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1. Introduction

Non-Newtonian fluids are defined as fluids with an extra-tension tensor that cannot be expressed as
a linear, isotropic function of the components of the strain rate tensor.One of the goals of asymptotic
analysis 1s to obtain and describe a two-dimensional problem from a three-dimensional problem,
passing to the limit on the thickness of the domain assumed to be already thin. In this context, several
previous studies have been conducted to deal with this problem.

The first study we mention is what the authors have done in [4], where they mainly examine the
existence and behavior of weak solutions for a lubrication problem with Tresca law. In another study,
the authors in [1] gave the nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over
a rough boundary. Sudrez-Grau in [25] studied the asymptotic behavior of a non-Newtonian flow
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in a thin domain with Navier law on a rough boundary. The convergence stability of the solutions
for the non-Newtonian fluid motion with large perturbation in R? has been given in [9]. In [20], the
authors presented an extension of the results related to the solutions of weakly compressible fluids
with pressure-dependent viscosity. In contrast, the existence and uniqueness of stationary solutions of
non-Newtonian viscous incompressible fluids were obtained in [11]. Other contexts and problems be
found in the monographs such as in [21,27], and in the literature quoted within.

The Herschel-Bulkley fluid is a generalized model of a non-Newtonian fluid. The name is related to
Winslow Herschel and Ronald Bulkley [15], and it was first mentioned, in 1926, where the relationship
between the stress tensor 0 and the symmetric deformation velocity d(u®) is given by:

d(u?)
ld ()’

0f =~ + pld®) 7 d(uf) + 6°

ij -

where, d(u®) = 1(Vu8 + (Vu®)"), u® is the velocity field, u > 0 is the viscosity constant, 7° is the
pressure, 6° > 0 is the yield stress, 1 < r < 2 is the power law exponent of the material and ¢;; is the
Kronecker symbol.

In this paper, we will adopt the constitutive law by considering that a Herschel-Bulkley
incompressible fluid whose viscosity will follow the power law with a liquid-solid friction condition
of Coulomb in three-dimensional domain Q° c R3.

The Herschel-Bulkley fluid has been studied intensively by mathematicians, physicists, and
engineers as intensively as the Navier-Stokes. For example, we mention the studies carried out in
the fields of metal fluxes, plastic solids and some polymers. The literature concerning this topic is
extensive; see e.g. [24,26] and many others references. More recently, the authors in [17], have studied
the two-dimensional slow flow of non-Newtonian fluids of the Herschel-Bulkley type an inclined plane.
In the context of the Bingham fluid, » = 2, the authors in [8, 22] proved the asymptotic convergence
of this fluid in the isothermal and non-isothermal case with non linear friction law. In the case 6° = 0,
with the particular conditions of Tresca, this problem has been studied by [35, 6] respectively in both
non-isothermal and isothermal study cases. Benseridi et al. in [3] studied theasymptotic analysis of a
contact between two general Bingham fluids, however Saadallah et al. in [23] studied the analog of
the problem presented in this work but in thevery particular case where the velocity on the surface I,
is null with the friction of the Tresca type. We can also mention others studies where authors gave the
numerical solutions of the Herschel-Bulkley fluid but in other particular cases (see [14, 16, 18, 19]).

In this study, the objective is to make an extension of our previous works [8,22,23] and to improve
the result obtained in [5, 6].

The novelty of our study can be summarized in following two major points. First, we take into
account a generalized model of a non-Newtonian fluid (1 < r < 2 and 6° # 0). Second, we choose
the Coulomb friction with the velocity of the lower surface I', different to zero, since all previously
mentioned works were restricted only to the particular friction of Tresca.

From our side, this choice will cause different difficulties in other parts of the study, especially with
regard to Lemma 5.1, Theorems 4.2—4.4 and the uniqueness theorem.

Accordingly, this work makes the following new contributions by finding solutions to these
problems:

The first contribution consists of finding the solution for the first difficulty coming from the fact
that the integral on I';, has no clear meaning. In our study, we will replace the normal stress by some
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regularization as in [10]. The second contribution consists of dealing with the problem of choosing the
test functions. In fact, we cannot choose the test functions as it was done in [5, 6], their work does not
contain the yield stress 6°.

