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1. Introduction and preliminaries

Let Y be a linear space with a norm ||.|| and G be a non-empty subset of Y. A mapping J : G → G
is called a contraction mapping on G if for all x, y ∈ G,

||J x − Jy|| ≤ α||x − y||, for some fixed α ∈ [0, 1). (1.1)
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A point s0 ∈ G, which satisfies the equation s0 = J s0 is called a fixed point for the mapping J . The
fixed point set of J is normally denoted by FJ .

Construction of fixed points of nonexpansive mappings is an important subject in the theory of
nonexpansive mappings and their applications in a number of applied areas. In such cases, one tries
to find the approximate values of the such solutions by means of iterative schemes. For this purpose,
we first express the sought solution of the given problem as a fixed point of a certain self mapping.
The fixed point set in this case is now the same as the solution set of the given problem. The Banach
contraction principle (BCP) [1] is one of the celebrated tools to provide the existence of a unique fixed
point s0 if the associated operator J is a contraction and G is some closed subset of a Banach space.
Moreover, the BCP suggests a Picard [2] iterative scheme, that is, ar+1 = Jar, to find the approximate
value of the point s0.

On the uniformly convex Banach (UCB) space Y, if J is a nonexpansive mapping, then FJ , ∅
provided that G is a closed, convex and bounded subset ofY. See for example Browder [3], Göhde [4]
and others. Kirk [5], generalized the results of Browder and Göhde in a reflexive Banach (RB) space.
It is known that there is a clear deficiency of Picard iteration in convergence in general on the set FJ
for a nonexpansive operator J , as shown in the following example:

Example 1.1. Suppose that G = [0, 1], and J x = −(x − 1). Then, J is nonexpansive but not a
contraction. According to the Browder and Göhde result, J admits a fixed point. In this case, we see
that s0 = 0.5 is the unique fixed point of J . Notice that, for each a1 = a ∈ G − {0.5}, Picard [2]
iteration generates the following sequence:

a, 1 − a, a, 1 − a, ...

This sequence does not converge to the fixed point s0 = 0.5 of J .

On the other hand, the nonexpansive mappings have many important applications in the various
applied sciences. For this reason, this science has spread and expanded on a large scale. In 2008,
Suzuki [6] generalized nonexpansive mappings on Banach spaces. He proved that any mapping in
this class admits a fixed point under the same assumptions of Browder and Göhde [4]. Moreover, he
proved that all nonexpansive mappings are properly contained in this new class of mappings. Unlike
nonexpansive mappings, Suzuki mappings do not have be continuous (see, e.g., [6–8] and others).
Notice that, a mapping J : G → G is said to be endowed with a condition (C) (or said to be a Suzuki
mapping) if the following condition holds:

1
2
||x − J x|| ≤ ||x − y|| ⇒ ||J x − Jy|| ≤ ||x − y||. (C)

Researchers have extensively studied mappings with the Suzuki (C) condition, and many different
results are now available in the literature. Karapinar [9] suggested a new condition for mappings on
Banach spaces. These mappings are also discontinuous in general, as shown by a numerical example in
this manuscript. The mappingJ : G → G is said to be satisfy a Chatterjea–Suzuki–C (CS C) condition
if the inequality below is true.

1
2
||x − J x|| ≤ ||x − y|| ⇒ ||J x − Jy|| ≤

1
2

(||x − Jy|| + ||y − J x||). (CS C)
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In recent years, iterative schemes have been used for finding approximate solutions of nonlinear
problems. For example, in [10], a novel iterative approach for finding approximate solutions of a
special type of FDE was introduced. As we have seen in Example 1.1, the Picard iterative approach
diverges in the fixed point set of nonexpansive mappings in general. This example suggests that we use
other iterative methods to find fixed points of nonexpansive (and generalized nonexpansive) mappings,
like the iterative methods due to Mann [11] , Ishikawa [12], Noor [13], Agarwal [14], Abbas [15],
Thakur [7], Wairojjana et al. [16], Khatoon and Uddin [17] and Hasanen et al. [18–20].

Recently, Ullah and Arshad [8] suggested an M-iterative scheme as follows:

a1 = a ∈ G,
cr = (1 − αr)ar + αrJar,

br = Jcr,

ar+1 = Jbr.

