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1. Introduction

In this article, we study the oscillatory nature of solutions of the neutral differential equations (NDE)

d
dι

(
ϱ (ι)

(
d
dι

z (ι)
)α)
+ q (ι) xα (g (ι)) = 0, (1.1)

and
d
dι

(
ϱ (ι)

(
d3

dι3
z (ι)

)α)
+ q (ι) xα (g (ι)) = 0, (1.2)

where ι ≥ ι0, z (ι) = x (ι) + p (ι) x (h (ι)) , and α is a ratio of two odd natural numbers. We use the
following assumptions:
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(A1) The functions ϱ, p and q are continuous on [ι0,∞) and satisfy the conditions:
ϱ (ι) > 0, ϱ′ (ι) > 0, 0 < p (ι) < 1, q (ι) > 0, and q does not vanish identically on any half-line
[ι∗,∞) , for ι∗ ≥ ι0.

(A2) h and g are continuous delay functions on [ι0,∞) and fulfill the conditions:
h (ι) , g (ι) ≤ ι g′ (ι) ≥ 0 and limι→∞ h (ι) = limι→∞ g (ι) = ∞.

Moreover, we consider the canonical case, that is,∫ ∞

ι0

ϱ−1/α (v) dv = ∞. (1.3)

By a solution of Eq (1.1) or (1.2), we mean a real function x ∈ Cm−1 ([ιx,∞)) for some ιx ≥ ι0, which
has the property ϱ ·

(
zm−1

)α
∈ C1 ([ιx,∞)) and x satisfies Eq (1.1) on [ιx,∞), for m = 2, 4. Only solutions

that satisfy the condition sup{|x (ι)| : ι ≥ ι∗} > 0, for all ι∗ ≥ ιx, will receive our attention. A solution
of Eq (1.1) is called non-oscillatory if it is eventually positive or eventually negative; otherwise, it is
called oscillatory.

Since the creation of the differentiation concept, ordinary differential equations have been utilized
to model physical phenomena. As a result of the observation that most of the natural and physical
phenomena contain a delay in time (different times), the so-called delay differential equations (DDE)
have been established, which take into account the temporal memory of the phenomena. DDEs are
functional differential equations in one independent variable, frequently time ι, and they contain late
times as the highest derivative in them is on the solution without delay.

The property of oscillation is widespread in many physical, natural, and even social phenomena, so
the study of oscillatory properties for solutions of differential equations is an interesting issue not only
for its applied importance, but because it also contains many interesting analytical issues.

Sturm’s paper [1] is one of the pioneering papers that contributed to the establishment of oscillation
theory. He devised the comparative technique, which couples the oscillatory properties of solutions to
one differential equation to another. Then, Kneser [2] completed the work in this field and deduced
the type of solutions that have been known by his name so far. In 1921, Fite [3] presented the first
results that included the oscillation of the solutions of differential equations with deviating arguments.
Since then, many results, techniques, and approaches have been presented that have contributed to the
development of oscillation theory, most of which have been compiled in monographs [4–8].

Neutral differential equations are a type of functional differential equation in which the highest
derivative occurs on the solution with and without delay. This type of equation appears as a result
of modeling many phenomena, such as electric networks containing lossless transmission lines (as in
high speed computers), vibrating masses, and variational problems with time delays, see [9]. Interest
in studying the qualitative behavior of DDE is increasing as a result of the creation of new models and
the tremendous technical and scientific growth that the world is currently witnessing in engineering,
biology, and physics, see [10–13].

Baculikova and Dzurina in [14] studied the oscillation of NDE

d
dι

(
ϱ (ι)

(
d
dι

z (ι)
)α)
+ q (ι) xβ (g (ι)) = 0,

when α ≥ β, g and h nondecreasing, h (g (ι)) = g (h (ι)). In [15–17], the oscillatory behavior of NDE(
ϱ (ι) |z′ (ι)|α−1 z′ (ι)

)′
+ q (ι) |x (g (ι))|β−1 x (g (ι)) = 0, (1.4)
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have been studied. Liu et al. [15], investigated the asymptotic behavior of (1.4), whenα ≥ β, ϱ′ (ι) > 0
and g′ (ι) > 0. Wu et al. [16] and Zeng et al. [17] obtained oscillation criteria for (1.4), which develops
the criteria in [15]. Grace et al. [18] developed criteria with more than one approach to test the
oscillation of solutions of second-order NDEs. Recently, Pátı́ková and Fišnarová [19] used an
improved Riccati substitution to obtain the oscillation criteria of (1.1). Jadlovská [20] provided sharp
criteria to check the oscillation of the solutions of (1.1).

In 1998, Zafer [21] studied the oscillatory behavior of the NDE

dn

dιn
z (ι) + q (ι) f (ι, x (ι) , x (g (ι))) = 0,

where there are w, h ∈ C1 ([ι0,∞) , [0,∞)) such that w (ι) > 0, w′ (ι) > 0, and

| f (ι, u, v)| ≥ h (ι) w
(

|v|(
1 − p (g (ι)) gn−1 (ι)

)) .
Later, Karpuz et al. [22] and Zhang et al. [23] used the principle of comparison to obtain an oscillation
criterion for the NDE

dn

dιn
z (ι) + q (ι) x (g (ι)) = 0. (1.5)

In [24], Zhang and Yan developed criteria of an iterative nature to test the oscillation of (1.5).
Agarwal et al. [25] used the Riccati technique to study the oscillatory behavior of the NDE (1.5).

In 2012, Zhang et al. [26] examined the asymptotic behavior of

d
dι

(
ϱ (ι)

(
dn

dιn
x (ι)

)α)
+ q (ι) xβ (g (ι)) = 0, (1.6)

in the noncanonical case. The results in [26] made sure that all nonoscillatory solutions of Eq (1.6)
converge to zero. Zhang et al. [27] improved the results in [26]. By imposing the following conditions

f ′ (u) ≥ 0 and − f (−uv) ≥ f (uv) ≥ f (u) f (v) , for uv > 0.

Baculikova et al. [28] studied the oscillatory properties of

d
dι

(
ϱ (ι)

(
dn

dιn
x (ι)

)α)
+ q (ι) f (x (g (ι))) = 0,

in the canonical and noncanonical cases. Recently, there have been some studies concerned with the
canonical case of Eq (1.6), see for examples [29–31].

