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Abstract: Let F, be the finite field with ¢ = p* elements, and p;, p, be two distinct prime numbers
different from p. In this paper, we first calculate all the g-cyclotomic cosets modulo p;p5 as a
preparation for the following parts. Then we give the explicit generator polynomials of all the
constacyclic codes of length p; p’,p* over F, and their dual codes. In the rest of this paper, we determine
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1. Introduction

As a generalization of cyclic codes and negacyclic codes, constacyclic codes were first introduced
by Berlekamp in 1968 [3]. Given a nonzero element A in a finite filed F,, a linear code C of
length n over F, is called A-constacyclic if (Ac,-i,co, - ,c,—2) € C for every (co,ci, -+ ,cn-1) € C.
Constacyclic codes over finite fields form a remarkable class of linear codes, as it includes the
class of cyclic codes and the class of negacyclic codes as proper subclasses. Constacyclic codes
have rich algebraic structure so that they can be efficiently encoded and decoded by means of shift
registers. Repeated-root constacyclic codes were a special class of constacyclic codes. Repeated-root
constacyclic codes were first studied by Castagnoli et al. [4] and van Lint [13], and they showed that
repeated-root cyclic codes have a concatenated construction and are not asymptotically good.

Recently, repeated-root constacyclic codes have been studied by many authors. To determine the
generator polynomials of all constacyclic codes of arbitrary length over finite fields is an important
problem. Dinh studied repeated-root constacyclic codes of lengths 2p°®, 3p°, 4p® and 6p° in a series
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of papers [8—11]. He determined the algebraic structure of these repeated-root constacyclic codes over
finite fields in terms of their generator polynomials. In [7], Chen et al. introduced an equivalence
relation called isometry for the nonzero elements of F, to classify constacyclic codes of length n
over F,. They have the same distance structures and the same algebraic structures for belonging to
the same equivalence classes induced by isometry. Furthermore, in [5], Chen et al. considered a more
specified relationship than isometry that enabled us to obtain more explicit description of generator
polynomials of all constacyclic codes. According to the equivalence classes, all constacyclic codes
of length £p* over F,» and their dual are characterized, where ¢ is a prime different from p and
s 1s a positive integer. In 2012, Bakshi and Raka [1] also determined all A-constacyclic codes of
length 2'p*(t > 1,s > 0 are integers) over F, using different methods from Chen et al.. In 2015,
Chen et al. [6] determined the algebraic structure of all constacyclic codes of length 2¢"p* over F,
and their dual codes in terms of their generator polynomials, where ¢, p are distinct odd primes and
s, m are positive integers. In the conclusion of the paper [6], they proposed an open problem to study
all constacyclic codes of length k¢ p* over F,, where p is the characteristic of F,, £ is an odd prime
different from p, and k is a prime different from ¢ and p. Batoul et al. [2] investigated the structure of
constacyclic codes of length 2mp" over F,s with a > 1 and (m, p) = 1. They also provided certain
sufficient conditions under which these codes are equivalent to cyclic codes of length 2mp” over F .
Sharma [16] determined all constacyclic codes of length £'p* over F,- and their dual codes, where ¢, p
are distinct primes, ¢ is odd and s, ¢, r are positive integers. In 2016, Sharma et al. [17] determine
generator polynomials of all constacyclic codes of length 44" p" over the finite field IF, and their dual
codes, where p, ¢ are distinct odd primes, g is a power of p and m, n are positive integers. Working in
the same direction, Liu et al. obtained generator polynomials of all repeated-root constacyclic codes
of length 3¢p* over F, in [14], where € is an odd prime different from p and 3. In 2017, Liu et al. [15]
explicitly determine the generator polynomials of all repeated-root constacyclic codes of length nfp*
over I, and their dual codes, where ¢ is an odd prime different from p, and 7 is an odd prime different
from both ¢ and p such that n = 2k + 1 for some prime 4. In 2019, Wu and Yue et al. [19,20] explicitly
factorize the polynomial x" — A for each A € F, . As applications, they obtain all repeated-root A-
constacyclic codes and their dual codes of length np*® over F,.

In this paper, we answer the question of B. Chen, H. Dinh and Liu. That is we determine all the
constacyclic codes of length p, p}p* over F,, where p is the characteristic of F,, p; is an odd prime
different from p, and p; is a prime different from p, and p. We give the explicit generator polynomials
of all the constacyclic codes of length p, p)p* over F, and their dual codes, and determine all self-dual
cyclic codes of length p; p,p* and their enumeration.

The remainder of this paper is organized as follows. In Section 2 we give a brief background on
some basic results which we need in the following parts. In Section 3, we calculate the g-cyclotomic
cosets modulo p;p5 as a preparation for giving the generator polynomials of constacyclic codes of
length p,pip* over F,. In Section 4, we first describe a general method to obtain the generator
polynomials of constacyclic codes, and then with this method and the results of g-cyclotomic cosets
modulo p; p5, we give the explicit generator polynomials of all the constacyclic codes of length p; p, p*.
And in Section 5, all the self-dual cyclic codes of length p;p’,p°® over F, are given. In the last section,
as an example we calculate the case of length 5¢p*, where ¢ is a prime different from 5 and p.
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2. Preliminaries

In this section, we first review some basic results in number theory and finite fields, which we will
in the following parts, and then give a brief introduction to the A-constacyclic codes. For a positive
integer n, we denote by Z, the ring of integers module n throughout this paper. Let p be a prime
number, and g be a power of p. We denote by IF, the finite field with g elements, and fix a generator
element £ of the multiplicative group F, that is, F, = (£). In this paper, we mainly deal with the
repeated-root constacyclic codes of length p; p,p* over F,, where p; and p, are two distinct odd prime
numbers different from p. For any positive integer d and i = 1,2, we write f;; = ordp:;(q) for the

d
multiplicative order of ¢ modulo p?, and set g;, = M, where ¢ is the Euler’s phi function. When
d =1, we write f; = f;; and g; = g, for simplicity. lzlgr i = 1,2, there are positive integers u; and w;
such that ¢ = 1 + p;'w; and p; ¥ w;. Following the lifting-the-exponent lemma, we immediately have

0,d—u;
fia = fip O,

Lemma 2.1. [12] Assume that r is a primitive root of the odd prime p and (r + tp)P~! is not congruent
to 1 modulo p*. Then r + tp is a primitive root of p* for each k > 1.

Lemma 2.2. [18] Let n > 2 be an integer, and A be a nonzero element in F, with multiplicative order
k = ord(A). The binomial x" — A is irreducible over F, if and only if

. . o -1
(1) Every prime divisor of n divides k, but not qT;
(2) If4 | n, then4d|(g—1).

Let A be a nonzero element in F,. A A-constacyclic code of length 7 is a linear code C such that
(co,c1,+* ,cu-1) € C implies (Ac,-1,co, - ,cu—2) € C. This definition is a natural generalization of
cyclic code and negacyclic code. A A-constacyclic code C of length n over F, can be regarded as
an ideal (g(x)) of the quotient ring IF,[x]/(x" — A), where g(x) is a divisor of x" — A. Let C be a A-
constacyclic code of length n over F,, then the dual code of code C is given by C* = {x € F, :
x-y = 0,Yy € C}, where x - y denotes the Euclidean inner product of x and y. If C is generated by
a polynomial g(x) satisfying g(x) | x" — A, and h(x) is given by h(x) = ’;%, then A(x) is called the
parity check polynomial of code C. It is a classical result that the dual code C* is generated by A(x)*,
where h(x)* = h(0)~! x4 p(x~1) is the reciprocal polynomial of A(x). The code C is called to be a
self-orthogonal if C € C* and a self-dual code if C = C*. For self-dual cyclic code, a well-known
result states that there exist self-dual cyclic codes of length n over F, if and only if 7 is even and the
characteristic of F is p = 2.

There are g — 1 classes of constacyclic codes of length n over F,. However, some of them are
turned out to be equivalent in the sense that they have the same structure. To be explicit, two elements
A, p € F, are called n-equivalent in FJif there exists a € F; such that a"1 = p.