 (1.2)

The same authors discussed this scheme via the (C)−condition and found that this scheme is faster
than the schemes due to Agarwal [14] and Thakur [7] by a numerical example. In this paper, we use
(CS C)−condition, and prove some convergence theorems with illustrative examples. In addition, we
apply the theoretical results to find the existence of a solution for a FDE.

Definition 1.2. Let Y be a Banach space and {ar} ⊆ Y be a bounded set. If ∅ , G ⊆ Y is convex
and closed, then, the asymptotic radius of {ar} corresponding to G is essentially denoted and defined
by the formula R(G, {ar}) = inf{lim supr→∞ ||ar − s|| : s ∈ G}. Similarly, the asymptotic center of
the sequence {ar} corresponding to G is denoted and defined by the formula A(G, ar}) = {s ∈ G :
lim supr→∞ ||ar − s|| = R(G, ar)}.

Remark 1.3. If Y is a UCB space [21], then it is well known that A(G, {ar}) contains one element.
Also, the setA(G, {ar}) is convex when G is weakly compact and convex; for more details, see [22,23].

Definition 1.4. [24] A Banach spaceY is said to be satisfy Opial’s condition if and only if the sequence
{ar} ⊆ Y converges in the weak sense to s0 ∈ G, and the following inequality holds:

lim sup
r→∞

||ar − s0|| < lim sup
r→∞

||ar − e0|| ∀e0 ∈ Y − {s0}.

Clearly, every Hilbert space meets Opial’s condition.

Definition 1.5. [25] A mapping J defined on a subset G of a Banach space Y is said to be satisfy
the condition (I) if and only if one has a function q : [0,∞) → [0,∞) such that q(0) = 0, q(u) > 0 for
every u ∈ [0,∞) − {0}, and ||x −J x|| ≥ q(d(x, FJ )), where x ∈ G, and d(x, FJ ) represents the distance
between x and FJ .

Some facts are combined in the following propositions, which can be found in [9].

Proposition 1.6. Let Y be a Banach space and G be a non-empty closed subset of Y. For the self-
mapping J : G → G, the following properties hold:

(i) If J is enriched with the (CS C) condition, and FJ , ∅, then ||J x − s|| ≤ ||x − s|| for each x ∈ G
and s ∈ FJ .
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(ii) If J is enriched with the (CS C) condition, then FJ is closed. Furthermore, FG is convex if G is
convex and Y is strictly convex.

(iii) If J is enriched with the (CS C) condition, then for arbitrary x, y ∈ G,

||x − Jy|| ≤ 5||x − J x|| + ||x − y||.

(iv) IfJ is enriched with the (CS C) condition, {ar} is weakly convergent to s, and limr→∞ ||Jar−ar|| =

0, then s ∈ FJ provided that Y satisfies Opial’s condition.

The following lemma is very important in the sequel, and it was introduced by [26]

Lemma 1.7. Let 0 < q ≤ kr ≤ p < 1 andY be a UCB space. If there exists the real number e ≥ 0 such
that {ar} and {br} inY satisfy lim supr→∞ ||ar|| ≤ e, lim supr→∞ ||br|| ≤ e and limr→∞ ||(1− kr)ar + krbr|| =

e, then one has, limr→∞ ||ar − br|| = 0.

2. Main results

Now, we are in a position to connect an M−iterative scheme (1.2) with the class of mappings
enriched with the (CS C) condition. The first result of this section is the following key lemma:

Lemma 2.1. Let Y be a UCB space and ∅ , G ⊆ Y be a closed and convex set. Suppose that
J : G → G is enriched with the (CS C) condition satisfying FJ , ∅. If {ar} is a sequence generated by
iteration (1.2), then limr→∞ ||ar − s0|| exists, for each s0 ∈ FJ .

Proof. Let s0 ∈ FJ be an arbitrary element, and then by Proposition 1.6(i), we get

||cr − s0| ≤ ||(1 − αr)ar + αrJar − s0||

≤ (1 − αr)||ar − s0|| + αr||Jar − s0||

≤ (1 − αr)||ar − s0|| + αr||ar − s0||

≤ ||ar − s0||. (2.1)

Moreover,

||br − s0|| = ||Jcr − s0|| ≤ ||cr − s0||. (2.2)

It follows from (2.2) that

||ar+1 − s0|| = ||Jbr − s0|| ≤ ||br − s0|| ≤ ||cr − s0||. (2.3)

By combining (2.1), (2.2) and (2.3), it is seen that ||ar+1− s0|| ≤ ||ar− s0||, that is, {||ar− s0||} is essentially
bounded and also non-increasing. This means that limr→∞ ||ar−s0|| exists for each element s0 belonging
to FJ . □

The next theorem gives the necessary and sufficient conditions for the existence of a fixed point.