This remaining of our paper is organized as follows: Section 2 will summarize the description of
the problem and the basic equations. Moreover,we introduce some notations and preliminaries that
will be used in other sections. Section 3 will be reserved to the proof of the related weak formulation.
We will also discussing the problem in transpose form. The corresponding main convergence results
will be stated in Theorems (4.)), j = 1 to 5 of Section 4. The mathematical proofs will be presented in
Section 5.

2. Description of the problem and basic equations

We start by introducing some notations used in the paper. Motivated by lubrication problems, we
consider:

Q@ ={y=0/.y) €R:y = (y.y) €T, and 0 < y3/& < h(y)}.

the domain of the flow, where I', is a non-empty bounded domain of R? with a Lipschitz continuous
boundary, 4 (.) is a Lipschitz continuous function defined on I, such that 0 < h, < h(y") < h*, for all
(/,0)in I, and € is a small parameter that will tend to zero.

We decompose the boundary of Q° as I'® = I_“i U I_“f U T, with

I, = {(/,y3) €Q°:y; =0},
[, = {(0/,»)eQ:(,0) ey, ys/e=h()},
[, = {(/,y3) €Q°:y €T}, 0<y; <eh(y)}

where I, is the bottom of the domain, I7 is the upper surface and I’y the lateral part of I'*. Let
u®(y) : Q° — R be the velocity and 7°(y) : Q° — R the pressure of the fluid. We denote by
n = (11,12, n3) the unit outward normal to the boundary I, and we define the normal and tangential
velocities of #® on I'® as:

& _

Uy

u'm, ut =u®—u‘mn.

Similarly, for a regular tensor field 0%, we denote by o and o7 the normal and tangential components

of o given by
3 3
o, = Z (Ufj.nj) M, 08 = [Z o= (O‘;) .ni]
=1 i=1

! 1<i<3

Let S be denotes the set of all symmetric 3 X 3 matrices and for n,{ € S, we define the scalar product
and the corresponding norm by

3
n:0= Z nii¢i; and |n| = (i : n)% )
i=l

The boundary-value problem describing the stationary flow for generalized non-Newtonian and
incompressible fluid is described by:
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Problem #¢. Find the pressure 7° : Q° — R and a velocity field u#® : Q° — R? such that

—div(c®) = f* inQ° 2.1

sy =T
5¢ =6° |d(u Y + uldW?)| dwe) if du®) # 0, in Q%, (2.2)

MS
|0°] < 6% if d(u®) =0,
diviw®) =0 1in Q?%, (2.3)
u>=0 onl?, (2.4)
u®=gwithgs; =0 onI7y (2.5)
uw'n=0 only, (2.6)
gl <kflotl = ul =5
T n T

ol =k° UZﬁEIBZO:ui:s—ﬂdi} on Ty, @.7)

where, % = (ff)i<i<3 is the body forces, s is the velocity of the bottom boundary I',. Furthermore,
the Eq (2.1) represents the law of conservation of momentum. Relation (2.2) gives the law of
behavior of the Herschel-Bulkley fluid. The formula (2.3) represents the incompressibility equation.
Equations (2.4) and (2.5) represent the velocity on I';, and I'f respectively. On the other hand, Eq (2.6)
justified the no-flux through on I',. However, assuming that the friction is sufficiently large, the
tangential velocity is unknown and satisfies the Coulomb boundary condition (2.7) on the part I';, with
k? is the friction coefficient. This law introduced by [2] is one of the most spread laws in mathematics
and it is more realistic than the law of Tresca.

Suppose that the function g = (g;)1<i<3 is in (W“” ”(Fg))3, the space of traces of functions from

(W“(Qs))g) on I'® which will define in the next section. Due to f g.ndo = 0 that there exists a function
]"S
G* ([10]):
3
G* € (W'(Q@") with div(G*) = 0in Q%, G° = gon T".