Lemma 2.3. [5] For any A, u € F;, the following four statements are equivalent:
(1) A and p are n-equivalent in F,.
(2) e (g,

—1,\d _ q-1
(3) (A w* =1, whered = Zedng=D)"
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(4) There exists an a € PZ such that
@o : Fy[ X1/ (X" = ) = F[X]/(X" = 2); f(X) > f(aX)

is an Fy-algebra isomorphism. In particular, there are ged(n, g — 1) n-equivalence classes in F.

We conclude this section with the introduction of g-cyclotomic coset which is important in the
computation of constacyclic codes. Let n be a positive integer relatively prime ton. For0 < s <n -1,
the g-cyclotomic coset of s modulo 7 is defined to be

Cy=1{s,5q, -+ ,sq""},

where n; is the least positive integer such that s¢™ = s (mod n). It is obvious to see that n; is equal
to the multiplicative order of g modulo m. Notice that if sg* = s’¢” (mod n) for some positive
integers a, b, then

5= Sqa+(ns—a) = S/qb+(nx—a) (mod I’l)

It follows that for 0 < s,8" <n—-1,C; N Cy # 0 if and only if C; = Cy. Therefore the g-cyclotomic
cosets give a classification of the element in Z,.
If @ 1s a primitive nth root of unit in some extension field of F,, then the polynomial

Cux) = Jx—ah)

ieCy

is exactly the minimal polynomial of a* over F,, and

X'—1= H C,(x)

gives the irreducible factorization of x" — 1 over IF,, where s runs over all representations of distinct
g-cyclotomic cosets modulo n. We call C(x) the polynomial associated to C.

Let C; = {s,sq,---,sq™ '} be any g-cyclotomic coset modulo n. The reciprocal coset of C; is
defined to be

C:={-s,—5q, - ,—sq"'}.

We say that the coset C; is self-reciprocal if C; = C;. One can check that the polynomial C;(x)
associated to the reciprocal coset C; is exactly the reciprocal polynomial of C(x).

3. g-cyclotomic cosets modulo p p7

The g-cyclotomic cosets modulo p;p5 plays an important role in determining all the constacyclic
codes of length p;p,p°. In this section we consider a more general case that classifies all the g-
cyclotomic cosets modulo p’l1 ptzz, where p; and p, are two distinct odd prime numbers not dividing g,
and 1, t, are positive integers.

Let ¢ be a prime number not dividing ¢, and u be a generator of the cyclic group Z;. It is obvious
that all the g-cyclotomic cosets modulo ¢ are given by Cy = {0} and

_ -1
Cp = {5, ilfq, - )b g™y, 1<k < .
ord.(q)
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For different odd prime numbers p; and p,, we claim that there exists an integer y; satisfying that:
(1) p; is a primitive root modulo pf for all d > 1; and
(2) 1 =1 (mod py). .
We begin with a random primitive root 77'1 modulo p;. If pf 1 n’lp T -1, weletn = 7)’1, otherwise
’ plfl_
we let 7y = n, + p;. Itis trivial to see that n; satisfies the condition gcd(nlp—ll,p]) =1. Letyu; =

m + (1 —n)p™", then

==+ (U =n)pP T 1=~ 1 (mod pd).

It follows that | |

pPi1— P1—

T m-

L p) = ged(———,p) =L
P1 D1

ged(

Following Lemma 2.1, y; is a primitive root modulo p‘f for all d > 1 such that y; = 1 (mod p,). By
the symmetric argument, we can find an integer u, satisfying that

(1) p» is a primitive root modulo p¢ for all d > 1; and

Q) pu2 =1 (mod py).

We fix such a pair of integers w; and u,.

Theorem 3.1. Let p, and p, be two different odd prime numbers not dividing q, and t, and t, be

positive integers. Then all the distinct g-cyclotomic cosets module p'! p’z2 are given by

. ki, koo ri o ki, ka1 T ki ko 1112 cpop
Cuf'ﬂ’?p'{‘p? = 1y Py Py I MY DY Py Y Py Py g
JorO<r <t,0<n <0<k <giy-r—1and0 < ky < gr4,—r, - gcd(f14,-r\> fr-r,) — 1, Where
Crl,rz = Ordpflrrl Przzfrz (Q) = lcm(fl ,t|—r1’f2,12—r2)'

Proof. First we prove that the given g-cyclotomic cosets are all distinct. If C x, 1, » = C «
Ky Hy Py Pr ',y

some O < ry, r; < tla 0 < Iy, ré < t27 0 < kl’ ki < gl,[1—r1 _1 ando < k2’ ké ng,tz—rz‘ng(fl,ll—rl9f2,[2—l’2)_1’
then there exists a positive integer m such that
Kok o om
py' ) py py = ey pRg” (mod pil pf). 3.1)
Since uy, 4, and g are relatively prime to PT ptzz, clearly we have r; = r| and r, = r}, and Eq (3.1) can

be reduced to
ky m

KK “r _tyer
'y = ' pig" (mod pii " p).
Remembering that y; = 1 (mod p;) and u, = 1 (mod p,), then by the Chinese remainder theorem,
we have

W =g (mod pi" (3.2)
K=" (mod pi) (3.3)

Equation (3.2) implies that

(lkl—k’l)fl,rl—rl = qm'-f“rfl =1 (mod ptll—rl)’
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and therefore ¢(p’1‘_") | (ki = k) fi4-r,- Since O < ki, k| < g1,,-,, — 1, one must have k; = k. Notice
that k; = &/ indicates that ¢ = 1 (mod pt1 ™), then fi,,_,, | m, which together with Eq (3.3) leads to

f2,t2—r2 f2,t2—r2
ged(f14-r»> f2r-r,) =g gcd(fis-r» f2.tr-12) =1 (mod ptzz_rz)'

(K, —k2)-

2

f2,t2—l’2
ng(,fl,t] —rys f2,t2—r2)

Thus ¢(p5 ™) | (k) — ko) -

have k, = k.
On the other hand, there are in total

. Slnce 0 < k2’ ké < gz,tz—rz : ng(fl,tl—rl’fz,fz—I’z) - 1’ we

o(p!™™) ¢(pt2 "
Z Z f 1 f ' ng(fl,n =TI fZ,lz—rz) ’ lcm(ﬁ,ll—rl ’ f2,tz—r2)
1,t1—r1 2,t-r

0<r1 <t O<r2<t2 (3.4)

= > D e = ppt

0<r1<t; 0<r<n

elements in these g-cyclotomic cosets, therefore they are all the distinct g-cyclotomic cosets

module p'' p3. |

In particular, when #; = 1 and #, = 1, the classification of the g-cyclotomic cosets modulo p;p} is
given as follow.

Corollary 3.1. Let the notations be as above. Then all the distinct g-cyclotomic cosets modulo p,p),
are

. oord i r(g)-1
C kl kz 7 = {/11 /12 Pz’.ul ,uz qu’ ' ’ﬂ1 ﬂzp qO e ! }

JorO<r<t-1,0<k <g1—-1and0 <k, < gy gcd(fi, fosr);

Cutpt, = WA D5 1 PYGs -+ S 11 Pog ")

forO<k<g —1;and

Cott oy, = W5 PADY S PID3G -+ o 15 p1phg™ ™)

forO<r<t—-1and0<k' <gy;,,—1.

Corollary 3.2. Let the notations be as aboved. Then the irreducible factorization of x"'72"" — 1 over F,
is given by
t—1 g1—1 g2 ged(f1,f2,-r)—1 g1—-1 t—1 &2,-r—
piphr’ _ 1 — P’
e = (11T e Tloner T TT e

r=0 k=0 k=0 r=0 k’'=
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4. Constacyclic codes of length p, p} p* with their dual codes

In this section, we will determine the generator polynomials of all constacyclic codes of length
p1p5yp° over F, and their dual codes. For 4 € F;, we identify a A-constacyclic code of length p;p)p°
with an ideal (g(x)) of the quotient ring F,[x]/ (x1P2P" — ), where g(x) is a divisor of X1 PP — . By
Lemma 2.3, there are ged(pip,q — 1) p1p,p’-equivalence classes in F;, which corresponds to the
cosets of (fp‘pﬁ) in F, = (&).