Theorem 2.2. Let Y be a UCB space and ∅ , G ⊆ Y be a closed and convex set. Assume that
J : G → G is enriched with the (CS C) condition satisfying FJ , ∅. If {ar} is a sequence made by
M−iterations (1.2), then, FJ , ∅ if and only if the sequence {ar} is bounded, and limr→∞ ||ar−Jar|| = 0.
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Proof. First, assume that FJ , ∅. Hence, for any s0 ∈ FJ , Lemma 2.1 suggests that {ar} is bounded,
and limr→∞ ||ar − s0|| exists. Consider

lim
r→∞
||ar − s0|| = e. (2.4)

We want to prove limr→∞ ||ar − Jar|| = 0. From (2.1), one can write

||cr − s0|| ≤ ||ar − s0||

⇒ lim sup
r→∞

||cr − s0|| ≤ lim sup
r→∞

||ar − s0|| = e. (2.5)

Since s0 ∈ FJ , by Proposition 1.6(i), one has

||Jar − s0|| ≤ ||ar − s0||,

which implies that
lim sup

r→∞
||Jar − s0|| ≤ lim sup

r→∞
||ar − s0|| = e. (2.6)

From (2.3), we have
||ar+1 − s0|| ≤ ||cr − s0||.

Using this together with (2.4), we obtain that

e ≤ lim inf
r→∞

||cr − s0||. (2.7)

From (2.5) and (2.7), one can write
lim
r→∞
||cr − s0|| = e. (2.8)

Since ||cr − s0|| = ||(1 − αr)(ar − s0) + αr(Jar − s0)||, so by (2.8), one has

e = lim
r→∞
||(1 − αr)(ar − s0) + αr(Jar − s0)||. (2.9)

Considering (2.4), (2.6) and (2.9) along with Lemma 1.7, one gets

lim
r→∞
||ar − Jar|| = 0.

Conversely, assume that {ar} is bounded with limr→∞ ||ar − Jar|| = 0. We shall prove that FJ , ∅. For
this, let s0 ∈ A(G, {ar}). Using Proposition 1.6(iii), one can obtain

A(J s0, {ar}) = lim sup
r→∞

||ar − J s0||

≤ 5 lim sup
r→∞

||ar − Jar|| + lim sup
r→∞

||ar − s0||

= lim sup
r→∞

||ar − s0||

= A(s0, {sr}).

Hence, J s0 ∈ A(G, {ar}). Since the setA(G, {ar} contains a singleton point, then J s0 = s0. It follows
that s0 ∈ FJ , i.e., FJ , ∅. This completes the proof. □
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Now, we will study the convergence. We start with the weak convergence as follows:

Theorem 2.3. Let Y be a UCB space and ∅ , G ⊆ Y be a weakly compact and convex set. If
J : G → G is enriched with the (CS C) condition satisfying FJ , ∅, and {ar} is a sequence of M
iterates (1.2), then {ar} converges weakly to a point in FJ provided that Y satisfies Opial’s condition.

Proof. Since G is weakly compact, there exists a subsequence {art} of {ar} and a point, namely, a0 ∈ G,
such that {art} converges weakly to a0. In the view of Theorem 2.2, one can note that limt→∞ ||art −

Jart || = 0. All the requirements of Proposition 1.6(ii) are now available, so a0 ∈ FJ . The aim is to
show that the point a0 is only a weak limit of {ar}. On the contrary, we may suppose that a0 cannot
become a weak limit for {ar}, that is, there exists another subsequence, namely, {ars} of {ar}, with a weak
limit, namely, a′0 , a0. Again in the view of Theorem 2.2, one can note that lims→∞ ||ars − Jars || = 0.
All the requirements of Proposition 1.6(ii) are now available, so a′0 ∈ FJ . Using Opial’s condition of
Y along with Lemma 2.1, we get

lim
r→∞
||ar − a0|| = lim

t→∞
||art − a0|| < lim

t→∞
||art − a′0||

= lim
r→∞
||ar − a′0|| = lim

s→∞
||ars − a′0||

< lim
s→∞
||ars − a0|| = lim

r→∞
||ar − a0||.