Also, we suppose that g3 =0 onI® and g = s on I}.
3. Study of the weak solution

3.1. Functional framework and regularization of o,

Before starting this study, we need to introduce the functional framework and the functional spaces
that we use in the rest of this work: Let L"(Q®) represents the Lebesgue space for the norm ||.||;-q) and
W (Q?) are the standard Sobolev spaces given by

Vi

1,r 3 r 3 0 r ..
(W' (@) :{ve(L @)’ 55 € L'(@) fori, j = 1,2,3},

J

for 1 < r < o0, and W,"(Q®) is the closure of D(Q?) in W'"(Q®). We denoted by W~14(Q®) the dual
space of W,”(Q®), where ™! + g7 = 1.
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Moreover, we need the following functional spaces

3
E¢ = {v c (W”(Q‘S)) :v=GonI}, v=0onTI;,v.y=0o0n 1";,} ,
E5, =1{v e E° : div(v) = 0},

EYQ) = {v € L/(Q): f@ vdydy, = 0}.

Assume that the problem (#°) admits a solution denoted by (u°,7%), with sufficient regularity.
Multiplying (2.1) by (v — u®) € E?® and then using Green’s formula, along with the boundary
conditions (2.4)—(2.7), we obtain:

Problem #7 .. We are looking for the velocity u® € E¥, and n° € E}(Q?), which verify:

FW?®,v—u®)—(n°,divv) + Fjv(u‘g, V) — 7(u8, u®) > (f%,v—u®), Yv e E° 3.1
where
Fu®,v) = ,Uf @) dw®)d (v) dy' dys, (3.2)
(n®,divv) = f 7 div vdy'dys, (3.3)
Jt,v) = f ke |os| v = sl dy + V26° f \d (v)| dy'dys, (3.4)
Ty Q®
3

(o= | frvidydys. (3.5)

-1 Y&

The integral }r(ug, v) has no meaning for u® € E®. Indeed, o is defined by duality as an element of
W‘%”(Fb) and |0'f]| is not well defined on I';,. So following [10], we replace o"fl by some regularization

R(o7), where R is a regularization operator from W‘%’r(l"b) into L"(I',) can be obtained by convolution
with a positive regular function and defined by

V1 e W' (T,), R@) € LAT,), ROM®) = (t,¢(x—-0) , 1,
W2 T WE ()

Vx €1, (3.6)

¢ is a given positive function of class C* with compact support in I', and W-27(T,) is the dual space
1 r
to Wy, (I) = {Vlr,, :veW(Q®f),v=0o0nTItU I7}
After the regularization, we get the new problem:

Problem #7. Find (u®, 7°) € E

e XEQ(Q®), provided it verifies the problem:

FW®,v—u®)—(n°,divv) + jw®,v) — j@®,u®) > (f°,v—u®), Yv e E° (3.7)

Jw,v) = f k*
Iy
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Remark 3.1. If v € E¥, the inequality (3.7) becomes

F@W®,v—u®) + jw®,v)— jw’,u®) > (f%,v—u®)Yv € E®. (3.8)

Theorem 3.1. For f¢ € LYQ®)® and k* > 0 in L*(T}); then the problem P admits a unique pair
(u®,7%) € ES, X Eg(Qs) verifying (3.7). Moreover, for a small value of the friction threshold k®, this
solution becomes unique.

Proof. To show the existence and uniqueness result of (3.7), we define the following intermediate
problem:
F,v—u) + LY (==l = s)) dy' +06ps () = 8z, ()
> (f%,v —u®), Yv e Wy (Q°)°
where, Y defined from L"(I';) into L'(I') as: Y — —keR(O'f]) and

(3.9)

Wyl (@) = {ve W(Q°) : div(v) = 0},
See = 0 forveES,
Eaw 7\ 400 otherwise .

By the analog of the techniques used in [16], it is easy to see that F(u®,v — u®) is bounded coercive
hemicontinuous and strictly monotone.