In this paper, we derive new monotonic features of the second-order NDE (1.1). We then use
these features to obtain optimized oscillation parameters. We use more than one approach to obtain
oscillation parameters. Moreover, in the last section, we set new criteria that ensure the oscillation of
solutions of the fourth order NDE (1.2). The new criteria are an extension and development of relevant
previous studies.

2. Oscillation results for the second-order equation

In this section, we set out to investigate the monotonic properties and oscillatory behavior of
solutions to Eq (1.1).
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2.1. Preliminary results

Before looking at the oscillation of the DDE, it is known that determining the signs of derivatives
of x or z is important and necessary. Establishing relationships between derivatives of various orders is
also crucial, although doing so may impose further limitations on the study. The most influential factor
in the relationships between derivatives is the monotonic properties of the solutions of these equations.
Therefore, improving these properties or finding new properties of an iterative nature greatly affects
the qualitative study of solutions to these equations.

The following notations will be required when presenting the results: Ps : The set of all eventually
positive solutions of (1.1), h0 (ι) := ι, hi = h ◦ hi−1, for i = 1, 2, ...,

µs (ι) :=
∫ ι

s
ϱ−1/α (v) dv,

and

p̃ (ι,m) :=

 m∑
i=0

 2i∏
j=0

(
p ◦ h j

) [ 1
(p ◦ h2i)

− 1
] (
µι1 ◦ h2i

)
µι1


α

, ι1 ≥ ι0.

Lemma 2.1. The following properties are satisfied for each x ∈ Ps:

(P1) z is non-decreasing,

(P2)
z
µι1

is decreasing,

for ι ≥ ι1 ≥ ι0.

Proof. Assuming that x ∈ Ps, we find, by taking into account (C2), that x ◦ h, x ◦ g and z are also
eventually positive. Hence, from Eq (1.1), the function ϱ · (z′)α is decreasing, and so ϱ · (z′)α is of fixed
sign.

For the proof of (P1), we should consider two cases:
Case 1: ϱ (ι) (z′ (ι))α ≥ 0. Then, z′ (ι) ≥ 0, and z is non-decreasing.
Case 2: ϱ (ι) (z′ (ι))α < 0. Because z is positive and decreasing, there existis a constant L such
that ϱ (ι) (z′ (ι))α ≤ −L2 < 0 for ι ≥ ι1. Therefore, z′ (ι) ≤ −L2/αϱ−1/α (ι). By integrating this inequality
from ι1 to∞ and using the canonical condition (1.3), we obtain z (ι1) = ∞, a contradiction.

Now, we have z is increasing for ι ≥ ι1. Thus,

z (ι) ≥
∫ ι

ι1

ϱ−1/α (v) ϱ1/α (v) z′ (v) dv ≥ µι1 (ι) ϱ1/α (ι) z′ (ι) . (2.1)

Then,
(

1
µι1

z
)′
= 1
µ2
ι1

(
µι1z

′ − ϱ−1/αz
)
≤ 0, (property (P2)).

Here, the proof ends.

Lemma 2.2. Assume that x ∈ Ps. Then,(
ϱ (ι)

(
z′ (ι)

)α)′
≤ −q (ι) p̃ (g (ι) ,m) zα (g (ι)) . (2.2)
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Proof. Assume that x ∈ Ps. Based on the relationship between x and z, we obtain x = z − p · (x ◦ h).
Thus, (x ◦ h) = (z ◦ h) − (p ◦ h) · (x ◦ h2). By substitution, we get

x = z − p · (z ◦ h) − p · (p ◦ h) · (x ◦ h2) .

By repeating this procedure, we arrive at

x = z − p · (z ◦ h) + p · (p ◦ h) · (z ◦ h2) − p · (p ◦ h) · (p ◦ h2) · (z ◦ h3)

+p · (p ◦ h) · (p ◦ h2) · (p ◦ h3) · (x ◦ h4) .

Hence,

x >
m∑

i=0

 2i∏
j=0

(
p ◦ h j

) [ (z ◦ h2i)
(p ◦ h2i)

− (z ◦ h2i+1)
]
. (2.3)

From Lemma 2.1, we obtain that (P1) and (P2) hold. Therefore, (z ◦ h2i) ≥ (z ◦ h2i+1), and

(z ◦ h2i) ≥
(
µι1 ◦ h2i

)
µι1

z, for i = 0, 1, ...,

for ι ≥ ι1. Then, (2.3) reduce to

x > z
m∑

i=0

 2i∏
j=0

(
p ◦ h j

) [ 1
(p ◦ h2i)

− 1
] (
µι1 ◦ h2i

)
µι1

.

Now, Eq (1.1) becomes (ϱ (ι) (z′ (ι))α)′ ≤ −q (ι) p̃ (g (ι) ,m) zα (g (ι)).
Here, the proof ends.

Lemma 2.3. Assume that

q (ι) p̃ (g (ι) ,m) ϱ1/α (ι) µι1 (ι) µαι1 (g (ι)) ≥ αk for some positive constant k, (2.4)

and
µι1 (ι) ≥ δµι1 (g (ι)) for some 1 ≤ δ < ∞. (2.5)

Then, the following properties are satisfied for each x ∈ Ps:

(P3) lim
ι→∞

z (ι)
µι1 (ι)

= 0,

(P4)
z
µ1−k
ι1

is decreasing,

(P5)
z

µ
α√k δk
ι1

is increasing.

Proof. Assuming that x ∈ Ps, we find, by taking into account (C2), that x ◦ h, x ◦ g and z are also
eventually positive.

From Lemma 2.1, we have that (P1) and (P2) hold.
Now, we have z/µι1 is positive and decreasing. Then, z/µι1 → c ≥ 0 as ι→ ∞.
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When, unlike property (P3), we assume that c > 0, we find that there is a ι1 ≥ ι0 such that z/µι1 ≥ c
for ι ≥ ι1. Thus, by integrating (2.2) from ι1 to ι, we obtain

ϱ (ι1)
(
z′ (ι1)

)α
≥ cα

∫ ι

ι1

q (v) p̃ (g (v) ,m) µαι1 (g (v)) dv.