Thus, we get limr→∞ ||ar − a0|| < limr→∞ ||ar − a0||, which is a contradiction. This completes the
proof. □

If we replaced the weak compactness of the domain with compactness, we have the following strong
convergence result.

Theorem 2.4. Let Y be a UCB space and ∅ , G ⊆ Y be a compact and convex set. If J : G → G is
enriched with the (CS C) condition satisfying FJ , ∅, and {ar} is a sequence generated by M− iteration
(1.2), then {ar} converges strongly to a point in FJ .

Proof. Since {ar} ∈ G, and G is a compact set, then {ar} has a strongly convergent subsequence {art}

such that limt→∞ ||art − z0|| = 0 for some element z0 ∈ G. Hence, by Theorem 2.2, we conclude that
limt→∞ ||art − Jart || = 0. Applying Proposition 1.6(iii), we get

||art − Jz0|| ≤ 5||art − Jart || + ||atr − z0||,

which implies that art → Jz0 as t → ∞. Also, we get Jz0 = z0, that is, z0 ∈ FJ . Based on Lemma
2.1, limt→∞ ||at − a0|| exists. Hence, the element z0 is a strong limit point for {ar}. □

Now, we remove the compactness of G in the above result and establish the following other strong
convergence theorem as follows:

Theorem 2.5. Let Y be a Banach space and ∅ , G ⊆ Y be a closed and convex set. If J : G → G is
enriched with the (CS C) condition satisfying FJ , ∅, and {ar} is a sequence of iterates by (1.2), then
{ar} converges strongly to a point in FJ whenever lim infr→∞ d(ar, FJ ) = 0.
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Proof. For all s0 ∈ FJ , Lemma 2.1 suggests the existence of limr→∞ ||ar − s0||. By assumption, it
follows that

lim
r→∞

dist(ar, FJ ) = 0.

By Proposition 1.6(ii), the set FJ is closed in G. Accordingly, the remaining proof now closely follows
the proof of [Theorem 2, [25]] and hence is omitted. □

Now, we suggest another strong convergence theorem without assuming the compactness of the
domain.

Theorem 2.6. Let Y be a UCB space and ∅ , G ⊆ Y be a closed and convex. If J : G → G is
enriched with the (CS C) condition satisfying FJ , ∅, and {ar} is a sequence of iterates by (1.2), then
{ar} converges strongly to an elements in FJ whenever J satisfies the condition (I).

Proof. In view of Theorem 2.2, we conclude that lim infr→∞ ||ar−Jar|| = 0. Applying the condition (I),
we obtain lim infr→∞ d(ar, FJ ) = 0. Therefore, all assumptions of Theorem 2.5 are now successfully
proved, and hence the sequence {ar} essentially converges strongly in FJ . □

3. Application to a fractional differential equation

FDEs gained the attention of researchers because these equations have many interesting applications
in areas of science and engineering like electromagnetic theory, fluid flow, electrical networks, and
probability theory. As we discussed at the outset of this paper, many problems are difficult, if not
impossible, to solve using analytical techniques. Hence, it is necessary to find approximate values for
these solutions by alternative methods. FDEs have recently been solved by some authors using the
techniques of fixed points for nonexpansive operators; see, for examples, [27–32].

Now, under the (CSC) condition, we apply an M-iterative scheme (1.2) to find the solution for the
following FDE:

Dξh(u) + Υ(u, h(u)) = 0,
h0) = h(1) = 0,

}
(3.1)

where (0 ≤ u ≤ 1), (1 < ξ < 2), Dξ stands for the Caputo fractional derivative endowed with the order
ξ, and Υ : [0, 1] × R→ R.

Let Y = C[0, 1] be the set of all real continuous functions on [0, 1] to R equipped with the usual
maximum norm. The corresponding Green’s function associated with (3.1) is defined by

G(u, v) =

 1
Γ(ξ) (u(1 − v)(ξ−1) − (u − v)(ξ−1), if 0 ≤ v ≤ u ≤ 1,
u(1−v)(ξ−1)

Γ(ξ) , if 0 ≤ u ≤ v ≤ 1.