Y + 6E§iv is a proper, convex and continuous function on L'(I';), then by Tichovo’s fixed
point theorem (as in [7]), we ensure the existence of a unique u® € Ef  verifying the variational
inequality (3.9). The existence of the pressure n° € Eg(Qs) such that (u®, n°) satisfy (3.7) is found
in [12]. O

3.2. Problem in transpose form

In this subsection, we use the dilatation in the variable y; given by y; = ze, then our problem will
be defined on a domain Q does not depend on & given by:

={0", ) eR’: (vV,0) €T, 0<z<h()),

and its boundary I' = ,uUl,UT,.
After this change of scale following the third component, it is normal to give the new functions and
the new data defined on the new fixed domain Q:

05y, 2) = ul(y,y3),i = 1,2, #5(y,2) = & Uiy, y3) and (Y, 2) = £ 7°(Y, y3). (3.10)
fO6/,2) = €250, y3), 6 = &716°, k= &k, (3.11)
20,2) = g, y3), Gy, ) =G0, y), 1= 1,2, (3.12)

G5y, y3) = € Gy, y3) also div(G)=0and G =gonT

with all the new notations given in (3.11) and (3.12) do not depend on €.
Also, we denote by:

3 —
E:{f/e(W“(Q)) .9=GonT,»=0onT,; f/.n:Ooth},

AIMS Mathematics Volume 8, Issue 6, 12637-12656.
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Egq = {0 € EQ): divD =0},
2(E) = {p € (W @) : %= Gi o[ty =0on T, i= 1,2},
E(E) = {p € B(E) : D satisfy (3.13)},

where the condition (3.13) is given by

f(v18_w + vzg—w) dy'dz =0, for all p € (L" (Q))* and w € Cy (Q).

oy, V2

Finally, the Banach space O, and its linear subspace @Z are denoted by:
0, = { e (L' (Q)*; el (Q,i=1,2:9=0 onFu},

©. = {p € @, : ¥ satisfy the condition (3.13)},

L@ )

with the norm of @, is given as follows:

2

Iolly, = (nvlum@ +

i=1

o

(3.13)

By introducing all these new notations into the variational inequality (3.7), and then multiplying all the

terms deduced by &' after this scaling, then the problem P takes the following form:

Problem Py. Find (i1°, #°) € Ey;, ng(Q), such that

F@®, 0 - 0°) — (@, div (0 - 05) + j@,9) - j@°,0°) > (f,9 =), VD€ E

) (1 (0ﬁf 8&5 ))] o, — AS) ,
- ——dy'dz
2\dy; Oy dy;

where

F@s, v - i) Zf[spw(as)

i,j=1

2
+Zfﬂ|ci(aa)
=1 vYQ

r—2 (1 oi; a(Vl )
_ l L d /d
(2(0Z +86‘yi)) oz "

g2 205\ 003 —015)
f(uld( ) za;)a—zgdydz
AW \\ 8(H; — %)
ey |2 J 3 3 ’
d(inf —=dy'dz,
+Zfsﬂ| ) ( ( 0yj GZ)) oy,

(7, div(d —a%)) = f? div(d — &°) dy'dz,
Q

D— sldy’ + V25 f |ld )| dy dz,
Q

(3.14)
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2
TARISEDY f o = i)y’ dz + f efs(s - 5)dy'dz,
Q Q

A 1/2
12 28 61/!8 Ag2 261’/\!?2
(122 (5 ) a2 (i) (5 ) -

2

‘J (@)

We introduce some results found in [4] which we will need to use in the rest of this work.

IVVell ey < Clld (V)|Iprge),
foAad

< L @e),
ropq

af < “7 +%, ¥ (a,B) € R2.

||VS||LV(Q£) < Sh*

4. Main convergence results

(3.15)
(3.16)

(3.17)

The convergence results of (#°,7%) towards (u*,*) as well as the limit problem independently of

the parameter € will be given in the next of this subsection.

Theorem 4.1. Assume that the assumptions of Theorem 3.1 hold, there exist n* € Eg(Q) and u* =

(uf, uy ) € 6Z satisfy the following convergences:

u;—uiin O, 1<i<2,

NE

i
e— —0, in L'(Q), 1<i,j<2,
dy;
0"8
& — 0, in L'(Q),
0z
6"8
£— 0, in L'(Q), 1<i<?2,
0y;

ei; = 0, in L'(Q),
7 — 7, in E}(Q), with m* depend only of y'.