Before doing the explicit computation we present a general method to factorize x* — A. Let g = p*
for k > 0, and n = pp{' --- p, be the prime factorization of n. Assume that p{' ---py' | g — 1, i.e.,
vp(g—1)>e;fori=1,---,m. In this case we have

em

P; — <§> _ <§pil“.pf’lln> U <§p‘l’l...pfnm >§pe ‘U <§p1 pl! >§pe(pilmpf’:ln_1).
For A € (¢ P )¢ where 0 < j < py' -+ pi — 1, there exists an element a € F, such that
a'A=ET

Vi

We first factorize x" — &7°,0 < j < p{'--- pi — 1. Notice that j can be written as j = y - p]'--- p,»,
where v; = min{e;, v,,(j)}. Then we have

€1 pf?m vm
m ,
V1 vm e

N g — (PP ey o\ — g xl— Pl _ 1yP
x' =& (x & ) &P (( & ) D

Since p}' -+ pir | g— 1,8 = €1 7" is a primitive p}' - - - p)»-th root of unit. Then

V1., em—vm “VI.. . em—vm €1Vl .. em—vm
P “Pm

g = g}p(xplg—’" — 1 (X”‘g—'" )P (D - _5p P =1y

"1” em ¢ °17v1 em—vm

- &y (xpl P SEY (T ”’1_1§y)p

q-1
V]

. y+l.7""n
ForO<i<pl---py—1,6&=¢& 7 andthen we have

em—vm

(xP'

A -1
ord(§'¢") = =
gedlg = Ly+i--w=m)
and { {
q- CI -
——— =ged(g-1,y+i-——
ord(en) ST
For each p; | p{'"™" -+ piw~"", we have that e, > v; and v; = v, (j), thus p; 1 y. Since v, (g—1) > ¢; >
Vis Di | —1 which indicates that p; ¢ y+l ; and p; | l—l Moreover if 4 | p&™"" - pin~n.
p‘ll ,p;;tm
then 4 | Pil .- p | g — 1. Hence by Lemma 2.2 each xi' =" — & is irreducible over F,.
Notice that "1 = £/7°, then the irreducible factorization of x* — A follows immediately:
V-1 = (xpf R A ""éry)p PR e T ‘m(géry)p
O A e T Pl =1 gnyp’

We summerize the above discussions into the following theorem.
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e €1

Theorem 4.1. Let p, pi,- -+ , p be distinct prime numbers. Let ¢ = p* and n = p Py P, where
k,e, ey, -, e, are positive integers. Suppose that for 1 <i <m, v,(q—1) > e;. Then for any A € F,,
there exists an element a € F, such that a"1 = EP,0<j< Py - pw. Furthermore, writing j in the
form j=y-p\'---pu, where v; = min{e;, v,,(j)}, then

€17Vl ,em—vm _ 81V em—vm e €17Vl em—vm S b Em vm
xn _ /l — (xpl “Pm —a Py Pm é:y)p (Xpl “Pm —a Py é:y)p
e)-vy em—v, e)-v| em—v, vy v,
(P pm " o gmPrPa " §P '~pm’”—1§y)p“’

gives the irreducible factorization of x" — A over F,,.

em

Now we turn to the case that p{' - ' q — 1. Sinve ged(p}' -+~ pi',q) = 1, thus there exists a
least positive integer d such that p{' - - - | ¢?-1. By the lifting-the-exponent lemma, if d’ is the least
positive integer such that p; - - p,, | g —1,thend = d'p’ P -+ pyr, where v; = max{e; — vpl.(q - 1),0}.

Let A be a nonzero element in F,. To obtain the irreducible factorization of x" — A over F,, we first
consider the factorization over F «. By Theorem 4.1, there exists a € F such that a"1 = ¢ "0<j<

py - pw — 1. Writing jas j=y- p}'--- p,, where v; = min{e;, v,,(j)}, then

em

€17Vl ,em—vm _ TV, em Vl., em—vm _ v é’m vm
xl’l _ /l - (xpl Pm —a Py ' é’))p ( P Pm —a Py édy)p

€17V, em~—Vm 17Vl . em—vm

— ep¥m_1 ¢
(xpl “Pm —a Py *Pm 5171 pm gy)p ,

gives the irreducible factorization of x" — A over F,«, where § is a primitive p}' - - - p,r'-th root of unit.
Hence each irreducible factor of x" — A over F, is of the form

(xp‘i"I’Vl ...pfnm*vm _ a_p‘l’l Vi, L’m vm 51(},)[) ( pl Vi, fr’lﬂ vm _ a_qpilfvl mp;’nm*"m 5qi§qy)[78 .
eV, —vm i V... ighi™ Zimlpe
()Cpl pm —a q p] pm 5 q é‘yq )17 ,
. .. . _ i Sl em—vm i-Gfi ey-gli _ 1 fm vm
where z; is the least positive integer such that a=7'P1 “Pm "5 YT = 7P o'l

Now we determine the generator polynomials of all constacyclic codes of length p; p5p* and their
duals explicitly. We decompose the problem into three cases.

4.1. ged(g -1, piphp’) =1

As ged(g—1, p1php*) = 1, all constacyclic codes of length p; p/, p* are equivalent to a cyclic code. By
the factorization of x”'72”" — 1 given in Corollary 3.2, we have the following result. For any polynomial

F=ay+ajx+---+a,x", a, #0,

we set F = a;'F to be the monic polynomial associated to F.

Proposition 4.1. Assume that gcd(g — 1, pip,p°®) = 1. Then any nonzero element A in F, is p;p,p*-
equivalent to 1, that is, there is an element a € FZ such that a’'P>"' 1 = 1. Furthermore, the irreducible

. . ! s . .
factorization of xP'\P2P° — A over F, is given by

-1 gi1—1 824-r ged(f1, fr0-r)—1 g1—1 t—1 &2-r—
- - N s
xPP — A = Colax)? | | | | | | Cﬂklﬂkzp (ax)” | |Ck (ax)? | | | | Ipr(a)c)”.
2 2
=0 k;=0 k=0 r=0 k'=
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Therefore all the constacyclic codes of length p,p,p* are

t— —1 82— ged(f1,f2,~r)—1 t—1 824-r—1
— W kot
C =|Coylax)" | | | | | | C . (ax) s | | xz(ax) i | | | | ¢t (ax) G
1 2
r=0 k=0 kr=0 r=0 k'=0
where O < u,v P r,W’ukptz X ppr S < p®, with duals
=1 g1-1 82,r ed(fi o)1 @1-1 )
- — S_ -~ — — P =W k.t
ct = (%mlmpu|||| || q*@%mlm wa4| gmlm )
r=0 k1=0 k=0
t—1 82— =1 s
oy -1 pi_x‘uk’p r
, 2 P17y
1_[ 1—[ Ct pipg (@)
r=0 k'=0

4.2. ged(qg — L, pipyp’) = pip)
For this case, since p; plg — 1, the following proposition follows straightly from Theorem 4.1.
Theorem 4.2. Assume that gcd(q — 1, p1p5p*) = pip5. Then for any A € F;, there exists an element

a € F, such that a"'P"" A = €7, 0 < j < p\ph— 1. Writing jas j = y- p\' py’, where v = min{1,v,, ()}
and v, = min{t,v,,(j)}, then
;s 1-vy t=vy 1-vy t=vy s 1-vy t=vy 1-vy t=vy 5
xplpzp — /l — (.xpl P, — _pl P, fy)p (xpl P, — a_pl Py 65)’)[7

1-vy  t=v

1-v — ) vy v <
e gt 25p1‘p22—1§y)p
gives the irreducible factorization of x"'7>"" — X over F,. Therefore all the A-constacyclic codes of
length p\p’,p* and their dual codes are given by
1-vy vy R S Tl U u 1-vy t-vy R S B ) u
C — (xpl pz —a Py Py é‘)) l(xp| Py —a Py Py 5§Y) 2