The main result in this part is provided in the following theorem:

Theorem 3.1. Let Y = C[0, 1] and J : Y → Y be an operator defined by

J(h(u)) =
∫ 1

0
G(a, v)Υ(v, h(v))dv, for each h(u) ∈ Y.
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If

|Υ(v, h(v)) − Υ(v, g(v))| ≤
1
2

(|h(v) − J(g(v))| + |g(v) − J(h(v))|),

then the M−iteration scheme (1.2) associated with J converges to some solution S of (3.1) provided
that lim infr→∞ d(ar, S ) = 0.

Proof. It is known that an element h of Y is a solution to (3.1) if and only if it is a solution to the
following equation:

h(u) =
∫ 1

0
G(u, v)Υ(v, h(v))dv.

Now, for arbitrary h, g ∈ Y and 0 ≤ u ≤ 1, it follows that

||J(h(u)) − J(g(u))|| ≤

∣∣∣∣∣∣
∫ 1

0
G(u, v)Υ(v, h(v)))dv −

∫ 1

0
G(u, v)Υ(v, g(v))dv

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
G(u, v)[Υ(v, h(v)) − Υ(v, g(v))]dv

∣∣∣∣∣∣
≤

∫ 1

0
G(u, v) |Υ(v, h(v)) − Υ(v, g(v))| dv

≤

∫ 1

0
G(u, v)(

1
2
|h(v)) − J(g(v))| +

1
2
|g(v) − J(h(v))|)dv

≤ (
1
2
||h(v)) − J(g(v))|| +

1
2
||g(v) − J(h(v))||)(∫ 1

0
G(u, v)dv

)
≤

1
2
||h(v)) − J(g(v))|| +

1
2
||g(v) − J(h(v))||

=
1
2

(||h(v)) − J(g(v))|| + ||g(v) − J(h(v))||) .

Consequently, we get

||J(h) − J(g)|| ≤
1
2

(||h − J(g)|| + ||g − J(h)||) .

Hence, J satisfies the (CS C) condition. In view of Theorem 2.5, the sequence generated by (1.2)
converges to a fixed point of J , and this point is the solution of the considered equation. □

4. Numerical example

Now, we essentially suggest a numerical example that is enriched with the (CSC) condition. An
M-iteration of this example converges at a rate better than the other schemes. The observations are
provided in tables and a graph.

Example 4.1. Let G = [8, 14] be endowed with the norm ||.|| = |.| andJ : G → G be a function defined
by the formula

J x =
{

8, if x = 14,
x+8

2 , otherwise.
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We prove the following.

(i) FJ , ∅;
(ii) J does not satisfy the (C) condition;

(iii) J satisfies the (CS C) condition.

Proof. (i) Since FJ = {8}, that is, J has a unique fixed point, and FJ , ∅.
(ii) Choose x = 12 and y = 13 and then J does not satisfy the (C) condition.
(iii) We proceed as follows:

(I): If x = 14 = y, then, |J x − Jy| = 0. Hence,

1
2

(|x − Jy| + |y − J x|) ≥ 0 = |J x − Jy|.

(II): If 8 ≤ x, y < 14, then, |J x − Jy| = | x−y
2 |. Hence,

1
2

(|x − Jy| + |y − J x|) =

∣∣∣∣∣∣∣ x − ( y+8
2 )

2

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣y − ( x+8

2 )
2

∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣∣
(
x − ( y+8

2 )
)
−

(
y − ( x+8

2 )
)

2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣3x − 3y
4

∣∣∣∣∣
≥ |

x − y
2
| = |J x − Jy|.

(III): If x = 14 and 8 ≤ y < 14, then, |J x − Jy| = | x−8
2 | .

1
2

(|x − Jy| + |y − J x|) = |
x − 8

2
| +

∣∣∣∣∣∣y − ( x+8
2 )

2

∣∣∣∣∣∣
≥

∣∣∣∣∣ x − 8
2

∣∣∣∣∣
= |J x − Jy|.

(IV): If y = 14 and 8 ≤ x < 14, then, |J x − Jy| = | y−8
2 | .

1
2

(|x − Jy| + |y − J x|) =

∣∣∣∣∣∣∣ x − ( y+8
2 )

2

∣∣∣∣∣∣∣ + |y − 8
2
|

≥

∣∣∣∣∣y − 8
2

∣∣∣∣∣
= |J x − Jy|.