Theorem 4.2. With the same assumptions as Theorem 4.1, the pair (u*, n*) satisfies:

0f — u¥, stronglyin ©,,i=1,2,V1<r<2,

1 1

2 1(12 (0ur Té’(u’*)é?(v,—u) (8\/1 8\12)
_1 = 1 /d I d/d
ﬂEQIZ(L;(@z)) 0z 0z °T fﬂ o9 oy Oy :
avs (109 |ou*]\ .
+632 [ = |- dydz+fk|R( 7r)|(|v—s| u* — sl)dy’
o \10z 0z
2
=)

[ A = wdy'dz, V9 € E(E).
i=1 Q

(4.1)

4.2)

4.3)

4.4)

(4.5)
(4.6)

4.7)

(4.8)
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*
Theorem 4.3. Suppose that the assumptions of the previous theorem hold, and if 3 # 0, the
Z
solution (u*, 7*) satisfies
e WH(T,) (4.9)
o1 (1& o\ o T owrsez| .
I e i +o—— = fF-Vr*, inL1(Q)>. 4.10
9z 2#(2;( oz ) ) 0z 2 |au*/azl f T n (Q) ( )

Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold, then T, s* satisfy the inequality:

2
> f k|R@,(=7*)| ¢i(s7 = sy’ - f AT |s* —s|dy 20, Vo e LT, (41D
i=1 YT» Ty

and the limit form of Coulomb law:

u |T*| <7€|R(5,7(—7r*))| — s* =y

ol e inT), 4.12
u|r*|:k|R@(—n*))|=>3/320:s*:s+ﬁr*}ae e (12

Also, the solution (u*, n*) satisfies the weak generalized form:

* (1, h *
Au @’f)dfdy+3ffy Ou* |0z
00

h
f{lzvn VH 4 p f fB* o) <y',§>d§dy] V() dy

T, 3 |0u* /0z] 4.13)
o Sh i ou* /o '
v ——f R <y',§>d§]w<y'>dy:weWU(rb),
where
* , (1< (o N
=B 00 50000, 5 = (y,§)=5(5;(8 ))

3 h Ve
H(y’,h)=f0 H(y’,y)dy—EH(y’,h),H(y’,y)=f0 f:f(y’,t)dtdf-

Theorem 4.5. For f € LY(Q)? and k > 0 in L¥(T'}); there exists k > O sufficiently small such that for
_ — ~ 2
kllr,) < k, the solution (u*,n*) of the limiting problem (4.8) is unique in GZX(ES (T,) N Whe (Fb)) )

5. Proofs of the main results

Proof of Theorem 4.1. Before starting the proof of this theorem, we need the following estimates
which can be considered as the key that allows us to make a passage to the limit when & tends to zero.

Lemma 5.1. Assume that f¢ € L1(Q¢)* and let (u®,n%) € E5 X Ej (Q°) be a solution of Py, where
the friction coefficient k® > 0 in L™ (I'y). Then there exists a constant C independent of € such that

2 r 2
> 3
i,j=1 L"(Q) i=1

AIMS Mathematics Volume 8, Issue 6, 12637-12656.
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8y,

+
L(Q

') +

)S C, (5.1)
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7
i
i
9z

<C, fori=1,2,

w-la@)

< e&C.

(@)

Proof of Lemma 5.1. Choosing v = G in (3.8) and using the fact that G* = s on [, we find

FW,u®) < F,G%) + (f°,u’) — (f°,G°).

(5.2)

(5.3)

(5.4)

By applying Korn’s inequality, we ensure the existence of a constant Cx > 0 that does not depend on &

with:
F (u®,u) 2 2uCxk Vil ) -

(5.5)

Now we apply Holder’s inequality and then Young’s, the increase of the first term of (5.4) is given by

e ey o HCk enja(r=1) g "Dy
FWw,G%) < —— d =0 dy' dy; + ————
u®,G%) > fs,u| (u®)| yays HGCO™ o

By (3.15), the inequality (5.6) becomes
(’_1)/1
r(gCg)
We apply (3.16) and (3.17), we obtain the analogue of (5.7)
(eh*)*
qGurCryil”
(eh*)*
q(5rCi)1"

F @, v) < IV} e + IVG®II7r e -

uCx
%) < S5 IVl ey + 11

C , &
(.60 < SR IVG g + o -

Now, from (5.4)—(5.9), we obtain

2 (eh*)?
q(5rCr)l"

20Dy
r(gCx)"

eNr uCx er £
uCx |[Vu ||Lr(Q) < ( + ) )”VG ”Lr(Qa') + I/ ||Zq(Qs) .