1-vy t-vp

1-vy t-vy
(.xpl 12 — a_pl

py 5Py é:y)”p‘{‘ 2 ) ’
and
n 1=vy t=vy 1-vy t=vy _ S_u 1-vy t-vy —v] t=vy _ —u
C — (xpl 12 — apl P, é‘f y)P l(xpl 123 — apl 123 6 é‘_‘ )’)[7 2
I-vy t-vy 1 =) vy v
c(xPr P —apl P P\ py? f—y) pllpzz)’
where O < uy,uy, -+ , Uy < p’.
I a8\ — ol
4.3. ged(g — 1, pipip’) = p) for some O <r <t

In this case, for any d > 1 we have f,, = Z“‘X{Od 7 and f = lem(fi, f,) is the least positive integer
such that ¢/ = 1 (mod p, p5). By the bais results of ﬁnite fields, there is a primitive element { in F;f

;_
such that & = ¢ = 7+a+-+4"" Then we have
Fy = (€)= (€7) U(EmEN U U (grygre
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and
F;f =)= <§p1p’2> U <{p'ptz>é‘ps U..--U <{PIP;>€‘(P1P’2—1)])S‘

By the assumption that plpf2 | qf - 1 and v, (q —1 1) = 0, v,,(¢g — 1) = r, we have that plplz—r |
(1+¢+---+¢'™"). Therefore &2 = ¢ri(t+a+-+4") ¢ (z7r2). Furthermore, for 0 < j < py — 1,
there exists some 0 < j < pyp} — 1 such that jp*(1 + ¢+ --- + ¢/™') = jp* (mod p,p)), that is,
&IP* e ()T P’ Hence we have the following theorem.

Theorem 4.3. Assume that gcd(qg — 1, p1pip*) = p5, 0 <r < t. Forany 0 < j < pl — 1, there exists an
element a € F*, such that aP\Ppr EP = 1P Moreover, each irreducible factor of xP'P2 — &/ over E, is
of the form
l-vy t-wp l-vy t=vp . l-vy t-wp l-vy t-np . ,
()Cpl Py — a_p] Py 6’{)’ )()Cpl Py — a_pl Py 'qélqé/y q)

1-vy t=vy )

I-vy t=v 1
R 6 B B A B

_qzi—léiqzi—lgy/qzr )
where j = y'p|'py, vi = min{l,v, (j)}, v2 = min{t,v,,(j")}, and z; is the least positive integer such

i A=vp t=vy o Lo ’ oz I-vy t=vo .
that a 7' P2 5”]’{)"]’ =aPr " 5’é’y'

For any 0 < i,i < p]'p}* — 1, we define a relation ~ to be such that i ~ i if and only if

I-vy t-v . ,
a "py Py g

m

Ly t=vp 7 . . . . .
= alr P2 7¢" (" for some nonnegative integers m. It is obvious to see that ~ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0,1,---, p\' piz — 1} relative to this relation ~. For any i € S we denote the irreducible polynomial

I-vy t-v 1-vy t-v .y I-vy t-v 1-vy t-v . ,
(Xpl lpz ’ —aPh lpz zélgy )(Xpl lpz : —aPh 11’2 2'45’4§y f])

I-vy t-vy 1-vy t=v 1

e (xpl Py —_ a_pl P, z,qll‘_léiqzl‘—lgquzi_ )’

by M;(x). Then we have the following corollary.
Corollary 4.1. ASSWties thast ngqu— 1, piphp*) = ph. Forany 0 < j < p, — 1, there exists an element
ac IF;_f such that a?'P2P &P = 7P Then
xPpapt gjp" — Mi( x)px
gives the irreducible factorization of x"'P2P" — EP" over IF,. Furthermore we have that
C= [n M,-(x)“"],
i€S

and

ct= [1_[ M;‘(x)l’““f],

ieS

where O < u; < p, fori € S.
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4.4. ged(q - 1, pipsp’) = pip5 for some O < r <t

The same argument as in the last section can be applied in this situation, only noticing that the least
positive integer f such that ¢/ = 1 (mod p,p})is f = fo, = py™“"". We find a primitive element ¢

/o i
inF,, such that £ = [T = f1rar+d”™ then

F, =& = (EP1P2Y U (EPPNEP" U - . U (EPPRYEPDP

and
sz ={) = <{p1p‘2> U (g’P'P’z)é‘P’v U---U <§p|p’2>§(p1p’2—1)p“_

By the assumption that p;p5 | ¢/ — 1 and v,,(¢ — 1) = r, we have that p5" | (1 + g+ -+~ + ¢/™"), and
Enp = pnrarrd™h e (pmnhy Furthermore, for 0 < j < pyph—1, there exists some 0 < j < pyp)—1
such that jp*(1 + g + -+ + ¢/™') = jp* (mod p,p)), that is, &7 € (PP P Hence we have the
following theorem.

Theorem 4.4. Assume that gcd(q — 1, pi1p,p°) = pi1ps for 0 < r < t, then for any 0 < j < p’ — 1, there
exists an element a € F*, such that a?'P:V'€77" = [7'P'. Moreover, each irreducible factor of xP'P> — &I
over F, is of the form
1-vy t-vp _ l-vy t-vy . o 1-vy t-vp _ 1-vy =vy . ’
()Cpl Py —a Py Py 614‘} )(Xpl Py —-a Py Py qélqu q)

1-vy t=vy 1-vq

_ 1=V
...(xl’l Py " — g P P2

,qz,-fl 6iqz;71 é’y,qZFl ),

where j = y'p\'py, vi = min{l,v, (j)}, v = min{t,v,,(j’)}, and z; is the least positive integer such

~ip, Py siqh gy i Py sy
that a?'Pr P2 "' YT =gl P2 6.

For any 0 < i,i < py'py — 1, we define a relation ~ to be such that i ~ i if and only if

m V1

_ vy t=v) =~ m s om I—vy t=vp s . . . . .
a P PG = ghr P2 "¢ Y for some nonnegative integers m. It is obvious to see that ~ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0,1,---, p|'py’ — 1} relative to this relation ~. For any i € S we denote the irreducible polynomial
I-vy t-vy _ l-vy t=vp . , l-vy t-vp _ 1-vy =vy . ,
(Xpl Py —a Py Py 6’{)’ )(xpl Py —a Py Py qélqé/y q)

1-vy t=vy )

I-vy t=v 1
cee(xPr P2 g P

_qzi—léiqzi—lgyzqzr )’
by M;(x). Then we have the following corollary.

Corollary 4.2. Assume that gcd(g — 1, pip,p°®) = pip5 for 0 < r <t Forany0 < j < p) — 1, there
exists an element a € F,, such that aP P g = (7P Then

KPP gij _ 1—[ Mi(x)""
i€Z
gives the irreducible factorization of x'P2P" — &IP" over F,. Furthermore we have that
C= [n M,-(x)“"],
i€S
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and

¢t = [l_[ Mf(x)ﬁ”-"fJ ,

ieS

where O < u; < p’, fori € S.
5. All self-dual cyclic codes of length p, p’p* over F,

Based on the results in the last section, we now give all the self-dual cyclic codes of length p; p’,p*
over F, and their enumeration. It is a well-known conclusion that self-dual cyclic codes of length N
over I, exists if and only if N is even and the characteristic of I, is 2. Therefore we only consider the
case of self-dual cyclic codes of length p;p, - 2° over Fx.

Let x"722 —1 = (x"P2 = 1) = fi(x)> -+ fu(x)> By ()% - - - B (X)* BE(x) - - - h;,(x)* be the irreducible
factorization of x”'%>" — 1 over [F,, where each f;(x) is a monic irreducible self-reciprocal polynomial
for I <i < n, and h(x) is the reciprocal polynomial of /;(x) for each 1 < j < m. Now, given a cyclic
code C = (g(x)) of length p, p52°, it can be written in the form

g(x) = L™ -+ [T () -+ (X)) - By ()

where 0 < 7;,0;,0; <2°forany 1 <i <nand 1 < j < m. Then the reciprocal polynomial 4*(x) of the
parity check polynomial /(x) of C is

I’l*(x) — Jc](x)2“—‘l'1 .. ﬁl(x)zf_r,,hl(x)Z“—(rl . hm(x)zf—a-mha;(x)zf_(jl L h;(x)T_ém‘

Therefore it is obvious to see that the following theorem holds.