□

Now, (I)–(IV) completes the proof of (iii).
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Now, we connect Mann [11], Ishikawa [12], Noor [13], Agarwal [14], Abbas [15] and M [8] with
this example. The observations are listed in Table 1 and Figure 1, where αr = 0.85, βr = 0.65,
γr = 0.90, and a1 = 10.5.

Table 1. Numerical results produced by M, Thakur, Abbas, Agarwal, Noor, Ishikawa and
Mann approximation schemes for J of Example 4.1.

r M Thakur Abbas Agarwal Noor Ishikawa Mann
1 10.50000 10.50000 10.50000 10.50000 10.50000 10.50000 10.50000
2 8.359375 8.452344 8.650703 8.904680 8.936797 9.092188 9.437000
3 8.051660 8.081846 8.169366 8.327384 8.351035 8.477149 8.826563
4 8.007426 8.014809 8.044083 8.118472 8.131540 8.208455 8.475273
5 8.001068 8.002680 8.011474 8.042871 8.049290 8.091069 8.273282
6 8.000153 8.000485 8.002986 8.015514 8.018470 8.039788 8.157137
7 8.000022 8.000088 8.000777 8.005614 8.006921 8.017381 8.090354
8 8.000003 8.000016 8.000202 8.002032 8.002593 8.007593 8.051954
9 8.000000 8.000003 8.000053 8.000735 8.000972 8.003317 8.029873
10 8.000000 8.000001 8.000014 8.000266 8.000364 8.001449 8.017177
11 8.000000 8.000000 8.000004 8.000096 8.000136 8.000633 8.009877
12 8.000000 8.000000 8.000001 8.000035 8.000051 8.000277 8.005679
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Figure 1. Graphical analysis of iteration schemes towards the fixed point of J in Example
4.1.

Finally, we set ||ar − s∗|| < 10−15 to be the stopping criterion, and the leading iterative schemes are
once again compared under the different choice of starting and set of parameters. Bold values in Table
2 suggests the high accuracy of the M iterative scheme.
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Table 2. Comparison of numbers of iterates to get fixed point under different starting points
and parameters.

Initial Points
Iterations 8.5 9.5 10.5 11.5 12.5 13.5
for αr =

r

(r+3)
11
10
, βr =

1

(r+5)
3
2
, γr =

r
(4r+2)

Agarwal 47 48 49 49 50 50
Abbas 32 33 34 35 35 35
Thakur 24 25 25 25 25 25
M 19 20 20 21 21 21

for αr =
r

(r+8)
18
15
, βr =

r
(r+4) , γr =

√
1
r

Agarwal 39 40 41 42 42 42
Abbas 26 27 28 28 28 28
Thakur 22 23 23 23 24 24
M 21 22 22 23 23 23

for αr = 1 −
√

1
6r+4 , βr = r−3, γr = 1 − ( 1

r )

Agarwal 46 48 49 49 50 50
Abbas 26 27 27 27 27 27
Thakur 23 24 25 25 25 25
M 17 18 18 18 18 18

for αr =
25
√

2r
(10r+1) , βr = 1 − 5

√
1

(r+1) , γr = 1 − 6r
(7r+5)4

Agarwal 36 37 38 38 38 38
Abbas 24 24 24 25 25 25
Thakur 21 22 22 22 22 23
M 16 17 17 17 18 18

Now, we provide some comment comparing the advantages of the proposed iterative scheme as
follows:

(i) Our proposed iterative scheme is more convergent to a fixed point than other iterative schemes in
the literature.

(ii) Instead of three scalars sequences {αr}, {βr} and {γr}, our proposed iterative scheme uses only one
sequence of scalars {αr} and converges better than the iterative schemes which use three sequences
of scalars (e.g., Noor and Abbas iterative schemes).

(iii) The suggested iterative scheme is stable with respect to initial points and sequences of scalars, as
shown in the tables and graph.
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5. Conclusions

The paper examined an iterative M−scheme with the connection of operators enriched with the
(CSC) condition. It has been shown that this scheme converges weakly and strongly towards a fixed
point of an operator enriched with the (CSC) condition when suitable conditions are applied to the
operator or the domain. Also, we solved a FDE in the setting of operators enriched with the (CSC)
condition. In addition, a new numerical example was given to show that a (CSC) operator does not have
to be continuous in its domain. Finally, some tables and one graph are obtained to illustrate the high
accuracy of the M-iterative scheme when compared with the other available schemes in the literature.
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