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Abstract: With the development of the stock market, the proportion of the stock assets in the asset
structure of the residents increases rapidly. Therefore, the research on the prediction of stocks has great
theoretical significance and application potential. A key point of researching stock prices is how to pick
out the main factors. In this study, principal component analysis (PCA) is applied to find out the main
factors which mainly affect the stock price. Then an improved cluster analysis algorithm is proposed
to fuzzy the data, and a qualitative analysis method is given to find the most suitable prediction set
from the multiple fuzzy sets corresponding to the current fuzzy set. We also extend the inverse fuzzy
number formula to a more general form to get the predicted value. Finally, Xishan Coal and Electricity
Power (XSCE) and Taiwan Futures Exchange (TAIFEX) time series are predicted, using the proposed
multivariate fuzzy time series method. The results show that the prediction error is lower than that of
the previous models. The proposed method produces better forecasting performance.
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series
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1. Introduction

Time series analysis, which uses curve fitting methods to describe the time series data, was proposed
by Yule in 1927 [27]. Time series analysis models include Auto Regression Model (AR), Moving
Average Model (MA), Auto Regression Moving Average Model (ARMA), Autoregressive Integrated
Moving Average Model (ARIMA), Autoregressive Conditional Heteroskedasticity Model (ARCH),
Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH), etc. After decades of
development, time series analysis has been widely applied to data analysis of practical problems. A key
point of time series analysis is to establish the appropriate model based on numerical data. However,
the data of some practical problems are non-numerical. For example, the temperature of a day can
be described as “very cold”, “cold”, “worm”, “hot”, and “very hot”. These descriptions are all fuzzy
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without numerical definitions, and are more suitable to be analyzed by fuzzy theory. The concept of
fuzzy sets was proposed by Zadeh in 1965 [28].

Qiang and Brad combined the theory of time series analysis and fuzzy sets together, and proposed
the fuzzy time series in 1993 [23]. Since then, the theory of fuzzy time series has attracted more and
more attention as the increasing need to solve complex problems. Many related methods have been
proposed and applied into practical data analysis [2, 7, 9, 18, 29]. Fuzzy time series have been widely
used in various fields of social life [4,5,16,20]. There are many ways to classify the fuzzy time series:
According to whether the fuzzy relations are fixed or not, it can be classified into the time-variant fuzzy
time series and the time-invariant fuzzy time series; according to the span of fuzzy mapping, it can be
divided into the first-order fuzzy time series and the high-order fuzzy time series; according to the
number of the current state, it can be distinguished into one-factor fuzzy time series and multi-factors
fuzzy time series [13, 25].

The stock market is an important part of the securities market and is one of the most active markets,
which is a big concern. Stock prices are influenced by many factors, and it is always difficult to
do a scientific calculation and evaluation. The reason is that there are some factors that are hard
to quantify. Many scholars have conducted in depth research on it [17, 21]. The current stock
price time series forecasting methods can be divided into three categories: the traditional statistical
method, the computing intelligence method, and the combined forecasting method. This paper uses
the combination of qualitative and quantitative methods. We apply the theory of fuzzy time series to
analyze quantitative factors as well as consider the qualitative factor to forecast the stock price. First,
we use the method of PCA to determine the main factors that affect stock prices. Then we use the
automatic clustering analysis to divide the universe of discourse, and establish the n-factors first-order
Markov transition matrix. Finally, we consider the qualitative factors correlating to stock price, and
use the inverse fuzzy number to forecast the stock prices.

There are three contributions of this paper:
(1) The theory of PCA is used to abstract the main factors affecting stock price, which reduces the

research difficulty and improves the accuracy.
(2) The cluster analysis algorithm is improved to divide the discussion domain and the method of

inverse fuzzy number is extended. And the convergence theorem of inverse fuzzy numbers is proved.
The effectiveness of this method is proved theoretically

(3) The qualitative factors are considered in the fuzzy time series to remove the incorrect prediction.
The prediction accuracy is therefore improved.