Theorem 5.1. With the above notations, we have that C is self-dual if and only if 2t; = 2° for 1 <i < n,
and6;j+o;=2"for1 < j<m.

Recall the irreducible factorization of x”'72”" — 1 given in Corollary 3.2. Now we determine for each
irreducible factor its reciprocal polynomial.

Lemma 5.1. Let the notations be defined as Corollary 3.1. Then one of the following holds.
(1) If both f, and f, are odd, then we have that

C, = Cy, C:,l(p,Z:C i, C =C o

_ ’ _ K r ki k = C ki ko e
Hipy? IJ]; plp; Hy P1P;y° ”11/“12217; —Hy My 175
(2) If f1is odd and f, is even, then we have that

Co=Cy, C",, =C_u,, C Cv v =C i n,.
0 e di 2 pr T

Py S piph T Cﬂﬁ'plpg’
(3) If fi is even and f is odd, then we have that

Cy=Cy, C',, =Cp, C* =C_w C =C Kk,
0 0> ‘ull(ptz mipy° ‘ul;plp'z —H, Pll’;’ lull{l#;{zp; _ﬂllﬂzng
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(4) If both f, and f, are even ,then we have when v,(f) # v2(f>),

* * * *
C0=C0,C#k, Cupy, C°0 s C o, =C ks
1

C kK r
M Py M plp Hy P1Py “ 'uz pz —Hy Hy Dy
when vo(f1) = va(f2),
CS = Co, C:k =Ciy C*k, . C*k1
1

1Py ik pypt = Cué'plpz W12 pr = C—uflﬂizpﬁ'
Proof. First it is trivial that the reciprocal of Cy is always itself. For Cﬂk i notice that C;kp, = Cp,
2
if and only if the congruence equation —,u1 Py =— ’f psq* (mod p;p)) is solvable. Since the equation
is equivalent to —1 = ¢* (mod p}), then the condition holds if and only if f; = ord, (¢) is even. In

the similar way we can check that C;k,p ” = Cup,p, ifandonly if fo,_, = f5 pm”xm’ "} is even. Notice
1

that by assumption p, is odd, therefore the condition holds if and only if f, is even. For C e
Hy By Py

consider the congruence equation —,u1 ,u2 ph = ,u1 ,u2 phq* (mod p;p}). It is equivalent to that —1 = g*
(mod p;)and —1 = ¢* (mod p5") holds simultaneously. This requires not only both f; and f; are even,

but also ged(f1, for-r) | % And it is trivial to check that the last condition holds if and only if

va(f1) = valfo-r) = va(f2). m|

Based on the above lemma, we now determine all the self-dual cyclic codes of length p, p}, and their
enumeration.

Theorem 5.2.
(1) If both f, and f> are odd, then there exist (2° + 1)/’1/722- self-dual cyclic codes of length p,p,, over Fy,

which are given by

S= =T d —r)—1 Vi ko
((x—l)2 T gy TR =27 C i (0 05C e (x)

81 _ W 82,1—r 8d(f1./2,1—1) 1 25-x 1
T G @A TS sy gy M (00 )
-1)
(2) If fi1 is odd and f, is even, then there exist (2° + 1) self-dual cyclic codes of length p,p’, over

Fsr, which are given by
5= ki ko
((x _ 1)2 1 Hkl I—Igzr r 86d(f1,f2,0-r)-1 C k1 kz r(x) ul uz po o kz (x) H11H22P2
1
H

W kot ot g gcd(fi,fo—r)—1 s=1
Hk 0 C,ukp’ (x) “1"2C_#§pt2(x) “11’ H 21 r 12e-)=1 A k'plpg(x)z )

(3) If fi is even and f, is odd, then there exist (2° + 1) self dual cyclic codes of length p,p’, over
Fom, which are given by

1 1 w 1 K ko Vi ky o,
(x— 1)2 H Hgl sz Cu’f‘péz (%) ul EXYol lfl o (x) b
82, 1—r 8ed(f1-12 1—) —x
gy b c )23 l Hk'trft' 1 Ct pips () neC, A )25 iy
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!

P
(4) If both fi and f, are even ,then we have when v,(f;) # v,2(f2), there exist (2° + 1) :
cyclic codes of length p,p, over Fon, which are given by

self-dual

SYSTIGE YR

((x S Dl N (S § s P

1 2s-1 = 82,0-r £ed(f1,f2,-r)— 1 2s-1
Hgl t( ) I—I k/2t0 1502, /l plp( ) )

YRk ”kl W2
C ko (x) "0 ZC_ Ky kz r('x) 12
Hy Hy Py Hi K

When vy(f1) = v2(f2), there exist only one self-dual cyclic codes of length p,p’, over Fon, which is given
by

/1 52 ph
81— 1 251 yyi—1 1782.1-r 8eA(f1,f2.0-r)—1 2s-1
H ,ufp; (X) Hr:O k=0 C/JIZ(IPIP; (.X) ) .

(Ce= D27 T IR T =7 € e

6. Constacyclic codes of length 5(p° over F,

In this section, we illustrate the above process with the example of constacyclic codes of length 5¢p?,
where ¢ is a prime number different from 5 and p. We determine all the constacyclic codes of
length 5¢p° and their dual codes over F,, and then all the self-dual codes of length 5¢p* are also
given.

First we determine all the g-cyclotomic cosets modulo 5¢. Let f = ord,(g), and e = % Then we

have:
(1) ords,(q) = f, when g =1 (mod 5).
(2) ords/(q) = f, when g = 4 (mod 5) with f even.
(3) ords,(q) = 2f, when g = 4 (mod 5) with f odd.
(4) ords;(q) = f,wheng =2org =3 (mod 5) with4 | f.
(5) ords/(q) =2f,wheng=2org =3 (mod 5) with2 | fbut4 ¢ f.
(6) ords,(q) = 4f, when g =2 org=3 (mod 5) with f odd.
As the discussion given in the Section 3, we can find a primitive root 4 modulo ¢ for all ¢ > 1
such that x = 1 (mod 5). The following lemma give more explicit formula for the g-cyclotomic cosets
modulo 5¢.

Lemma 6.1.

(1) If g = 1 (mod 5), then we have that all the distinct q-cyclotomic cosets modulo 5C are given by
Co = {0}, C; = {€}, Cor = {28}, C_y = {—C}, Co¢ = {-20}, and Cop = {ap*,apbq, - ,au*q’™"} for
aeR={1,2,-1,-2,5}and 0 <k <e—1.

(2) If ¢ = 4 (mod 5) and f is even, we have that all the distinct g-cyclotomic cosets modulo 5
are given by Co = {0}, C, = {{,{q}, Coy = {2(,2{q}, Cr = {/Jk',,uk/q, e ,,uk,qf‘l}, Co =
205,214 q, -+, 20K ¢/} for 0 < K < 2e — 1, and Cs,e = {54, 50k q, -+, Spfq’ " for 0 <k < e— 1.

(3) If g = 4 (mod 5) and f is odd, we have that all the distinct gq-cyclotomic cosets modulo 5¢

are given by Co = {0}, C, = {€,{lq}, Cy = {20,2(q}, Cu = (W pihq, - ;g™ Cou =

2uk, 20 q, -+ 20 g Y, and Cspe = (5u8, 5t q, - - 5pfq! ") forO <k < e — 1.
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(4) If g = 2 or 3 (mod 5) and 4 | f, we have that all the distinct g-cyclotomic cosets modulo 5C are
given by Cy = {0}, C¢ = {£,€q,4q*,€q*}, Cpw = {, ¥ q,-- ,1¥q™"} for 0 < k' < 4e — 1, and
Cs = {5p8,5pt4q, -+, 5pf g’y forO<k <e—1.

(5) Ifg=20r3 (mod S)and?2 | f but4 1 f, we have that all the distinct q-cyclotomic cosets modulo 5€
are given by Cy = {0}, Cy = {£,€q,4q*,1q*}, Cp = {w, 1¥ q,- -+ 1 q* "} for 0 < k' < 2e — 1, and
Cs = {548, 5¢4q, -+ 5k g’y forO<k <e—1.

