even, we have that

C∗0 = C0, C∗` = C−`, C∗2` = C−2`, C∗
µk = C−µk , C∗2µk = C−2µk , C∗5µk = C5µk ,

where 0 ≤ k ≤ e − 1.

(2) If f = ord`(q) is odd, we have that

C∗0 = C0, C∗` = C−`, C∗2` = C−2`, C∗
µk = C−µk , C∗2µk = C−2µk , C∗

5µk′
= C

−5µk′ ,

where {C5µk} = {C5µk′ }
⋃
{C
−5µk′ }, and 0 ≤ k ≤ e − 1, 0 ≤ k

′

≤
e
2
− 1.

Proof.

(1) By the definition of reciprocal coset, it is clear that C∗0 = C0, C∗` = C−`, C∗2` = C−2`, C∗
µk =

C−µk , C∗2µk = C−2µk , thus it remains to prove C∗5µk = C5µk . Let t =
f
2 . Since f = ord`(q), it is trivial to

see that qt ≡ −1 (mod `), and therefore we have that −5µk ≡ 5µkqt (mod 5`). It follows immediately
that C∗5µk = C5µk , for 0 ≤ k ≤ e − 1.

(2) As in the first case, the conclusions that C∗0 = C0, C∗` = C−`, C∗2` = C−2`, C∗
µk = C−µk , C∗2µk = C−2µk

are clear, and now we prove that C∗
5µk′

= C
−5µk′ . To see this, we claim that for any 0 ≤ k

′

1, k
′

2 ≤
e
2 − 1,

C
5µk
′

1
, C

−5µk
′

2
, and {C5µk} = {C5µk′ }

⋃
{C
−5µk′ }. Assume that C

5µk
′

1
= C

−5µk
′

2
for some 0 ≤ k

′

1, k
′

2 ≤
e
2 − 1,

then we have that 5µk
′

1 ≡ −5µk
′

2q j (mod 5`) for some 0 ≤ j ≤ f − 1, which indicates that −µk
′

1−k
′

2 ≡ q j

(mod `). Notice that f is odd, therefore we have that −µ f (k
′

1−k
′

2) ≡ q j f ≡ 1 (mod `) and µ f (k
′

1−k
′

2) ≡ −1
(mod `). It follows that µ2 f (k

′

1−k
′

2) ≡ 1 (mod `), hence φ(`) | 2 f (k
′

1 − k
′

2) and e
2 | k

′

1 − k
′

2. Since by
the condition we have 0 ≤ k

′

1, k
′

2 ≤
e
2 − 1, we deduce that k

′

1 = k
′

2. Then the equation 5µk
′

1 ≡−5µk
′

2q j

(mod 5`) can be reduced to −1 ≡ q j (mod `). However, notice that ord`(q) = f is odd, such a
positive integer j cannot exist, which is a contradiction. According to this, we have that for any 0 ≤
k
′

1, k
′

2 ≤
e
2 − 1, C

5µk
′

1
, C

−5µk
′

2
. By comparing the number of elements, it is trivial to verify that

{C5µk} = {C5µk′ }
⋃
{C
−5µk′ } holds. Then by the definition of reciprocal coset, one immediately get that

C∗
5µk′

= C
−5µk′ . �
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With the same method we can prove the results for the rest of cases. The proofs will be omitted.

Lemma 6.3. Assume that q ≡ 4 (mod 5). For the q-cyclotomic cosets, one of the following holds.

(1) If f = 2t is even, then

(i) when t is even, we have that

C∗0 = C0, C∗` = C`, C∗2` = C2`, C∗
µk = C−µk , C∗2µk = C−2µk , C∗5µk = C5µk ,

where {C
µk′ } = {Cµk}

⋃
{C−µk}, {C2µk′ } = {C2µk}

⋃
{C−2µk}, for 0 ≤ k ≤ e − 1, 0 ≤ k

′

≤ 2e − 1.

(ii) If t is odd, we have that

C∗0 = C0, C∗` = C`, C∗2` = C2`, C∗
µk′

= C
µk′ , C∗

2µk′
= C2µk′ , C∗5µk = C5µk ,

where 0 ≤ k ≤ e − 1, 0 ≤ k
′

≤ 2e − 1.