The rest of this paper is organized as follows. In Section 2, some basic concepts of the fuzzy time
series used in the paper are introduced. In Section 3, a hybrid fuzzy time series model is introduced
in detail. In Section 4, many implementations of the proposed method and some other methods are
performed to make comparisons. In Section 5, some conclusions and remarks are discussed.

2. Basic concepts

In this section, some basic concepts of the fuzzy time series are introduced.

Definition 2.1. [22] Let Y(t)(t = 1,2, · · ·) be the universe of discourse on which fuzzy sets fi(t), (i =
1,2, · · ·) are defined, and F(t) is the collection of fi(t), then F(t) is called a fuzzy time series on Y(t).
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Definition 2.2. [23] If f j(t) is caused only by fi(t−1), denoted as fi(t−1)→ f j(t), then there exists
a fuzzy relation Ri j (t−1, t), such that f j(t) = fi(t − 1) ◦Ri j (t−1, t) , where ‘◦’ is the composition
operator. This relation is called a first-order model of f (t).

Definition 2.3. [24] If f j(t) is caused by fi1(t − 1), fi2(t − 2), · · · , and fin(t − n) simultaneously,
denoted as

fi1(t−1)∩ fi2(t−2)∩·· ·∩ fin(t−n)→ f j(t), (2.1)

where ‘∩’ is the intersection operator, then the fuzzy relational equation is:

F(t) = (F(t−1)×F(t−2)×·· ·×F(t−n))◦R(t−n, t) . (2.2)

Definition 2.4. The forecasting formula uses the generalized inverse fuzzy number

αi =
µ1 + · · ·+µi−1 +µi +µi+1 + · · ·+µn

Ai
(2.3)

where Ai is the membership function of a fuzzy set, µi is the grade of membership of Ui and αi is the
predicted value of i.

The formula (2.3) can deal with not only the triangular membership functions, but also any forms
of the membership functions. It is a more generalized form of inverse fuzzy number formulain [8, 26].

Theorem 2.1. Let U = {U1,U2, · · · ,Un} be the universe of discourse, µi represents the grade of
membership of Ui in fuzzy set Ai. And αi yields the predicted value of i. In the Definition 2.4:

1) When µi−1→ 0, and µi+1→ 0, then αi→Ui.
2) For any real number ζ > 0, there exist ξ > 0,η > 0, such that the average forecast error rate

AER = |αi−Ui|
Ui

< ζ , if µi−1 < ξ , µi+1 < η .

Proof. 1) When µi−1→ 0, and µi+1→ 0, it is obviously.
2) Following from 1). For any ζ > 0, it exists η1 > 0, such that |α1−U1|/U1 < ζ , if µ2 < η1; it

exists ξ2 > 0,η2 > 0, such that |α2−U2|/U2 < ζ , if µ1 < ξ2 and µ3 < η2; · · · ; it exists ξi > 0,ηi > 0,
such that |αi−Ui|/Ui < ζ , if µi−1 < ξi and µi+1 < ηi; · · · ; it exists ξn > 0, such that |αn−Un|/Un < ζ ,
if µn−1 < ξn. Put ξ = min{ξ1,ξ2, · · · ,ξn} > 0, η = min{η1,η2, · · · ,ηn} > 0, if µi−1 < ξ ,µi+1 < η ,
then the average forecast error rate

AER = (
|α1−U1|

U1
+
|α2−U2|

U2
+ · · ·+ |αn−Un|

Un
)/n <

1
n
(ζ +ζ + · · ·+ζ ) = ζ .

�

Apparently, Ui is a fuzzy set, while the inverse of fuzzy number αi is a set of real numbers. The set
of real numbers.

3. Multivariate fuzzy time series method

According to the feature of stock price, a multivariate fuzzy time series method is propose in this
paper, which is explained in this section. First, the PCA algorithm is applied to select the factors which
mainly affect the stock price. Second, an improved cluster analysis algorithm is used to define and
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divide the universe of discourse. The Markov transition matrix is set up, and the prediction fuzzy sets
according to the transition matrix is obtained. Finally, the qualitative factors are considered to increase
the prediction accuracy. Inverse fuzzy number formula is used to inversely fuzzify the data and obtain
the prediction results.