(6)If g = 2 or 3 (mod5) and f is odd, we have that all the distinct q-cyclotomic cosets
modulo 5€ are given by Cy = {0}, C, = {{,{q,tq*, (g}, Cp = (e g, -+, 1ikg®=1), and Csyo =
(505, 5ukq, - ,5uFq' "} forO <k <e—1.

Proof. The methods to prove the above 6 situations are similar, and we will give the proof of the second
situation as a instance. First since u is a fixed primitive root modulo / such that u = 1 (mod 5), it is
trivial to verify that Co, C¢, Cor, C v, Cy for 0 < k' < 2e — 1 and Csir for 0 < k < e — 1 are g-
cyclotomic cosets modulo 5¢. And then we claim that all these cosets are all distinct. If we have that
af = aq’, where ay, as, ki, k» and j satisfy the definitions in (2). Since

ged(ar, 50) = ged(a ', 50) = ged(apq’, 5¢) = ged(as, 50),

we have that either a; = a, or a; # a, and both a; and a, are not equal to 5. We divide the proof into 2
subcases.
Subcase 1. If a; = a,, we have that u“=% = ¢/ (mod ¢) and u*=%)/ = 1 (mod ¢), therefore ¢(¢) |

4
(ky — k) f and ? | (k — k»), which indicates that k; = k.

Subcase 2. If a; # a, and none of them is equal to 5, we have that aa;' = p*™*¢’/ (mod 5¢), but
notice that aja,' = £2 (mod 5) and g2 ™*1¢/ = £1 (mod 5), which is a contradiction. Hence the given
cosets are all distinct, and we only need to prove they are all the g-cyclotomic cosets to complete the
proof.

Notice that

2e—1 2e-1 e

-1
(Col +ICel+1Ca + D ICurl+ D [Couel+ D ICsul = 5+2ef +2ef +ef = 5(ef +1) = S(p()+ 1) = 5.
k'=0 k=0 k=0

Therefore the conclusion holds. O

Theorem 6.1. The irreducible factorization of x>* — 1 over F, is given as follows.
(1) Ifg =1 (mod 5), then

e—1
¥ =1 = CoICICuX)C3()Ca () | || | Ca ),
a€R k=0

where R =1,2,3,4,5.
(2) If g =4 (mod 5) and f is even, then

2e-1 e-1
¥ =12 CUICNCou(@) | | Cur o) | | Cot),
k'=0 k=0
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(3) If g =4 (mod 5) and f is odd, then

e—1

X =1 = Co(x)Cr(x)Car(x) H Cur(0)Coy (1) Csy (%),
k=0

(4) If g =2 or3 (mod 5) and 4 | f, then

4e—1 e—1
K= 1= C)C) | | Cur0 | | 3,
k’=0 k=0

(5) Ifg=2o0r3 (mod S5)and?2 | f but4 { f, then

2e—1 e—1
K= 1= C)C) | | Cur 0 | | ),
k’=0 k=0

(6) If g =2 or3 (mod 5) and f is odd, then
e—1
¥ = 1= C)Cx) | | Cu()Cs (),
k=0

With the irreducible factorization of x°° — 1, we can straightly follow the process given in Section 4
to calculate all the constacyclic codes of length 5£p°® over IF,. We list the result as follow.

Theorem 6.2. Assume that gcd(q — 1,5Cp*) = 1, then A-constacyclic codes C of length 5(p* over F,
are equivalent to the cyclic codes, i.e., for any A € F,, there exists a unique element a € F, such that
a@’'P’ A = 1. Furthermore, the irreducible factorization of X" — A over I, is given by

(1) If g =4 (mod 5) and f is even, then

2e—1 e—1
7~ ) = Co(ax)” Crlax)” Coglax)”’ l_[ C,w (ax)" Cop (ax)” l_[ Csu(ax)”,
k=0 k=0
Therefore we have that
. . . 2e-1 . . e—1 .
C = [ Colax)* Culax)*Coglax)™ | | Cop (@)™ Coyar(ax) | | Co (ax)p"),
k=0 k=0

and

Ct = (Cola'xy ™ Co(a ) Cypla x)" ™
2e—1 e—1
X l—[ C_w (a ‘%)~ C_ow (a'x)yr v 1—[ C_Sﬂk(a_lx)ps_pk) ,
k=0 k=0
where 0 < &1, 83,83, Ty, Vi s Pk < ps,foranyk' =0,1,---,2¢—1,andk=0,1,--- ,e — 1.
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(2) If g =4 (mod 5) and f is odd, then
e—1
X - = a)(ax)’7 Sag(ax)pxgg,g(ax)p ' ]_l C, Mk(aX)pxé\Qﬂk(a.X)p Sa#k(aX)p .
k=0

Therefore we have that

e—1
C= 6‘0(6136)5'6}(61)6)526\25(6196)‘93 l—[ @k(ax)”62ﬂk(ax)vk6‘5ﬂk(ax)”k] ,

k=0
and
Ct = (Cola 7T a1y Cagla 0
-1
% n C_u(a 0" T Cpu(ax)" ™ Cosyu(a™ x)PS—P"] :
k=0
where 0 < €1,&,&3, Tk, Vi, Pk < p°, fork =0,1,--- ;e — 1.

(3) If g =2 o0r3 (mod 5)and4 | f, then

4e-1 e—1
O — A = Cylax)? Cplax)” n C, e (ax)”? ' l_[ C’:Sﬂk(ax)”x.
k=0 k=0

Therefore we have that
. . 4e—1 . e—1 .
C = (Co(ax)el Cilax)> n C w(ax)™ 1_[ Cst (ax)vk) ,
=0 k=0

and

4e—1 e—1
¢ - [c<> Ea o= | |yt [ | c<>]
k'=0

k=0
where()Ssl,s2,ka,vkSps,fork':O,l,---,4e—1, andk=0,1,--- ,e—1.
(4) If g =2 o0r3 (mod 5)and 2 | f but 4 1 f, then

2e—1 e—1
- = a)(ax)pxa’(ax)px rl 6#"' (ax)pS rl E5uk (ax)pj'
k=0 k=0

Therefore we have that
. . 2e—-1 . e—1 .
C= (Co(ax)g1 Coax)® n C (ax)™ 1_[ C5ﬂk(ax)vk) ,
=0 k=0

and . 1
- (5‘)(“—1’0”““ Cta ™ [ [ ety [ | 6<>]
k=0 k=0
where 0 < &1, &, Ty, Vi < ps,fork' =0,1,---,2¢-1,andk=0,1,--- ,e— 1.
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(5) If g =2 or3 (mod 5) and f is odd, then

e—1
xj[ps _ /l _ 60(ax)p3 @(ax)ps l_[ alk (ax)ps 55/11( (ax)pé' .
k=0

Therefore we have that

e—1
C= (6O(ax)8' Crlax)™ | | Cuslax)™ Cy (ax)Vk] :
k=0

and

e—1
«- (ao(a_lx)ps_gl C_i(a ' x> l_l C_u(a 'y S_T"E_syk(a‘lx)p:_w),

k=0

where 0 < g1,&, T, Vi < p’, fork=0,1,--- ;e — 1.

Theorem 6.3. Assume that ged(q — 1,50p*) = 5¢, then F;, = (£) = (£F) U(EHE U --- U (£N)Her G,
For any A € F,, there exists an element a € F, such that @Vl = &P where 0 < j < 5¢— 1. Then j
can be written as j =y - 5", where vi = min{l1, vs(j)} and v, = min{1, v,(j)}. And

_xn _ A — (xslfvlflfvz _ a_slﬂ)lflfvzé:y)px(xslfvl glfvz _ a_slfvlflfvz 6§y)ps

1-vy pl-vy _g5l-vy pl-vp ViV S
_'(x5 t —a 5'7¢e 55 ¢ lé:))p

gives the irreducible factorization of X" — A over F,. Moreover, all the A-constacyclic codes of
length S5lp* and their dual codes are given by

C = ((xsl-"l o a—sl-w £ &y (xsl-vl 0 a—sl-"l £ 58y
N (xsl—vlflf"z _ a_sl—vlgl—vz 65"1["2—16}1)851,15».2) ,
and
ct = ((xsl-w 2 asl-wl-vzf—y)pf—sl (xsl-"l o 5 f'-"25—1§—y)pS—gz
B (xsl—vlgl—vz _ a517v1517@51—5”fvzé.‘—y)PS_gs"lzvz) ’
where 0 < g1,&5,-++ , &5 < p°.