From (2.4), we arrive at

ϱ (ι1)
(
z′ (ι1)

)α
≥ αkcα

∫ ι

ι1

1
ϱ1/α (v) µι1 (v)

dv

= kcα ln
µι1 (ι)
µι1 (ι1)

→ ∞ as ι→ ∞,

a contradiction. Then, c = 0.
Next, using (2.1), (2.2), (2.4) and the fact that

(
ϱ1/α (ι) z′ (ι)

)′
≤ 0, we find

(
ϱ1/α (ι) z′ (ι)

)′
=

1
α

(
ϱ1/α (ι) z′ (ι)

)1−α (
ϱ (ι)

(
z′ (ι)

)α)′
≤ −

1
α

(
ϱ1/α (ι) z′ (ι)

)1−α
q (ι) p̃ (g (ι) ,m) zα (g (ι)) (2.6)

≤ −
1
α

(
ϱ1/α (ι) z′ (ι)

)1−α
q (ι) p̃ (g (ι) ,m) µαι1 (g (ι)) ϱ1/α (g (ι)) z′ (g (ι))

≤ −
1
α

q (ι) p̃ (g (ι) ,m) µαι1 (g (ι)) ϱ1/α (ι) z′ (ι)

≤ −
k

ϱ1/α (ι) µι1 (ι)
ϱ1/α (ι) z′ (ι)

= −
k
µι1 (ι)

z′ (ι) . (2.7)

Here, we define the function ϕ := (1 − k) z − µι1 · ϱ
1/α · z′. By differentiating and using (2.7), we get

ϕ′ = (1 − k) z′ − µι1 ·
(
ϱ1/α · z′

)′
− ϱ−1/α

(
ϱ1/α · z′

)
= −kz′ − µι1 ·

(
ϱ1/α · z′

)′
≥ −k z′ + µι1 ·

k
µι1

z′ = 0.

Now, we will prove that ϕ (ι) > 0. If we assume the contrary, then we find
that (1 − k) z ≤ µι1 ·

(
ϱ1/α · z′

)
, and so z/µ1−k

ι1
is increasing. We note from (P3)

that limι→∞ ϱ1/α (ι) z′ (ι) = 0. Thus, by integrating (2.2) over [ι,∞), we arrive at

ϱ (ι)
(
z′ (ι)

)α
≥

∫ ∞

ι

q (v) p̃ (g (v) ,m) zα (g (v)) dv. (2.8)

Hence, from (2.4) and (P2), we arrive at

ϱ (ι)
(
z′ (ι)

)α
≥ αk

∫ ∞

ι

1
ϱ1/α (v) µι1 (v)

zα (g (v))
µαι1 (g (v))

dv
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≥ αk
∫ ∞

ι

1
ϱ1/α (v) µα+1

ι1
(v)

zα (v) dv

= αk
∫ ∞

ι

1
ϱ1/α (v) µ1+αk

ι1
(v)

(
z (v)
µ1−k
ι1

(v)

)α
dv

≥ αk
(

z (ι)
µ1−k
ι1

(ι)

)α ∫ ∞

ι

1
ϱ1/α (v) µ1+αk

ι1
(v)

dv

=
zα (ι)
µαι1 (ι)

,

and hence µι1 · ϱ
1/α · z′ ≥ z, which contradicts (2.1). Thus, ϕ (ι) > 0, and then z/µ1−k

ι1
is decreasing.

Next, from (2.4) and (2.8), we have

ϱ (ι)
(
z′ (ι)

)α
≥ αk

∫ ∞

ι

1
ϱ1/α (v) µι1 (v)

zα (g (v))
µαι1 (g (v))

dv

= αk
∫ ∞

ι

1
ϱ1/α (v) µι1 (v) µαk

ι1
(g (v))

(
z (g (v))
µ1−k
ι1

(g (v))

)α
dv,

which, with (P4) and (2.5), gives

ϱ (ι)
(
z′ (ι)

)α
≥ α k zα (ι)

∫ ∞

ι

1
ϱ1/α (v) µ1+α

ι1
(v)

(
µι1 (v)
µι1 (g (v))

)αk

dv

≥ k δαk zα (ι)
µαι1 (ι)

.

Hence, µι1 · ϱ
1/α · z′ ≥ k1/α δk z, and then z/µ

α√k δk
ι1

is increasing.
Here, the proof ends.

Lemma 2.4. Assume that x ∈ Ps, (2.4) and (2.5) hold. Then,(
ϱ (ι)

(
z′ (ι)

)α)′
≤ −q (ι) p̂ (g (ι) ,m) zα (g (ι)) , (2.9)

where

p̂ (ι,m) :=

 m∑
i=0

 2i∏
j=0

(
p ◦ h j

)
 1
(p ◦ h2i)

−

((
µι1 ◦ h2i+1

)(
µι1 ◦ h2i

) ) α√k δk

(
µ1−k
ι1
◦ h2i

)
µ1−k
ι1


α

.

Proof. Proceeding as in the proof of Lemma 2.2, we arrive at (2.3). From Lemma 2.3, we have that (P4)
and (P5) hold. Then, we get

(z ◦ h2i) ≥

(
µ1−k
ι1
◦ h2i

)
µ1−k
ι1

z,

and

(z ◦ h2i+1) ≤
((
µι1 ◦ h2i+1

)(
µι1 ◦ h2i

) ) α√k δk

(z ◦ h2i) ,
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for i = 0, 1, ... . Thus, (2.3) transforms into

x > z ·
m∑

i=0

 2i∏
j=0

(
p ◦ h j

)
 1
(p ◦ h2i)

−

((
µι1 ◦ h2i+1

)(
µι1 ◦ h2i

) ) α√k δk

(
µ1−k
ι1
◦ h2i

)
µ1−k
ι1

,

which together with (1.1) gives (2.9).
Here, the proof ends.

In the following lemma, we formulate Eq (1.1) in linear form.

Lemma 2.5. Assume that (2.4) and (2.5) hold. If x ∈ Ps, then(
ϱ1/α (ι) z′ (ι)

)′
+ Q (ι,m) z (g (ι)) ≤ 0, (2.10)

where

Q (ι,m) = q (ι) p̂ (g (ι) ,m) ×


1
α

(
(1 − k) δ−k

)1−α
µα−1
ι1

(g (ι)) for α ≥ 1,

1
α

(
α
√

kδk+ α
√

kδk
)1−α
µα−1
ι1

(ι) for α < 1.