Step 1: Select the main factors.
The PCA is a multivariate statistical technique based on the statistical characteristics of

multidimensional orthogonal linear transformation. The PCA is usually used to feature extraction and
data dimension reduction. The concept of this technique was firstly proposed by Pearson in 1901 [19],
and was developed by Hotelling [10], Jackson [11] and other researchers. Later, probability theory
was applied to describe the PCA algorithm, which further developed the PCA method. Nowadays,
a lot of related research has been carried out, and this method has been widely used in chemistry,
pattern recognition, image processing and other fields [12]. The PCA is also named Karhunen-Loeve
transform [14], Hotelling transform [10], subspace approach, eigen-structure approach, etc.

In order to reduce the number of variables, the PCA algorithm is applied. Do the following to
process the data:

(1) Calculate the mean of the sample data,

x̄ =
1
n

n

∑
i=1

xi. (3.1)

(2) Centralize the sample data,
X̃ = X− x̄E. (3.2)

(3) Construct the matrix covariance of the sample data,

V =
1
n

X̃X̃T . (3.3)

(4) Calculate the eigenvectors ωi and the eigenvalues λi of the matrix covariance, and arrange the
eigenvalues λi as the descending order.

(5) By trying different thresholds, it is finally found that when the cumulative contribution rate
is between 85% and 95%, the selected variables are both representative and can represent the
original variables to a greater extent extract. The top m eigenvalues Λ = diag [λ1,λ2, · · · ,λm] and
the corresponding eigenvectors Wm = [ω1,ω2, · · · ,ωm] as the base of subspaces. Then we can obtain
the m main factors.

Step 2: Preprocess data.
The dimension of fuzzy time series is determined by the number of principal components. Suppose

two variables x and y are selected as pivot entries, and each variable has m+ 1 and n+ 1 observed
samples, respectively. Then process each set of data as follows:

(1) Calculate the gradient of the original data by the following formulas.

ai =
xi+1− xi

xi
×100%, (i = 1,2, · · · ,m), (3.4)

b j =
y j+1− y j

y j
×100%, ( j = 1,2, · · · ,n). (3.5)
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(2) Arrange the data in an ascending sequence excluding duplicate data. The gradient sequences are
written as follows:

a = {a1,a2, · · · ,am} , b = {b1,b2, · · · ,bn} .

Step 3: Define and divide the universe of discourse.
The preprocessed sequences are divided into the universes of discourse, using the improved cluster

analysis algorithm.
Let Xi be the real data points, the jth cluster center C j can be calculated according to Eq (3.6).

C j =
∑

n
i=1 4µ4

i jXi

∑
n
i=1 4µ4

i j
. (3.6)

Where µi j ∈ [0,1] is the degree of membership of Xi in jth cluster, which is calculated as follows:

µi j =
1

∑
m
k=1

√
2
(

Xi−C j
Xi−Ck

) , s.t.
{

µi j ∈ [0,1]
∑

c
j=1 2µi j

2 = 1 .

Where m represents the number of clusters, i = 1,2, · · · ,n; j = 1,2 · · · ,m; k = 1,2 · · · ,m.
The objective function J is given as:

J =
n

∑
i

m

∑
j

µi jd(Xi,C j). (3.7)

Where d(Xi,C j) is the Euclidean distance, and d(Xi,C j) =
√
(Xi−C j)

2.
Then each cluster center is taken as the midpoint of the universe of discourse. The minimum value

of half of the distance between it and the cluster center on both sides is taken as the radius to get the
universe of discourse. Then the empty interval in the middle is added into a new domain to get the final
result.