Theorem 6.4. Assume that gcd(q — 1,5€p°) = 5, then for any 0 < j < 4, there exists an element
a € F s+ such that @'V EP = [P’ Moreover, each irreducible factor of x>t — & over I, is of the form

(xslfvlelfvz _ a—Slfvlflf"Z 51-5),/)()6517\/1[17}'2 _ a_slfvlglfvz Qé‘lqu’q)

1-vy pl-vy _g§l-vypl=vy zi=1 ;i zi—1 7 zi—1
LT L g i )

where j = y'5" £, vi = min{l, vs(j')}, v, = min{l, v,(j")}, and z; is the least positive integer such that
a_qzisl—vlfl—vz 6iqzi§quzi — asl—vlfl—vz 6l~§yi'
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For any 0 < i, i < 512 — 1, we define a relation ~ to be such that i ~ i if and only if
a "SR i o = ST ST Y for some nonnegative integers m. It is obvious to see that ~ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0,1,---,5"¢ — 1} relative to this relation ~. For any i € § we denote the irreducible polynomial

(xsl—vl[l—vz _ a_sl—vl[l—vz 5i€y/)(x51—v1[71—v2 _ a_sl—vl gl—vz.q6l~q§yrq)

. (xsl—vl[]—vz _ a_Sl—v] [l—vz 'qzi_l(siqzi_lgquzi_l)

2

by M;(x), and denote

(xslfvl 51*"2 _ aslfvl 61*1’2 6_i§_y/)(x517\71 [171'2 _ aslfvl L;lfvz.qé_iq{_y/q)

1-v pl=vy I=vy pl=vo zi=1 ;. zi=1 __\/7i—1
c (T L TN T ST YT

by M;(x). Then we have the following corollary.

Corollary 6.1. Assume that gcd(q — 1,5¢p*) = 5. For any 0 < j < 4, there exists an element a € F
such that @7’ &P = {77’ Then
X g = 1—[ Mi(x)"
i€S

S — gir” over F,. Furthermore we have that

C= (]_[ M,-<x>£f],

ieX

gives the irreducible factorization of x

and

ct = [ﬂ M;<x>l’“-€f],

ieX

where 0 < g; < p’, fori € X.
Theorem 6.5. Assume that gcd(q — 1,5¢p°) = £, then
(1) If g =4 (mod 5), for any 0 < j < € — 1, the following equations
j=2j (mod{)and j =0 (mod5)

. . . . . 5[ i .
have a unique solution j’ up to modulo 5€. Moreover, each irreducible facotor of x* — &/ over F, is of
the form

(x5l—V| fl—vz _ a_sl—\q [1—\/2 5i£y/)(x51—v1€l—v2 _ a_sl—vlgl—vz.q5l~q§y1q)

5l-vy pl-vp —5lvipl=va.gzi=l Gigii=l oy gti—]
c(x —a TS T,

where j = y'5" £, vi = min{l, vs(j')}, v, = min{l, v,(j")}, and z; is the least positive integer such that
a_qzisl—vlfl—vz 6iqzi§quzi — asl—vlfl—vz 6l~§yi'

(2) If g = 2,3 (mod 5), for any 0 < j < € — 1, the following equations

j =4 (mod )
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j =0 (mod 5)

have a unique solution j' up to modulo 5. Moreover, each irreducible facotor of X — & over F, is of
the form

(x5l—vl [l—vz _ a_sl—vl [1—\/2 5igy/)(x51—vl fl—vz _ a_sl—vl gl—vz.q5l~q§yrq)

1=vy pl=vy _gl=vy pl=vy ;=1 i zi=1 7/ zi—1
~~-(x5 C72 g TR i 2T,

wherle j’1 = Y5, vy = mlinl,v5(j’), vy = minl,ve(j'), and z; is the least positive integer such that
a_qzl‘s vy pl-v2 6iqzi§quzi — as vy pl-v2 6l~§yi'

J

For any 0 < i,i < 5"¢2 — 1, we define a relation ~ to be such that i ~ i if and only if
a 'S T S e = 5T T Y for some nonnegative integer m. It is obvious to see that ~ is
an equivalence relation. Assume that S is a complete system of equivalence class representatives of
{0,1,---,5"¢ — 1} relative to this relation ~. For any i € S we denote the irreducible polynomial

(xsl—vlfl—vz . a_sl—vl[l—vz 6i§},/)(x51—v1€1—v2 . a_sl—vlfl—vz.q(siqu/q)

1-v pl=vy _gl-vypl=vy zi=1 ;i zi—1 7 2=
(TN L S i gt

by M;(x), and denote

(xslfvl [l"'Z . aslfvl fl’VZ 5_i§_},/)(x517v1€lfvz . aslfvl [lfvz_qé_iqg_y/q)

1-vy pl-vy Ly plovy 2=l izl 721
LT ST g

by M;(x).
Corollary 6.2. Assume that gcd(q — 1,5¢p°) = ¢, then
(1) Ifg =4 (mod 5), and j, j is defined as in the first case of Theorem 5.1, then
g = [ | Mo
ieX

S — gir” over F,. Furthermore we have that

C= (]_[ M,-<x>€f],

ieX

gives the irreducible factorization of x

and

ct = [ﬂ M;<x>l’“-€f],

ieX
where 0 < g; < p’, fori € X.

(2) Ifg=2,3 (mod 5), and j, j is defined as in the second case of Theorem 5.1, then

ngps - fjp: = 1—[ Ml'(.X)pS

ieX

AIMS Mathematics Volume 8, Issue 6, 12793-12818.
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Stp* _

gives the irreducible factorization of x &P over B,. Furthermore we have that

C{ﬂMmﬂ,

ieX
and
“:Uhﬂw%}
ieX
where 0 < g; < p*, fori € X.

Finally we give all the self-dual constacylic codes of length 5¢p* as the end of this section. Since
self-dual cyclic codes of length N over F, exists if and only if N is even and the characteristic of F, is

p = 2, as in the general case, we only consider the case of self-dual cyclic codes of length 5 - 2°¢ over
Fom.

Lemma 6.2. Assume that g = 1 (mod 5). For the g-cyclotomic cosets, one of the following holds.
(1) If f = ord,(q) is even, we have that

* * * * * *
CO = C(), Ce = C_f, ng = C_Z[, C/lk = C_/Jk, C2,uk = C—Z[Jk7 CS/lk = CS[J"’

where ) <k <e-— 1.
(2) If f = ord,(q) is odd, we have that

Cy=Co. C;=Cp, Cyy=Cop, Cy=Copyr, Cyp = Cgy, €2y =C_ v,

5uk —Su

7’ e
where {Cs,i} = {Csﬂk/}U{Cfsyk' Land0<k<e—-1,0<k < 37 1.

Proof.
(1) By the definition of reciprocal coset, it is clear that C; = Cy, C; = C_y, C5, = C_y, C;k =
C_x, C;ﬂk = C_y, thus it remains to prove C;ﬂk = Csp. Lett = % Since f = ord,(g), it is trivial to

see that ¢’ = —1 (mod ¢), and therefore we have that —5u* = 5u*q' (mod 5¢). It follows immediately
that C;ﬂk =Csp,forO0<k<e-1

(2) As in the first case, the conclusions that Cj = Cy, C; = C_, C;, = C_y, C;k = C_, C;ﬂk = Cop

are clear, and now we prove that C’Sk v = C_S#k'. To see this, we claim that for any 0 < k’l, k/2 < % -1,
M

Cs,fi * C_Sﬂ,;z, and {Cs,e} = {Cyw } UIC g ). Assume that Cs,/ci = C_s,f; for some 0 < k,k, < £ -1,
then we have that 5i% = —5u%¢’ (mod 5¢) for some 0 < j < f — 1, which indicates that %1% = ¢/
(mod ¢). Notice that f is odd, therefore we have that —u/® =) = ¢/f = 1 (mod ¢€) and /%) = —1
(mod ¢). It follows that u?/ *-5) = 1 (mod ¢), hence ¢(€) | 2f(k, — k,) and £ | k; — k,. Since by
the condition we have 0 < k;’ k'2 < 5 — 1, we deduce that k’1 = k’z. Then the equation 5,uk/1 E—S,uk;qj
(mod 5¢) can be reduced to —1 = ¢’/ (mod {). However, notice that ord,(q) = f is odd, such a
positive integer j cannot exist, which is a contradiction. According to this, we have that for any 0 <

k’l,k/2 < -1, C5 § C_5 - By comparing the number of elements, it is trivial to verify that

{Cs} = {Csﬂkf} U{C_iuk’} holds. Then by the definition of reciprocal coset, one immediately get that

* = ’
Csyk, = C_Sﬂk . m|
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With the same method we can prove the results for the rest of cases. The proofs will be omitted.