Proof. Assuming that x ∈ Ps, we find, by taking into account (C2), that x ◦ h, x ◦ g and z are also
eventually positive. From Lemmas 2.1 and 2.3, we have that (P1)–(P5) hold.

From Lemma 2.4, we have that (2.9) holds. Then,(
ϱ1/α (ι) z′ (ι)

)′
=

1
α

(
ϱ1/α (ι) z′ (ι)

)1−α (
ϱ (ι)

(
z′ (ι)

)α)′
≤ −

1
α

(
ϱ1/α (ι) z′ (ι)

)1−α
q (ι) p̂ (g (ι) ,m) zα (g (ι)) . (2.11)

Assume first that α ≥ 1. Using (P4), we get that (1 − k) z ≥ µι1 ·
(
ϱ1/α · z′

)
. From the facts

that g (ι) ≤ ι, (P4) and (2.5), we obtain

ϱ1/α (ι) z′ (ι) ≤ (1 − k)
1
µι1 (ι)

z (ι) ≤ (1 − k)
µk
ι1

(g (ι))
µk
ι1

(ι)
1

µι1 (g (ι))
z (g (ι))

≤
1 − k
δk

1
µι1 (g (ι))

z (g (ι)) ,

which with (2.11) gives

(
ϱ1/α (ι) z′ (ι)

)′
+

(
1 − k
δk

)1−α q (ι) p̂ (g (ι) ,m)
αµ1−α
ι1

(g (ι))
z (g (ι)) ≤ 0. (2.12)

Assume now that α < 1. Using (P5) and (2.5), we arrive at

ϱ1/α (ι) z′ (ι) ≥
α
√

kδk 1
µι1 (ι)

z (ι) ≥
α
√

kδk 1
µι1 (ι)

(
µι1 (ι)
µι1 (g (ι))

) α√kδk

z (g (ι))

≥
α
√

kδk+ α
√

kδk 1
µι1 (ι)

z (g (ι)) ,
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which with (2.11) gives(
ϱ1/α (ι) z′ (ι)

)′
+

1
α

(
α
√

kδk+ α
√

kδk
)1−α q (ι) p̂ (g (ι) ,m)

µ1−α
ι1

(ι)
z (g (ι)) ≤ 0. (2.13)

Combining (2.12) and (2.13), we get that (2.10) holds.
Here, the proof ends.

2.2. Oscillation criteria

Using the results in the previous section, we introduce new oscillation criteria for Eq (1.1) in the
following theorems:

Theorem 2.1. Assume that (2.4) and (2.5) hold. Then, Eq (1.1) is oscillatory if

lim sup
ι→∞

[
µk−1
ι1

(g (ι))
∫ g(ι)

ι1

µ1−k
ι1

(g (v)) µι1 (v) Q (v,m) dv + µk
ι1

(g (ι))
∫ ι

g(ι)
µ1−k
ι1

(g (v)) Q (v,m) dv

+ µ1− α
√

kδk
ι1

(g (ι))
∫ ∞

ι

µ
α√kδk
ι1

(g (v)) Q (v,m) dv
]
> 1 . (2.14)

Proof. On the basis of assuming the contrary, we assume that x ∈ Ps. It follows from Lemmas 2.1
and 2.3 that (P1)–(P5) hold.

From Lemma 2.5, we have that (2.10) holds. Integrating (2.10) from ι to ∞ and using (P3), we
obtain

ϱ1/α (ι) z′ (ι) = ϱ1/α (ι) z′ (ι) ≥
∫ ∞

ι

Q (v,m) z (g (v)) dv,

and so
z′ (ι) ≥

1
ϱ1/α (ι)

∫ ∞

ι

Q (v,m) z (g (v)) dv.

Integrating once again from ι1 to ι, we arrive at

z (ι) ≥
∫ ι

ι1

1
ϱ1/α (u)

∫ ∞

u
Q (v,m) z (g (v)) dv du

≥

∫ ι

ι1

µι1 (v) Q (v,m) z (g (v)) dv + µι1 (ι)
∫ ∞

ι

Q (v,m) z (g (v)) dv.

Hence,

z (g (ι)) ≥
∫ g(ι)

ι1

µι1 (v) Q (v,m) z (g (v)) dv + µι1 (g (ι))
∫ ∞

g(ι)
Q (v,m) z (g (v)) dv

≥

∫ g(ι)

ι1

µι1 (v) Q (v,m) z (g (v)) dv + µι1 (g (ι))
∫ ι

g(ι)
Q (v,m) z (g (v)) dv

+µι1 (g (ι))
∫ ∞

ι

Q (v,m) z (g (v)) dv.

Using (P4) and (P5), we conclude that

1 ≥ µk−1
ι1

(g (ι))
∫ g(ι)

ι1

µ1−k
ι1

(g (v)) µι1 (v) Q (v,m) dv + µk
ι1

(g (ι))
∫ ι

g(ι)
µ1−k
ι1

(g (v)) Q (v,m) dv
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+µ1− α
√

kδk
ι1

(g (ι))
∫ ∞

ι

µ
α√kδk
ι1

(g (v)) Q (v,m) dv.

Taking lim supι→∞ of the previous inequality, we arrive at a contradiction with (2.14).
Here, the proof ends.

Theorem 2.2. Assume that (2.4) and (2.5) hold. Then, Eq (1.1) is oscillatory if

lim inf
ι→∞

∫ ι

g(ι)
Q (v,m) µι1 (g (v)) dv >

1 − k
e
. (2.15)

Proof. On the basis of assuming the contrary, we assume that x ∈ Ps. It follows from Lemmas 2.1
and 2.3 that (P1)–(P5) hold. From Lemma 2.5, we have that (2.10) holds.