Step 4: Set up Markov transition matrix.
If (µ1(t),µ2(t), · · · ,µn(t)) ,(µ1(t +1),µ2(t +1), · · · , µn(t +1)) represent the memberships of the

observed value of the given fuzzy sets F(t),F(t + 1), respectively, and µi(t),µ j(t + 1) correspond to
the given fuzzy sets Ai(t),A j(t +1), then we can obtain the logical relation matrix R =

[
µi j
]

(Markov
transition matrix), which sets up the relation of two principal components and the prediction variable.

A1(t) A2(t) · · · An(t)
A1(t−1)
A2(t−1)

...

An(t−1)


µ11 µ12 · · · µ1n
µ21 µ22 · · · µ2n
...

...
. . .

...
µn1 µn2 · · · µnn

.

Step 5: Optimize predictive fuzzy sets.
If there are more than one A j(t + 1) corresponding to Ai(t), the qualitative factors are considered.

For example, whether there is a negative or a positive policy, the market environment changes, or the
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country’s economic policy changes (such as monetary policy, fiscal, etc.) to determine the prediction
set. Assuming the current set is Ai(t), if there are positive factors, we will take the fuzzy sets next time
with subscript greater than i as the prediction set; if there are negative factors, we will take the fuzzy
sets with subscript less than i as the prediction set; if the policy is stable, we do not change the fuzzy
set of next time, and take it as the prediction set.

Step 6: Calculate the prediction values.
According to Step 5, the predictive fuzzy set is calculated by applying the generalized inverse fuzzy

number formula (2.3). Then, the midpoints coordinates of it and its adjacent fuzzy sets are brought
into the formula (3.8) to obtain the final prediction value.

pi = xi−1(1+αi%). (3.8)

Where pi represents the predicted value at the i-th time, αi represents the predicted change rate at the
i-th time, and xi−1 represents the time series value at the i-1st time.

The flow diagram of the algorithm proposed in this paper is shown on Figure 1.

Figure 1. The flow diagram of the algorithm.
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4. Simulation prediction examples

In this section, the stock prices of XSCE and TAIFEX time series are predicted to illustrate the
effectiveness of the model presented in the paper.

4.1. Predicting stock prices of XSCE

Draw the opening price of XSCE from June 1st, 2015 to July 31st, 2015 (https://finance.
sina.com.cn/realstock/company/sz000983/nc.shtml). It can be observed in Figure 2 that the
stock price fluctuates wildly during the chosen period of time. It is hard to be analyzed by the classical
time series methods or the other fuzzy time series methods. The multivariable fuzzy time series method
proposed in this paper is used to analyze the stock price.

0 5 10 15 20 25 30 35 40 45
5

6

7

8

9

10

11

12

Figure 2. The opening price of stock price of Shanxi Coal and Electricity Power in China,
from Jun. 1st, 2015 to Jul. 31st, 2015.

Step 1: Select the main factors.
The opening price (OP), the highest price (HP), the lowest price (LP), the closing price (CP), the

range of daily fluctuations (RF), the trading volume (TV) and the turnover number (TN) are analyzed
using the method of PCA. The correlation matrix is shown in Table 1. From Table 1, you can see
that the OP and the HP are highly related to the LP and the CP, respectively. Clearly, there is an
overlap of information between them. The PCA method uses the first m principal components whose
eigenvalues are greater than 1. To some extent, the eigenvalues represent the influence of the principal
components. If an eigenvalue is less than 1, it means that the explanation ability of the corresponding
principal component is weaker than the average explanation ability of the original variables, so we
only consider the principle components with eigenvalues greater than 1. According to the results in
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Table 2, because the cumulative contribution of the first two factors reached 85.194%, two principal
components are extracted. In other words, the OP and the HP are selected as the research variables,
and abandon the rest variables. And then standardize their contributions, and obtain the weights of the
considered variables: 0.7301,0.2699 of the OP and the HP, respectively.