We multiply (5.10) by &~! then using the fact that

q 119 _1-r |l All4
e Moy = €7 |l
and . ’
E NE
Ou; _ ler oi;
03| ey 92 || g

fori = 1,2, we deduce (5.1) with

Al

1 20Dy uCg r 2 (sh*) .
C= + vol| | 42 _
HCx [(r GO )” AHL"(Q) q(ErCry” Nz

|d (GO dy' dys.

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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For get the estimate (5.2), we choose in (3.14), ¥ = &t° + ¢, with ¢ € Wé’r (Q)3, we find

F@®, ¢) — (7°,div ¢) + 3f ‘+ ¢)‘dy dz-9 f ‘d(ﬁg) dy'dz > (f ?),
then
7@, div ) < a(ii®, p) + V26 f d(@° + ¢)‘dy’dz— V26 f ‘21' (@) dy'dz — (f*, ),
Q Q

as . . .
'd(ﬁ‘9+¢) < \/E'd(fﬁ) 4 \/§|d(¢)‘,

we obtain

7, dive) < a@®, ) + 26 f |Z (¢)‘ dy'dz +(2 - V2)$ f ‘2 @°)| dy'dz — f Fody dz.
Q Q Q
As

14,0y < Il - Ve €10,11.

By Holder’s inequality, we get

@ . dive) < pulld@ g 91l ,, . +281Q17 gl
+(2- V2)81Ql f1ae)

wlr@?

+ ||f/\||Lq(Q)3 ||¢||W1J(Q)3 .

WI’V(Q)S

We apply the results of (5.1), we have:

an®
fQ oo dd'dz <uClgl,,, + 28100 I, + (2= V2)SIQE C+ ] il

ayl Wl”(Q)3
The same, we choose in (3.14): ¥ =i° — ¢, ¢ € Wé” (Q)S, we obtain
on® U A 1
—fQ . pdy'dz < p|ld(@®)|ly, g 1ol wres T 20|QJ« |I¢|IW1,(Q)3
+(2-V2)é1QiC+ 171, Wl -

From (5.12) and (5.13), we deduce

i A1
[Q o P dz‘ < @y gy 9, +281Q17 11l
A 1 Al
+(2- V2)o|Qls C + @) -
(2-V2)sic+ ||, 19y

whr@?

Choosing ¢ = (¢1,0,0) then ¢ = (0, ¢,,0), in (5.14), we find

on®
f — ¢dy'dz
Q (9)C,'

Then (5.2) follows fori =1, 2.

< (uc+ 281005 + |17, )il + (2= V2) 1 c.

(5.11)

(5.12)

(5.13)

(5.14)
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For get (5.3), we take in the inequality (5.14), ¢ = (0,0, ¢3), we find

a"s
Z f or pdy'dz
& Q aZ

s(C+2€s|Q|% +||f3||m@)||¢|| +(V2-1)d1ar .

1

ler(Q)3

Which completes the proof of Lemma 5.1.
Now, the convergence (4.1)—(4.6) of Theorem 4.1 are a direct result of inequalities (5.1)—(5.3).
Indeed, by (5.1), 4C > 0 not related to &, and verifying

oit?

0z
It is clear that (4.1) deduces directly from (5.15) and the using of the Poincaré’s inequality in the fixed
domain Q. Also (4.2)—(4.4) follows from (5.1). The obtaining of (4.5) is done as in [6]. Finally, it is
easy (4.6) follows from (5.2) and (5.3).

In order to proceed to the proof of strong convergence (4.7) of Theorem 4.2, it suffices to
demonstrate the strong convergence of the integral term defined on I',.

<C,fori=1,2. (5.15)

L@

Lemma 5.2. Let R is a regularization operator from W‘%”(Fb) into L' (I'y), then the choice of R ensures
the existence of a subsequence of R(c, (i1°, 7)) strongly converges to R (—n*) in L" (I'p).