Using (P4), we have (1 − k) z ≥ µι1 ·
(
ϱ1/α · z′

)
, which (2.10) gives(

ϱ1/α (ι) z′ (ι)
)′
+

1
1 − k

Q (ι,m) µι1 (g (ι)) ϱ1/α (g (ι)) z′ (g (ι)) ≤ 0. (2.16)

Then, ϱ1/α · z′ is a positive solution of the delay differential inequality of first-order (2.16). It follows
from Theorem 1 in [32] that the delay differential equation(

ϱ1/α (ι) z′ (ι)
)′
+

1
1 − k

Q (ι,m) µι1 (g (ι)) ϱ1/α (g (ι)) z′ (g (ι)) = 0, (2.17)

has also a positive solution. From Theorem 2 in [33], Eq (2.17) is oscillatory under condition (2.15), a
contradiction.

Here, the proof ends.

Theorem 2.3. Assume that (2.4) and (2.5) hold. Then, Eq (1.1) is oscillatory if there is
a ρ ∈ ([ι1,∞) ,R+) such that

lim sup
ι→∞

∫ ι

ι1

ρ (v) Q (v,m)
µ1−k
ι1

(g (v))
µ1−k
ι1

(v)
−

(
ρ′+ (v)

)2

4ρ (v)
ϱ1/α (v)

 dv = ∞. (2.18)

Proof. On the basis of assuming the contrary, we assume that x ∈ Ps. It follows from Lemma 2.3
that (P4) holds. From Lemma 2.5, we have that (2.10) holds.

Now, we define the function w := ρ ·
((
ϱ1/α · z′

)
/z

)
. Then w ≥ 0, for ι ≥ ι1. It follows from (2.10)

that

w′ =
ρ′

ρ
w + ρ ·

(
ϱ1/α · z′

)′
z

− ρ ·

(
ϱ1/α · z′

)
z2 ·

(
ϱ1/α · z′

)
ϱ1/α

≤ −ρ · Q ·
z ◦ g

z
+
ρ′

ρ
· w −

1
ϱ1/α · ρ

· w2

≤ −ρ · Q ·
z ◦ g

z
+

(
ρ′+

)2

4ρ
· ϱ1/α,

by using the fact that ϱw − Bw2 ≤ 1
4ϱ

2B−1. Thus, from (P4), we get

w′ ≤ −ρ · Q ·
µ1−k
ι1
◦ g

µ1−k
ι1

+

(
ρ′+

)2

4ρ
· ϱ1/α. (2.19)
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Integrating (2.19) from ι1 to ι, we arrive at

w (ι1) − w (ι) ≥
∫ ι

ι1

ρ (v) Q (v,m)
µ1−k
ι1

(g (v))
µ1−k
ι1

(v)
−

(
ρ′+ (v)

)2

4ρ (v)
ϱ1/α (v)

 dv.

Taking lim supι→∞ of the previous inequality, we arrive at a contradiction with (2.18).
Here, the proof ends.

Remark 2.1. Using formula (2.2) instead of (2.9), we can obtain the same oscillation criteria by
replacing q̂ with q̃. It is also easy to verify that p̃ (ι, 0) = (1 − p (ι))α.

Corollary 2.1. Assume that (2.5) hold and

q (ι) ϱ1/α (ι) µι1 (ι) µαι1 (g (ι)) ≥ αk for some positive constant k,

Then, equation
d
dι

(
ϱ (ι)

(
d
dι

x (ι)
)α)
+ q (ι) xα (g (ι)) = 0,

is oscillatory if there is a ρ ∈ ([ι1,∞) ,R+) such that

lim sup
ι→∞

∫ ι

ι1

ρ (v) ϕ (v) q (v)
µ1−k
ι1

(g (v))
µ1−k
ι1

(v)
−

(
ρ′+ (v)

)2

4ρ (v)
ϱ1/α (ι)

 dv = ∞,

where

ϕ (ι) =


1
α

(
(1 − k) δ−k

)1−α
µα−1
ι1

(g (ι)) for α ≥ 1,

1
α

(
α
√

kδk+ α
√

kδk
)1−α
µα−1
ι1

(ι) for α < 1.

Theorem 2.4. Assume that (2.4) and (2.5) hold. Then, Eq (1.1) is oscillatory if

lim sup
ι→∞

1
µαι1 (ι)

∫ ι

ι1

[
q (v) p̂ (v,m) µαι1 (g (v)) −

β

ϱ1/α (v) µι1 (v)

]
dv > 0, (2.20)

where β = (α/ (α + 1))α+1.

Proof. On the basis of assuming the contrary, we assume that x ∈ Ps. It follows from Lemmas 2.1
and 2.3 that (P1)–(P5) hold.

We define w :=
(
ϱ1/α · z′

)α
/zα, then

w′ =

((
ϱ1/α · z′

)α)′
zα

−

(
ϱ1/α · z′

)α
zα+1 · αz′

≤ −q · p̂ ·
zα ◦ g

zα
−
α

ϱ1/α ·

(
ϱ1/α · z′

)α+1

zα+1 ,

which with (P2) gives

µαι1 (ι) w′ (ι) ≤ −q (ι) p̂ (g (ι) ,m) µαι1 (g (ι)) −
αµαι1 (ι)
ϱ1/α (ι)

w1+1/α (ι) . (2.21)
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Integrating (2.21) from ι1 to ι, we have

µαι1 (ι1) w (ι1)
µαι1 (ι)

≥
1
µαι1 (ι)

∫ ι

ι1

q (v) p̂ (v,m) µα (g (v)) dv − α
∫ ι

ι1

µα−1
ι1

(v)
ϱ1/α (v)

[
w (v) − µι1 (v) w1+1/α (v)

]
dv

 .
Using the inequality

Au − Bu1+1/α ≤ (α/ (α + 1))α+1 Aα+1B−α, (2.22)

we obtain
µαι1 (ι1) w (ι1)
µαι1 (ι)

≥
1
µαι1 (ι)

∫ ι

ι1

[
q (v) p̂ (v,m) µα (g (v)) −

β

ϱ1/α (v) µι1 (v)

]
dv.

Taking lim supι→∞ of the previous inequality, we arrive at a contradiction with (2.20).
Here, the proof ends.

Corollary 2.2. Assume that (2.5) hold. Then, Eq (1.1) is oscillatory if

lim inf
ι→∞

q (ι) p̂ (g (ι) ,m) ϱ1/α (ι) µι1 (ι) µαι1 (g (ι)) > β. (2.23)

Proof. It is easy to note that condition (2.23) guarantees both conditions (2.4) and (2.20).