Step 2: Preprocess data.
The two time series values of the OP and the HP are put into Eqs (3.4) and (3.5) respectively to

calculate the gradient. After removing the same data, they are arranged into two ascending sequences
of numbers. The results are shown as follows:

a = {−14.4304, −13.7574, −11.1361, −11.0953,
−8.3095, −7.7143, −7.4286, −6.1662,
−5.4255, −5.0000, −4.5455, −4.3537,
−3.9914, −3.4375, −2.2624, −1.2511,
−1.2121, −1.1628, −1.0000, −0.9986,
−0.6222, −0.1789, 0, 0.1781,
0.1792, 1.4409, 1.6290, 1.7045,
1.8519, 2.6536, 2.9499, 3.2407,
3.6800, 4.0446, 4.7833, 4.9536,
5.6180, 8.6364, 11.1111, 13.2075,

14.4172},

b = {−13.0380, −11.7904, −10.3563, −9.6639,
−8.8803, −7.1521, −6.5341, −6.2630,
−5.2685, −5.2259, −4.9533, −4.1543,
−4.0034, −2.5424, −2.0851, −1.8771,
−1.8634, −1.4047, −1.2431, −0.6585,
−0.6098, −0.1753, 0, 0.1289,
0.4193, 0.5343, 0.7474, 1.3986,
1.4006, 1.7931, 1.8634, 2.0321,
2.5278, 3.4783, 3.7209, 4.2005,
4.2609, 4.5231, 5.7756, 6.4103,
8.6191, 9.9844, 10.0709}.

Step 3: Define and divide the universe of discourse.
The improved clustering analysis algorithm proposed in Chapter 3 is used to cluster the sequences

a and b, respectively. Each cluster center is taken as the midpoints of discussion domain, and half
of the distance between adjacent cluster centers is taken as the clustering points to get the universe of
discourse. So a is divided into universes Ui and b into universes Vi, respectively.

Fuzzy sets A1,A2, · · · ,An can be defined on U by general triangular membership functions expressed
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12786

as below:
A1 =

1
U1

+ 0.5
U2

+ 0
U3

+ · · ·+ 0
Un
,

Ai =
0

U1
+ 0

U2
+ · · ·+ 0

Ui−2
+ 0.5

Ui−1

+ 1
Ui
+ 0.5

Ui+1
+ 0

Ui+2
+ · · ·+ 0

Un
,

(i = 2,3, · · · ,n−1),
An =

0
U1

+ 0
U2

+ · · ·+ 0
Un−2

+ 0.5
Un−1

+ 1
Un
,

(4.1)

where Ui is the sub-universe of discourse and the corresponding numerator represents the membership
of Ui to Ai. By the same way, the fuzzy sets Bi which are defined on Vi can be get.

Step 4: Set up the relation matrix.
According to the membership maximum principle, the relation matrix between two principal

components is set up. Two sets of fuzzy relationship chains are obtained (‘#’ means that there is
no corresponding fuzzy set).

Table 1. Correlation matrix.

OP HP LP CP RF TV TN
OP 1.000 0.994 0.978 0.972 -0.022 0.390 0.282
HP 0.994 1.000 0.972 0.987 0.063 0.442 0.321
LP 0.978 0.972 1.000 0.960 -0.005 0.365 0.254
CP 0.972 0.987 0.960 1.000 0.183 0.443 0.309
RF -0.022 0.063 -0.005 0.183 1.000 0.320 0.185
TV 0.390 0.442 0.365 0.443 0.320 1.000 0.862
TN 0.282 0.321 0.254 0.309 0.185 0.862 1.000

Table 2. Total variance explained.

Component
Initial eigenvalues

Total % of Variance Cumulative %

1 4.354 62.196 62.196
2 1.610 22.998 85.194
3 0.880 12.566 97.759
4 0.117 1.669 99.428
5 0.031 0.441 99.869
6 0.007 0.105 99.974
7 0.002 0.026 100.000

Component
Extraction sums of squared loadings

Total % of Variance Cumulative %

1 4.354 62.196 62.196
2 1.610 22.998 85.194
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Step 5: Optimize predictive fuzzy sets.
According to the above fuzzy relation chain, the predictive fuzzy set at the next time is obtained.