Proof of Lemma 5.2. From the equilibrium Eq (2.1), we have
—div(c®) = f¢ in Q®,

with f* € (L7 (Q))*. By the results of Theorem 4.1, we deduce that (2, 7) are bounded in ©, XEJ(Q),
then o is bounded in

Hge = {v € (L' (@)’ : div(v) € L' (Q)},
which shows that there exists a subsequence converging weakly towards o*. Now, we show that
0, (u?,7°) converges weakly to (—7*) in W= ().
Indeed, as oy = O'fjn,»nj, 1 <i,j<3,wehave

2 - 2 Ol ]~ _1 00¢
- _ 2 ~E i & l £
O'U(L?"F)_El(sﬂd(u) _6y,-+8 (d(u)) o )
~ ot o1

Since o is bounded in H,;,(Q), then there exists a subsequence converging weakly towards o* in
H,;;,(Q). Using the fact that the trace operator is continuous from H;,(Q) into W_Tl”(l"b), we therefore
obtain the weakly convergence of o,(u®,7°) to o,(u*, 7*) in W2 (). We apply now the results of
Theorem 4.1 in the formula of o, (u®, 7°), we obtain the desired result.

For the rest of proof, using the same techniques as in [2, 13], we get the result.

Proof of Theorem 4.2. For u* the solution on (3.8), we obtain for v € EY.
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FWw,u® —v)— F(v,u® —v)— jw®,v)+ jW®, u®)
<(ff,v—u®)+ F(v,u® —v).

Using the inequality as ([24])
(|a|r—2a — b2 b,a - b) > (r—1)(la| + b)) *|a - b|*, for a,b € R"and r € ]1,2[ (5.16)

and by using the Korn’s inequality, we find

(r - 1>ucKZ fo (|5 2w -l Javass
—j(u® ,v)+](u Luf) < (f%,uf —v)+ F(v,u® —v).

6ur r— 2 aV[

6yj

We multiply the last formula by &', as well as the convergence of Theorem 4.1, we get in the fixed

domain Q
2

0 |
(r- 1);@%} 5 =),

2 ~
< 3 [, /i@ = v)dydz + a@, =)
i=1

dy'dz — j(ir°, ) + j (@, ir°)

We pose, u” = (@15, i5), u* = (uf,u3), v = (v1,1,),s0Vv € =(E) and

—(u —V)

lim sup [(r — DuCk dy'dz - j@®,v) + j (&, ﬁg)]

L'Q
I AR :
< — - (-u")ayd iy — 9)dy dz.
ﬂf@[ Z(az)] 722: " u)yZ+;Lf(u, Pi)dy’dz
Consequently,

dy'dz — j@®,v) + j (@, 1)
L"(Q)

(r—1DuCg —(u —v)

2

I 5\22 ov 0 . A
= _— — dvdz + ) '*_Ajd’d +6,
IUIQ;( 2(32)] 07 07 (V=) dy'dz ;f@f(ul bi)dy'dz

for &€ < £(8), where & > 0 is arbltrary
Therefore, dv € _(E) vy — u*in @Z, which gives

dy'dz + j (@, ) — j@®, u*) < 8, Ve < &(d).

(r—1DuCg 9 @ —u*)
0z

,
Q)

Now, since liminf j (&) > j (u*), we deduce: @ — u* in ©,. Furthermore, j (i°, #°) — j(i’, u*)
for £ — 0, which gives the convergence (4.7).
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If r = 2, we follow the same techniques but (5.16) we will be replaced by
(laa= bl b,a—b) > (1/2Y " la = bI", for a,b € R". (5.17)

For the proof of the inequality (4.8), we introduce in (3.14) the condition of incompressibility of the
fluid (div (&#°) = 0 in Q), then by the application of Minty’s Lemma, we deduce:

2
9, 0 _
F(a,v—as)—;(?,a—;)—(? av;)ﬂ( D) — 7@°, 1)

2
> | f0i-addydz+ | efsvs - i5)dy'dz, Vo € E.
N Q ! Q

i=1

We apply the convergence of Theorem 4.1, Lemma 5.2 and the fact /j\is convex and lower semi-
continuous, we obtain

2 2 T
ov; avla(v, ,~) ,
“;f‘(‘Z( )) 5
[ e a2 [ (2]
Q Oyy  Oys
+ffc
Iy

2
Frn * ’
> ZlfQﬁ(v,-—u,.)dydz.

) dy'dz

D—s|—u* —s|)dy

From [5, Lemma 5.1], 7* independent of z, then applying Minty’s lemma for the second time, we
deduce (4.8).