Example 2.1. Consider the NDE

d
dι

((
d
dι

[
x (ι) + p0x (aι)

])α)
+

q0

ια+1 xα (bι) = 0, (2.24)

where ι > 0, p0 ∈ [0, 1), q0 > 0, a ∈ (0, 1), and 0 < b < min
{
1, α

√
1
α
q0 (1 − p0)

}
. It is easy to check

that hi = aiι, and

p̃ (ι,m) =

[ 1
p0
− 1

] m∑
i=0

p2i+1
0 a2i

α := A0,m.

By choosing δ = 1/b, and k = 1
α

A0,mq0bα, we have that (2.4) and (2.5) hold. Then

p̂ (ι,m) =

[ 1
p0
− a

α√k δk
] m∑

i=0

p2i+1
0 a2(1−k)i

α := A1,m,

and

Q (ι,m) = A1,m
q0

ι2
×


1
α
bα−1

(
(1 − k) δ−k

)1−α
for α ≥ 1

1
α

(
α
√

kδk+ α
√

kδk
)1−α

for α < 1

= A1,m
q0

ι2
B.

Hence, condition (2.14) becomes

A1,mBq0

[
b1−k

1 − k
+

b
k

(
b−k − 1

)
+

b

1 − α
√

kb−k

]
> 1. (2.25)
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Moreover, condition (2.15) becomes

A1,mBbq0 ln
1
b
>

1 − k
e
. (2.26)

On the other hand, by choosing ρ (ι) = ι, condition (2.18) reduces to

A1,mBb1−kq0 >
1
4
. (2.27)

Remark 2.2. Corollary 1 in [19] confirms that Eq (2.24) is oscillatory if

q0 >
β

bα (1 − p0)α
. (H1)

Using Theorem 6 in [18], we get that (2.24) is oscillatory if

q0 >
β

bακ (1 − p0)α
, (H2)

where κ = (α/ (α + (1 − p0)α q0bα))α. Consider the special case of (2.24) when p0 = 1/2, a = 0.9,
and α = 1, namely,

d2

dι2

(
x (ι) +

1
2

x
(

9
10
ι

))
+

q0

ι2
x (bι) = 0. (2.28)

It is easy to check that A0,m = 0.62696, k = 0.62696q0b, and

A1,m =
[
2 − (0.9)k b−k] m∑

i=0

(0.5)2i+1 (0.9)2(1−k)i .

Applying conditions (2.25)–(2.27), we obtain that (2.28) is oscillatory if one of the following conditions
is satisfied:

A1,mq0

[
b1−k

1 − k
+

b
k

(
b−k − 1

)
+

b
1 − kb−k

]
> 1, (H3)

A1,mbq0 ln
1
b
>

1 − k
e
, (H4)

or
A1,mb1−kq0 >

1
4
. (H5)

Figure 1 shows a comparison of regions where conditions (H1)–(H5) are satisfied for Eq (2.28). It is
easy to see that our criterion (H5) provides the best results for the oscillation of (2.28). For example,
we find that criterion (H5) ensures that the equation

d2

dι2

(
x (ι) +

1
2

x
(

9
10
ι

))
+

1
2ι2

x
(

8ι
10

)
= 0,

is oscillatory, while the rest of the criteria fail to do so. Figure 2 shows the lower bounds of the regions
in which condition (H5) is satisfied for m = 0, 1, 5.
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Figure 1. Comparison between the criteria (H1)–(H5) for i = 0, 1, 2, 3.

Figure 2. Lower bounds of the regions in which condition (H5) is satisfied for m = 0, 1, 5.

3. Oscillation results for the fourth-order equation

The following notations will be required when presenting the results: Fs : The set of all eventually
positive solutions of (1.2),

µs (ι) :=
∫ ι

s
µι1 (v) dv,

and

φc (ι,m) :=

 m∑
i=0

 2i∏
j=0

(
p ◦ h j

) [ 1
(p ◦ h2i)

− 1
] (

h2i

ι

)c

α

.

Lemma 3.1. [38] If H ∈ Cr ([ι0,∞), (0,∞)), H( j) (ι) > 0 for j = 1, 2, ..., r, and H(r+1) (ι) ≤ 0,
then H (ι) ≥ 1

r ιH
′ (ι), eventually.
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The following lemma determines the sign of the derivatives of the positive solutions of (1.2), which
comes directly from applying Lemma 2.2.1 in [35] to Eq (1.2).

Lemma 3.2. The following properties are satisfied for each x ∈ Fs:

(i) z (ι) > 0, z′ (ι) > 0, z′′′ (ι) > 0 and
(
ϱ (ι)

(
z′′′ (ι)

)α)′
≤ 0,

(ii) z′′ is of fixed sign.

Lemma 3.3. Assume that x ∈ Fs. If z′′ (ι) > 0, eventually, then,

(F1) z (ι) ≥
1
3
ι z′ (ι) ,

(F2)
(
ϱ (ι)

(
z′′′ (ι)

)α)′
≤ −q (ι)φ3 (g (ι) ,m) zα (g (ι)) .

On the other hand, if z′′ (ι) < 0, eventually, then

(F3) z (ι) ≥ ϵιz′ (ι) ,
(F4)

(
ϱ (ι)

(
z′′′ (ι)

)α)′
≤ −q (ι)φ1/ϵ (g (ι) ,m) zα (g (ι)) ,

for all ϵ ∈ (0, 1).

Proof. Assume that x ∈ Fs and z′′ (ι) > 0 for ι ≥ ι1. By using Lemma 3.1 with H = z and r = 3,
we get that z ≥ 1

3 ι z
′. Next, proceeding as in the proof Lemma 2.2, we arrive at (2.3). Using the facts

that z′ (ι) > 0 and (F1), we obtain (z ◦ h2i) ≥ (z ◦ h2i+1) and

(z ◦ h2i) ≥
h3

2i

ι3
z.