(2) when f is odd, then

C∗0 = C0, C∗` = C`, C∗2` = C2`, C∗
µk′

= C
−µk′ , C∗

2µk′
= C

−2µk′ , C∗
5µk′

= C
−5µk′ ,

where {Cµk} = {C
µk′ }

⋃
{C
−µk′ }, {C2µk} = {C2µk′ }

⋃
{C
−2µk′ }, {C5µk} = {C5µk′ }

⋃
{C
−5µk′ }, for 0 ≤ k ≤

e − 1, 0 ≤ k
′

≤ e
2 − 1.

Lemma 6.4. Assume that q ≡ 2 or 3 (mod 5). For the q-cyclotomic cosets, one of the following holds.

(1) If 4 | f . Let f = 4t, then

(i) when t is even, we have that

C∗0 = C0, C∗` = C`, C∗
µk′′

= C
−µk′′ , C∗5µk = C5µk ,

where {C
µk′ } = {C

µk′′ }
⋃
{C
−µk′′ }, for 0 ≤ k ≤ e − 1, 0 ≤ k

′′

≤ 2e − 1 and 0 ≤ k
′

≤ 4e − 1.

(ii) If t is odd, we have that

C∗0 = C0, C∗` = C`, C∗
µk′

= C
µk′ , C∗5µk = C5µk ,

where 0 ≤ k ≤ e − 1, 0 ≤ k
′

≤ 4e − 1.

(2) If 2 | f but 4 - f , then

C∗0 = C0, C∗` = C`, C∗
µk = C−µk , C∗5µk = B5µk ,

where {C
µk′ } = {Cµk}

⋃
{C−µk}, for 0 ≤ k ≤ e − 1, 0 ≤ k

′

≤ 2e − 1.

(3) If f is odd, then
C∗0 = C0, C∗` = C`, C∗

µk′
= C

−µk′ , C∗
5µk′

= C
−5µk′ ,

where {Cµk} = {C
µk′ }

⋃
{C
−µk′ }, {C5µk} = {C5µk′ }

⋃
{C
−5µk′ }, for 0 ≤ k

′

≤ e
2 − 1, 0 ≤ k ≤ e − 1.

From the above lemmas, we give all the self-dual cyclic codes of length 5 · 2s` over F2m and their
enumeration in the following theorems.
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Theorem 6.6. Let q ≡ 1 (mod 5), then one of the following holds.

(1) If f = ord`(q) is even, there exist (2s + 1)2+2e self-dual cyclic codes of length 5 · 2s` over F2m , which
are given by (

(x − 1)2s−1
C`(x)ε1C−`(x)2s−ε1C2`(x)ε2C−2`(x)2s−ε2

×

e−1∏
k=0

Cµk(x)τkC−µk(x)2s−τkC2µk(x)ρkC−2µk(x)2s−ρkC5µk(x)2s−1

 ,
where 0 ≤ ε1, ε2, τk, ρk ≤ 2s, for any 0 ≤ k ≤ e − 1.

(2) If f = ord`(q) is odd, there exist (2s + 1)
2+

5e
2 self-dual cyclic codes of length 5 · 2s` over F2m , which

are given by (
(x − 1)2s−1

C`(x)ε1C−`(x)2s−ε1C2`(x)ε2C−2`(x)2s−ε2

·

e−1∏
k=0

Cµk(x)τkC−µk(x)2s−τkC2µk(x)ρkC−2µk(x)2s−ρk

e
2−1∏
k′=0

C5µk′ (x)ιk′C
−5µk′ (x)2s−ιk′

 ,
where 0 ≤ ε1, ε2, τk, ρk, ιk′ ≤ 2s, for any 0 ≤ k ≤ e − 1 and any 0 ≤ k

′

≤
e
2
− 1.

Proof.

(1) By Lemma 6.2, any self-dual cyclic codes of length 5 · 2s` over F2m has the form of(
(x − 1)2s−1

C`(x)ε1C−`(x)2s−ε1C2`(x)ε2C−2`(x)2s−ε2

×

e−1∏
k=0

Cµk(x)τkC−µk(x)2s−τkC2µk(x)ρkC−2µk(x)2s−ρkC5µk(x)2s−1

 ,
where 0 ≤ ε1, ε2, τk, ρk ≤ 2s, for any 0 ≤ k ≤ e − 1. Since each of ε1, ε2 and τk, ρk, 0 ≤ k ≤ e − 1,
has 2s + 1 possible values, we have in total (2s + 1)2+2e self-dual cyclic codes of length 5 · 2s` over F2m .