When there are multiple fuzzy sets of next time corresponding to the current fuzzy set, the qualitative
factors can be considered. If the news or policy is favorable, the fuzzy set with subscript greater
than that of the current fuzzy set i is selected as the prediction set, according to expert evaluation or
experience; otherwise, the fuzzy set with subscript less than i is selected.

Step 6: Make predictions.
Finally, using Eqs (2.3) and (3.8), the prediction fuzzy set is inversely fuzzy and the predicted value

is obtained.
For example, the rate change of OP on June 2nd, 2015 is 11.1111%, and the corresponding fuzzy

set is A39. The rate change of HP is 2.5278%, and the corresponding fuzzy set is B20. The next fuzzy
sets for them are both A19. According to the result of dividing the universe in Step 3, the centers of
U18, U19 and U20 are −1.1875,−1.0807 and −0.8104. The prediction rate change of the opening price
(PROP) is

0.5+1+0.5
0.5

−1.1875 +
1

−1.0807 +
0.5

−0.8104

=−1.0187.

The prediction of the opening price (POP) on the next day is obtained as 9.8981. POP from June 1st,
2015 to July 31st, 2015 are shown in Table 3.

Table 3. Date of stock price from Jun. 1st, 2015 to Jul. 31st, 2015 snd the prediction results.

Date OP(x) HP PROP POP AER %

6.1 9 9.89
6.2 10 10.14
6.3 9.9 10.14 -1.0187 9.8981 0.0192
6.4 9.78 10.79 -1.1691 9.7843 0.044
6.5 11.19 11.72 14.2098 11.1697 0.1814
6.8 11.05 11.5 -1.2902 11.0456 0.0398
6.9 11.23 11.99 1.6364 11.2308 0.0071
...

...
...

...
...

...
7.23 7.16 7.38 1.9436 7.1768 0.2346
7.24 7.35 7.69 2.9014 7.3677 0.2408
7.27 7.03 7.14 -4.1098 7.0479 0.2546
7.28 6.25 6.45 -9.4523 6.3655 1.848
7.29 6.48 6.69 3.8708 6.4919 0.1836
7.30 6.6 6.74 1.9436 6.6059 0.0894
7.31 6.27 6.46 -4.7869 6.2841 0.2249

The proposed method also can be used to estimate the unknown data. For example, on Mar. 26th,
2016, the OP is 8.160, and the HP is 8.310. On next day, the OP is 8.300, and the HP is 8.440. So
the rate change of OP on Mar. 27th, 2016 is 1.72%, and the corresponding fuzzy set is A27. The next
fuzzy sets are A11,A10 and A29. There are three fuzzy sets corresponding to the previous one, so the

AIMS Mathematics Volume 8, Issue 6, 12778–12792.
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qualitative factors are considered. Because the market was good without any negative information at
that time, the fuzzy set with label greater than that of the current fuzzy set is selected as the prediction
sets, namely, A29. Then the trend-weighted method is applied to calculate the PROP, which is 1.935%,
and the POP is 8.300× (1+ 1.935%) = 8.461. On Mar. 30th, 2016, the actual value of OP is 8.330.
The absolute error (AER) is computed by Eq (4.2):

AER =

∣∣∣∣xi− pi

xi

∣∣∣∣ ·100%. (4.2)

After calculation, the AER is 1.568%, far less than the that of literatures [23] 4.380% and [4]
3.117%.

Figure 3 shows the real data of OP and the predicted values using different methods. In the figure,
it can be seen more intuitively that compared with the predicted values of particle swarm optimization
(PSO) and BP neural network, the predicted values of the method proposed in this paper are closer to
the real values. Equation (4.2) is used to calculate the AER. The results are shown in Table 3. From
Table 3, we can see that the maximum of AER is 1.848%, and the minimum of AER is 0.007%. A
more intuitive results are shown on Figure 4. The average absolute error rate (AAER) is calculated by
Eq (4.3):

AAER =
∑

n
i=1
|xi−pi|

xi

n
·100%. (4.3)

The AAER of the proposed method is 0.2284%, much smaller than that in literature [6], which is
1.5294%. By comparison, we can see that the method proposed in this paper is more effective.