Then, (2.3) becomes

x > z
m∑

i=0

 2i∏
j=0

(
p ◦ h j

) [ 1
(p ◦ h2i)

− 1
] (

h2i

ι

)3

,

which together with (1.2) gives (F2).
Next, assume that z′′ (ι) < 0 for ι ≥ ι1. Then, there is ι2 > ι1 such that

z (ι) ≥
∫ ι

ι1

z′ (v) dv ≥ (ι − ι1) z′ (ι) ≥ ϵιz′ (ι) ,

for all ι ≥ ι2 and ϵ ∈ (0, 1). Using the previous fact and z′ (ι) > 0, (2.3) reduces to

x > z
m∑

i=0

 2i∏
j=0

(
p ◦ h j

) [ 1
(p ◦ h2i)

− 1
] (

h2i

ι

)1/ϵ

,

which together with (1.2) gives (F4).
Here, the proof ends.
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3.1. Oscillation criteria

Lemma 3.4. Assume that x ∈ Fs, and there is a ρ ∈ C ([ι0,∞) , (0,∞)) such that

lim sup
ι→∞

∫ ι

ι1

ρ (v) q (v)φ3 (g (v) ,m)
(
g (v)

v

)3α

−
1

(α + 1)α+1

(ρ′ (v))α+1

ρα (v) µαι1 (v)

 dv = ∞. (3.1)

Then z′′ (ι) < 0, eventually.

Proof. Assume that x ∈ Fs. From Lemma 3.2, we have that (i) and (ii) hold.
Suppose the contrary that z′′ (ι) > 0 for ι ≥ ι1. Then, we find

z′′ (ι) ≥
∫ ι

ι1

ϱ1/α (v) z′′′ (v)
ϱ1/α (v)

dv ≥ ϱ1/α (ι) z′′′ (ι) µι1 (ι) .

Hence, z′′/µι1 is decreasing, and so

z′ (ι) ≥
∫ ι

ι1

z′′ (v)
µι1 (v)

µι1 (v) dv ≥
µι1 (ι)
µι1 (ι)

z′′ (ι) ≥ µι1 (ι) ϱ1/α (ι) z′′′ (ι) . (3.2)

Moreover, from (F1), we get
z ◦ g

z
≥

(g
ι

)3
. (3.3)

Now, we define the function

w := ρ · ϱ ·
(
z′′′

z

)α
> 0.

Then, from (F2), (3.2) and (3.3), we find

w′ =
ρ′

ρ
· w + ρ ·

(ϱ · (z′′′)α)′

zα
− αρ · ϱ ·

(z′′′)α

zα+1 z′

≤
ρ′

ρ
· w − ρ · q · φ3 (g,m) ·

zα ◦ g
zα
− αρ · ϱ1+1/α · µι1 ·

(z′′′)α+1

zα+1

≤ −ρ · q · φ3 (g,m) ·
(g
ι

)3α
+
ρ′

ρ
· w − α

µι1
ρ1/α · w

1+1/α.

By using inequality (2.22), we obtain

w′ ≤ −ρ · q · φ3 (g,m) ·
(g
ι

)3α
+

1
(α + 1)α+1

(ρ′)α+1

ρα · µαι1
.

By integrating this inequality from ι1 to ι, we conclude that

w (ι1) ≥
∫ ι

ι1

ρ (v) q (v)φ3 (g (v) ,m)
(
g (v)

v

)3α

−
1

(α + 1)α+1

(ρ′ (v))α+1

ρα (v) µαι1 (v)

 dv,

which contradicts (3.1).
Here, the proof ends.
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Theorem 3.1. Assume that g′ (ι) > 0 and there is a ρ ∈ C ([ι0,∞) , (0,∞)) such that (3.1) holds.
Then, Eq (1.2) is oscillatory if the equation(

1
g′ (ι)

y′ (ι)
)′
+ y (ι)

∫ ∞

ι

1
ϱ1/α (v)

(∫ ∞

v
q (v)φ1/ϵ (g (v) ,m) dv

)1/α

dv = 0 (3.4)

is oscillatory.

Proof. Assume the contrary that x ∈ Fs. From Lemma 3.2, we have that (H1) and (H2) hold. It follows
from Lemma 3.4, z′′ (ι) < 0, eventually. By integrating (F4) twice from ι to∞, we conclude that

z′′ (ι)
z (g (ι))

≤ −

∫ ∞

ι

1
ϱ1/α (v)

(∫ ∞

v
q (v)φ1/ϵ (g (v) ,m) dv

)1/α

dv. (3.5)

We define the function ω = z′/ (z ◦ g). Then, from (3.5), we find

ω′ =
z′′

z ◦ g
−

z′

(z ◦ g)2 ·
(
z′ ◦ g

)
· g′

≤ −

∫ ∞

ι

1
ϱ1/α (v)

(∫ ∞

v
q (v)φ1/ϵ (g (v) ,m) dv

)1/α

dv −
(z′)2

(z ◦ g)2 · g
′

≤ −

∫ ∞

ι

1
ϱ1/α (v)

(∫ ∞

v
q (v)φ1/ϵ (g (v) ,m) dv

)1/α

dv − g′ · ω2,

and so,

ω′ +

∫ ∞

ι

1
ϱ1/α (v)

(∫ ∞

v
q (v)φ1/ϵ (g (v) ,m) dv

)1/α

dv + g′ · ω2 ≤ 0. (3.6)

In view of [36, 37], Eq (3.4) has a non-oscillatory solution if and only if there exists a function ω
satisfying (3.6), a contradiction.

Here, the proof ends.

3.2. Comparison with previous results

In the following, we review some theorems from previous studies that dealt with the oscillation of
the NDE

d4

dι4
z (ι) + q (ι) x (g (ι)) = 0, (3.7)

by using different techniques, so that we can compare our results with them.

Theorem 3.2. [21, Theorem 2] Suppose that

lim inf
ι→∞

∫ ι

g(ι)
g3 (v) (1 − p (g (v))) q (v) dv >

384
e
.

Then (3.7) is oscillatory.

Theorem 3.3. [22, 23, Corollary 1] Suppose that

lim inf
ι→∞

∫ ι

g(ι)
g3 (v) (1 − p (g (v))) q (v) dv >

6
e
.