(2) By Lemma 6.2, any self-dual cyclic codes of length 5 · 2s` over F2m has the form of(
(x − 1)2s−1

C`(x)ε1C−`(x)2s−ε1C2`(x)ε2C−2`(x)2s−ε2

·

e−1∏
k=0

Cµgk(x)τkC−µk(x)2s−τkC2µk(x)ρkC−2µk(x)2s−ρk

e
2−1∏
k′=0

C5µk′ (x)ιk′C
−5µk′ (x)2s−ιk′

 ,
where 0 ≤ ε1, ε2, τk, ρk, ιk′ ≤ 2s, for any 0 ≤ k ≤ e − 1 and any 0 ≤ k

′

≤
e
2
− 1. Each of ε1, ε2,

τk, ρk, 0 ≤ k ≤ e − 1, and ιk′ , 0 ≤ k
′

≤
e
2
− 1, has 2s + 1 possible values, we have in total (2s + 1)

2+
5e
2

self-dual cyclic codes of length 5 · 2s` over F2m . �

The proofs of theorems for the rest of cases are similar, and we will give them without proofs.

Theorem 6.7. Let q ≡ 4 (mod 5), then one of the following holds.
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(1) If f = 2t is even, then

(i) when t is even, there exist (2s + 1)2e self-dual cyclic codes of length 5 · 2s` over F2m , which are given
by (x − 1)2s−1

C`(x)2s−1
C2`(x)2s−1

e−1∏
k=0

Cµk(x)τkC−µk(x)2s−τkC2gk(x)ρkC−2gk(x)2s−ρkC5gk(x)2s−1

 ,
where 0 ≤ τk, ρk ≤ 2s, for any 0 ≤ k ≤ e − 1.

(ii) when t is odd, there exists only one self-dual cyclic codes of length 5 · 2s` over F2m , which is given
by (x − 1)2s−1

C`(x)2s−1
C2`(x)2s−1

2e−1∏
k′=0

C
µk′ (x)2s−1

C2µk′ (x)2s−1
e−1∏
k=0

C5µk(x)2s−1

 .
(2) If f is odd, thenthere exist (2s + 1)3e/2 self-dual cyclic codes of length 5 · 2s` over F2m , which are
given by (

(x − 1)2s−1
C`(x)2s−1

C2`(x)2s−1

×

e/2−1∏
k′=0

C
µk′ (x)τk′C

−µk′ (x)2s−τk′C2µk′ (x)ρk′C
−2µk′ (x)2s−ρk′C5µk′ (x)ιk′C

−5µk′ (x)2s−ιk′

 .
Theorem 6.8. Let q ≡ 2 or 3 (mod 5), then one of the following holds.

(1) If 4 | f . Let f = 4t, then

(i) when t is even, there exist (2s + 1)2e self-dual cyclic codes of length 5 · 2s` over F2m , which are given
by (x − 1)2s−1

C`(x)2s−1
2e−1∏
k′′=0

Cµk(x)τk′′C
−µk′′ (x)2s−τk′′

e−1∏
k=0

C5µk(x)2s−1

 ,
where 0 ≤ τk′′ ≤ 2s, for any 0 ≤ k

′′

≤ 2e − 1.

(ii) when t is odd, there exists only one self-dual cyclic codes of length 5 · 2s` over F2m , which is given
by (x − 1)2s−1

C`(x)2s−1
4e−1∏
k′=0

C
µk′ (x)2s−1

e−1∏
k=0

C5µk(x)2s−1

 ,
(2) If 2 | f but 4 - f , then there exist (2s + 1)e self-dual cyclic codes of length 5 · 2s` over F2m , which are
given by (x − 1)2s−1

C`(x)2s−1
e−1∏
k=0

Cµk(x)τkC−µk(x)2s−τkC5µk(x)2s−1

 ,
where 0 ≤ τk ≤ 2s, for any 0 ≤ k ≤ e − 1.

(3) If f is odd, then there exist (2s + 1)e self-dual cyclic codes of length 5 · 2s` over F2m , which are given
by (x − 1)2s−1

C`(x)2s−1

e
2
−1∏

k′=0

C
µk′ (x)τk′C

−µk′ (x)2s−τk′C5µk′ (x)ιk′C
−5µk′ (x)2s−ιk′

 ,
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where 0 ≤ τk′ , ιk′ ≤ 2s, for any 0 ≤ k
′

≤
e
2
− 1.
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