5 10 15 20 25 30 35 40 45

5

6

7

8

9

10

11

True value

Particle Swarm Optimization

BP neural network

Methods in this paper

X 33

Y 6.09

Figure 3. Opening price and the prediction using multivariate fuzzy time series method.
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Figure 4. Absolute error rate.

4.2. Predicting stock price of TAIFEX

In order to further evaluate the performance of the proposed method. The method is applied to
predict TAIFEX time series, whose observations are between Aug. 3rd, 1998 and Sep. 30th, 1998.
The first 38 observations are used for training, and the last 9 data are used for testing.

Firstly, the PCA method is used to determine the main factors affecting the stock prices. The
cumulative contribution rates of the CP and the TV are over 85%, so they are selected as research
variables. Next, the two sets of observations are taken into Eqs (3.4) and (3.5), respectively, to
calculate the gradient, and are arranged into two ascending sequences of numbers. Then, using the
improved clustering analysis algorithm, they are divided into two groups of universes. According to
the membership maximum principle, two sets of fuzzy relationship chains are obtained. The prediction
fuzzy sets can be obtained from it. When there are multiple sets corresponding to the current fuzzy set,
the optimal predictive fuzzy set is selected according to expert evaluation or experience, considering
qualitative factors. Finally, using Eqs (2.3) and (3.8), the predicted values are obtained.

The test data of TAIFEX are also predicted using methods proposed by Lee et al. [15], Aladag
et al. [1] and Bas et al. [3]. The AAER applying Eq (4.3) and the root mean square error (RMSE)
applying Eq (4.4) are obtained.

RMSE =

√√√√ n
∑

t=1
(pt− xt)

2

n
. (4.4)

A performance comparison is shown in Table 4.
It can be observed that the AAER and the RMSE of the proposed method is far smaller than that

of Lee’s method, Aladag’s method and Bas’s method. From Table 4, the experimental results show
that the hybrid fuzzy time series model proposed in this paper obtains the minimum AAER and RMSE.

AIMS Mathematics Volume 8, Issue 6, 12778–12792.



12790

In other words, this model can reduce the prediction error more effectively and has better prediction
performance than other stock price prediction methods.

Table 4. Comparison of the results of test set for TAIFEX time series.

Test data Lee et al. [15] Aladag et al. [1] Bas et al. [3] The proposed method
7039 6977 6850 6900 6993
6861 6875 6850 6900 6864
6926 7126 6850 6900 6935
6852 6863 6850 6900 6847
6890 6944 6850 6860 6925
6871 6832 6850 6900 6896
6840 6843 6850 6860 6838
6806 6859 6850 6860 6837
6787 6826 6750 6860 6809

RMSE 76.69 72.32 58.62 24.79
AAER 0.0076 0.0069 0.0074 0.0029

5. Conclusions

In this paper, the main factors among the multiple quantitative ones that affect the stock prices are
selected by the PCA algorithm. This method reduces the dimension of the problem to be studied.
Then, improved cluster analysis algorithm is used to divide the universe of discourse, which makes
the division more reasonable. The fuzzy relations are set up according to Markov transition matrix,
and consider the qualitative factors to remove the redundant prediction sets. This is a better way to
start from the data and make more efficient use of the data’s own attributes. Finally, the predicted
value is calculated by using the inverse fuzzy number. The model is applied to different stock data.
By comparison, it can be seen that the method effectively improves the prediction performance and is
more suitable for dealing with complex nonlinear data. The application of multivariable fuzzy time
series to stock price prediction effectively improves the prediction accuracy and is a future research
direction.

Of course, there are a lot of methods to reduce the data dimension, the author will continue the
study to find better dimensionality reduction methods and try to apply the research into other fields.
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