Then (3.7) is oscillatory.
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Theorem 3.4. [24, Theorem 2] Suppose that there exists a m ∈ Z+ such that

lim inf
ι→∞

Gm (ι) >
1
em ,

where η (ι) = max {g (s) , s ∈ [ι0, ι]}, η−1 (ι) = sup {s ≥ ι0 : η (s) = ι}, η−(i+1) = η−1 (η−i (ι)), G (ι) =
1
6q (ι) g3 (ι) (1 − p (g (ι)))

G1 (ι) =
∫ ι

η(ι)
G (ι) dv, ι ≥ η−1 (ι0) ,

and

Gi+1 (ι) =
∫ ι

η(ι)
G (v) Gk (v) dv, ι ≥ η−(i+1) (ι0) , for i = 1, 2, ... .

Then (3.7) is oscillatory.

Theorem 3.5. [25, Theorem 2.1] Suppose that there exist θ1, θ2 ∈ C1 ([ι0,∞) , (0,∞)) such that

∫ ∞

ι0

θ1 (v) q (v) (1 − p (g (v)))
g3 (v)

v3 −
1
2ϵ

(
θ′1 (v)

)2

ι2θ1 (v)

 dv = ∞,

and ∫ ∞

ι0

θ2 (v)
(∫ ∞

v
(s − v) q (s) (1 − p (g (s)))

g (s)
s

ds
)
−

(
θ′2 (v)

)2

4θ2 (v)

 dv = ∞.

Then (3.7) is oscillatory.

Example 3.1. Consider the NDE

d4

dι4
[
x (ι) + p0x (aι)

]
+

q0

ι4
x (bι) = 0, (3.8)

where ι > 0, p0, a, b ∈ (0, 1), and q0 > 0. It is easy to check that

φc (ι,m) :=
[
1 − p0

] m∑
i=0

p2i
0 a2ci := vc. (3.9)

By choosing ρ (ι) = ι3, condition (3.1) reduce to

lim sup
ι→∞

∫ ι

ι1

(
q0v3b3 −

9
2

)
1
v

dv = ∞,

which is satisfied if q0L3b3 > 9
2 . From Theorem 3.1, Eq (3.8) is oscillatory if the equation

y′′ (ι) +
q0L1/ϵb

6ι2
y (ι) = 0 (3.10)

is oscillatory. Using Corollary 2.1, Eq (3.10) is oscillatory if q0 > 3/
(
2L1/ϵb

)
. Therefore, Eq (3.8) is

oscillatory if

q0 > max
{

9
2L3b3 ,

3
2L1/ϵb

}
. (C1)
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Remark 3.1. Consider the NDE (3.8). By applying Theorems 3.2–3.5, we get respectively the following
results:

– Eq (3.8) is oscillatory if

q0 >
384

eb3 (1 − p0) ln (1/b)
; (C2)

– Eq (3.8) is oscillatory if

q0 >
6

eb3 (1 − p0) ln (1/b)
; (C3)

– We have η (ι) = bι, G (ι) = q0b3 (1 − p0) 1
6ι and

Gi (ι) =
(
1
6

q0b3 (1 − p0) ln
1
b

)i

, for i = 1, 2, ...;

Then Eq (3.8) is oscillatory if

q0 >
6

eb3 (1 − p0) ln (1/b)
;

– By choosing θ1 (ι) = ι3 and θ2 (ι) = ι, Eq (3.8) is oscillatory if

q0 > max
{

9
2b3 (1 − p0)

,
3

2b (1 − p0)

}
. (C4)

From the aforementioned, we observe that

(1) Since Lc ≥ (1 − p0), criterion (C1) is an improvement of (C4).
(2) Criterion (C3) is an improvement of (C2).
(3) The results of Theorem 3.4 are the same as those of Theorem 3.3, although Theorem 3.3 is easier

to apply.
(4) Setting a = 0.9 and p = 0.8, Figure 3 shows the lower bounds of q0 values at which

criteria (C1), (C3) and (C4) are satisfied. We note that (C3) provides the best results for the
oscillation of (3.8) when b ∈ (0, 0.476), and (C1) provides the best results for the oscillation
of (3.8) when b ∈ (0.476, 1).

Figure 3. Lower bounds of q0 values at which criteria (C1), (C3) and (C4) are satisfied.
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4. Conclusions

In this work, the oscillatory behavior of second- and fourth-order half-linear neutral differential
equations is studied in the canonical case. For the second-order equation, we obtained improved
monotonic properties based on establishing a new relationship between the solution and its
corresponding function. We then used the new relationships and properties to infer a set of oscillation
criteria by using different methods. At the end of this part of the paper, we presented examples and
remarks that illustrate the importance of the results and compare them with relevant results in the
literature. For the fourth-order equation, after obtaining new relationships between x and z in each
case of positive solutions, we introduced a new criterion to test the oscillation of the studied equation.
Then, we reviewed some previous theorems in the literature and compared our results with them using
an example.

We notice through the results that improving the relationship between the solution and the
corresponding function of the neutral differential equations contributes to obtaining new monotonic
properties for the positive solutions of these equations, which in turn leads to the development of
oscillation criteria. It would be interesting to extend this improvement to higher-order differential
equations in the non-canonical case.
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Appl., 1 (2009), 392–472. http://dx.doi.org/10.1007/978-3-7643-7990-2 30

2. A. Kneser, Untersuchungen über die reellen nullstellen der integrale linearer
differentialgleichungen, Math. Ann., 42 (1893), 409–435. http://dx.doi.org/10.1007/BF01444165

3. W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer.
Math. Soc., 19 (1918), 341–352. http://dx.doi.org/10.1090/S0002-9947-1918-1501107-2

4. R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation theory for second order linear,
half-linear, superlinear and sublinear dynamic equations, Dordrecht: Springer, 2002.
http://dx.doi.org/10.1007/978-94-017-2515-6

5. R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation theory for second order dynamic equations,
In: Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic
equations, Dordrecht: Springer, 2002. http://dx.doi.org/10.1007/978-94-017-2515-6 5

6. R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: Theory for functional
differential equations, Boca Raton: CRC Press, 2004.

AIMS Mathematics Volume 8, Issue 6, 12729–12750.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-7643-7990-2_30
http://dx.doi.org/http://dx.doi.org/10.1007/BF01444165
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9947-1918-1501107-2
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-017-2515-6
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-017-2515-6_5


12749
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