Lemma 6.3. Assume that g = 4 (mod 5). For the g-cyclotomic cosets, one of the following holds.
(1) If f = 2t is even, then

(i) when t is even, we have that

Cy = Co, C; = Cyp, Cyp = Cap, Cly = Copp, Cyy = Cg, Chy = Cp,

—pks

where {Cﬂ,;} = {Cu} ULC s}, {Czﬂk/} ={Cou} UIC

H

(ii) If t is odd, we have that

b forO0<k<e-1, 0<k <2e-1.

Ci=Co. C;=Cp Cy=Car, €,y =Cpp. C, , =C

2,uk Q#k' ’

%
C5/1k = CSyk .

where0 <k<e—-1,0<k <2e-1.
(2) when f is odd, then

Cy=Co, C;=Cp, C3y=Co, €y =C_y, C,, =C,p, Co,=C
M

24k —2u Sk =5uk

where {C,x} = {Cﬂkf}U{C
e—1,0<k <5-1

K }’ {CZIJk} = {C2

i

¢ U{C_2

I

4 }’ {CSyk} = {CS k’}U{C—S,uk/ }, fOl" O < k <

—H I

Lemma 6.4. Assume that g = 2 or 3 (mod 5). For the g-cyclotomic cosets, one of the following holds.
(1) If4| f. Let f = 4t, then

(i) when t is even, we have that

Cy=Cy, C, =Cy, C*

"
K

= C—'uk// s C*

5uk = CS#"’

where {C v} = {C i} UIC_y ), for0<k<e-1,0< k" <2e—1and0 <k <4e—1.

(ii) If t is odd, we have that
C, =Cy, C, =Cy, C;k, = C#k/, C;ﬂk = Cs,

where0 <k<e—-1,0<k <de-1.
(2) If 2| f but4 1 f, then

C;=Cy C;=Cy, C

— * —
/Jk - C—/ﬂ% CSyk - BS/lk,

where {C o} = {Ce} UIC ), for0 <k <e-1,0<Kk <2~ 1.

o
(3) If f is odd, then
C, = Co, C; =Cy, C:k, = C_ﬂkf, C5 ¢y =C.

where {Cx} C SUC k} {Cs} 5k}U },forOSk S%—l,OSkSe—l.

From the above lemmas, we give all the self—dual cyclic codes of length 5 - 2°¢ over F,» and their
enumeration in the following theorems.
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Theorem 6.6. Let g = 1 (mod 5), then one of the following holds.

(1) If f = ord,(q) is even, there exist (2° + 1)**2¢ self-dual cyclic codes of length 5 - 2°€ over Fan, which
are given by

((x - I)ZH Co(X)" C_p(x)* 51 Cop(x)2 C_pp(x)* ~

e—1

x | [ Gt Ot Copa (0 Cp (9 P Csu |,
k=0

where 0 < g1,&, Ty, o < 2°%, forany0 <k <e—1.
Se

2 —
(2) If f = ord.(q) is odd, there exist (2° + 1) 2 self-dual cyclic codes of length S - 2°C over Fyn, which
are given by

(= 1P Col)™ Co o)~ Cor()> C g =

k=0 kK =0

e—1 5-1
| ] G ™ C (0 T Copa (P Cog (0 [ | Copr (0% €y 0 ] ,

where O < &1, &, T, Pr> ty < 2°, forany 0 <k <e—1andany0 < kK < g - 1.
Proof.
(1) By Lemma 6.2, any self-dual cyclic codes of length 5 - 2°¢ over F,» has the form of
(= 17 Col0)™ €)™ Cor(x) Cpp(x)* ™

e—1

X 1—[ Cr (X)“C_ e (X)* " Cope (XY C gyt (X)* P4 Csye( x)zs"] ’

k=0

where 0 < €1,&, 7,0 < 2°, forany 0 < k < e — 1. Since each of 1,¢&; and 74,04, 0 < k < e — 1,
has 2* + 1 possible values, we have in total (2° + 1)**2¢ self-dual cyclic codes of length 5 - 2°¢ over Fan.

(2) By Lemma 6.2, any self-dual cyclic codes of length 5 - 2°¢ over F,» has the form of

((X - 1)23‘1C€(x)81 C_[(x)Zs—sl C%(x)szc_%(x)zs_gz

Y

| ] Clugt (D™ C (1) T Copt (¥ C gy () l_[ Cow OV C oy (x)* ] ;
k=0 v
e

where 0 < &1,&, T, Pty < 2°, forany 0 < k < e—1and any 0 < kK < = —

> 1. Each of g, &,

Se
’ . . o 2 A
TP0<k<e—-1l,andy,0 <k < g — 1, has 2° + 1 possible values, we have in total (2° + 1) 2

self-dual cyclic codes of length 5 - 2°¢ over Fym. O

The proofs of theorems for the rest of cases are similar, and we will give them without proofs.

Theorem 6.7. Let g = 4 (mod 5), then one of the following holds.
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(1) If f = 2t is even, then

(i) when t is even, there exist (2° + 1)* self-dual cyclic codes of length 5 - 2°€ over Fan, which are given
by

e—1
[(x = P C0 T G | | G0 C (0 T Coe (P c_zgk(x)z“—*’kcsgk(xf“‘) :

k=0
where O < 1y, pr < 2°, forany0 <k <e-—1.

(ii) when t is odd, there exists only one self-dual cyclic codes of length 5 - 2°€ over Fym, which is given
by
2e—1 e—1
s—1 s—1 s—1 s—1 s—1 s—1
[(x — 17 Cl? T a0 | [ € 0 e | ] G ) :
k¥ =0 k=0

(2) If f is odd, thenthere exist (2° + 1)*/2 self-dual cyclic codes of length 5 - 2°€ over Fyn, which are
given by

(=17 Co)? Cog*”

e/2—-1
X [ € 0¥ € P € (Y €y (6P 4 € (0 € ()P J .

K¥'=0
Theorem 6.8. Let g =2 or 3 (mod 5), then one of the following holds.
(1) If4| f. Let f = 4t, then

(i) when t is even, there exist (2° + 1)* self-dual cyclic codes of length 5 - 2°€ over Fan, which are given
by

2e—1 e—1
[(x _ 1)2S—1 Cf(x)zsfl ﬂ Cﬂk (x)‘rk// C_'uk” (x)zs_‘rku n Csuk(x)le) ’
k// :0 k:O

where 0 < 1, <25, forany 0 < k' < 2e — 1.

(ii) when t is odd, there exists only one self-dual cyclic codes of length 5 - 2°€ over Fym, which is given

by
- - 4e—1 - e—1 »
[(x -7 [ [ | ] Canta? )
kK'=0 k=0

(2) If 2| f but 4 1 f, then there exist (2° + 1)¢ self-dual cyclic codes of length 5 - 2°€ over Fym, which are
given by

e—1
[(x =D | | G €07 C <x>2rl) ,
k=0

where 0 < 1, < 2%, forany 0 <k <e— 1.

(3) If f is odd, then there exist (2° + 1)¢ self-dual cyclic codes of length 5 - 2°€ over Fym, which are given
by

e
—-1

2
(= PG | ] G (¥ € (0T Cy (0 € (07 |

k=0
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where 0 < 10,1, < 2%, forany 0 < k' < g -1
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