Proof of Theorem 4.3. Choosing ¥ in (4.8) (as in [3]) by: ¥; = u} + ¢;,i = 1,2, with ¢; € Wé”(Q), we

find
1(1(0ur  aw\2)? ou* dg, 9p1 0
515 - ——dy'dz - dy'dz
”ng2[2(3z+f%) oz 0z 0 fﬂ (c?y1 Ay,

By using Green’s formula, and choosing in the first step ¢; = 0 and ¢, € Wé’r(Q) then reversing this
choice in the second step, we find (4.9).

Now, for the prove of (4.10), we cannot choose the test function as in [5, 6], since their works do
not contain the term & g fQ 0v/0z dy'dz. For this, we use the following techniques. Firstly, we choose

Din (4.8) by v = u* + A¢ then v = u* — ¢, ¢ € W, (Q)?, we obtain

our aus\) aur 200, au¢>
ny—(—(— (9_z)] o V' dz —Zf (5.18)
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+3gf(a(u +A¢)‘ ou* )dydz> fow)dydz’ Ve W @)
Q Q
2 (18 au,*2%8u*6¢l 2 (M) ,
“ZLE(EZ(&)) da= 35 [ 7 00 7 P o1
~V2 o(u* —/lq’)) ou* 2 -
AL fQ (' ' ) Z f FQendy'dz, e WL (@,

Secondly, dividing (5.18) and (5.19) by A and the passage to the limit when A tends to zero, we find

112 (our\)T our Ry ;
ﬂzf@( z(az)) Gy 3 [t 00) Ghayd:

(5.20)
. ou*|\  Ou*o¢; , -
+5V§z fQ( = ) o 5 'z zfoazdydz, Vo € W' (Q),
1126*226u6¢,, op; .
“555(22(&)) e 3 e Bl 0 G (5.21)
- ou* |\ ou* 6¢l , p
+5¥ZIQ( % ) T 5 < zgmzdydz, V¢eW1 Q7.
So the last two formulas, we give:
1126*720u6¢,,_ i .,
“i§f<22(22(8z)) e 3 e Bl 0 G (5.22)
+€sﬁzf o |\ u 3o, dy'dz = zf dydz, ¥ eW“(Q)
> 20\ 5l 3 e [ figidy'dz, V¢

By the Green’s formula, we get (4.10).
Proof of Theorem 4.4. We take in (4.8), ¥; = u + A¢; for i = 1,2, where ¢; € er ’Ur (Q) and

Wi (@ ={pe WY (Q: ¢ =00nT, Ul

then

L1 (o) o éw) y a<¢, ,
ﬂZLE[EZ((?Z)] oz d_;f e
V2 0(/1¢+u*)

0z

ou*
0z

)dy dz + f IA<|R(—7T*)| (¢ + s* — s| — |s* — s])dy’
Iy
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Dividing the last inequality by A and the passage to the limit when A tends to zero, we find

1(12 (0ur 8u op; .,
”%5[22(@7)] 5o 7 Y%

op; ., N ou* 0¢; .
_Zan 05 a’ya’z+6 zfQ( ) o e (5.23)

~ % ¢l Si - , AL N ,
+l§1 ), k|RG=p )| Wdy > ;1 Jo fioi = upydy'dz.

Finally, using the Green formula in (5.23) and from (4.10), we find

ka|R(an< )| (st — sy’ —fm ols* = s|dy 2 0, Vg e (Wi @) .

This last formula holds for any ¢ € D(I',)?, but given the density of D(I'y) in L"(I'), we find the desired
result (4.11). For the proof of (4.12), we follow the same techniques as in [4].
To establish (4.13), we integrate twice (4.10) from O to z, we get

z ou* : Ou* /0
~ fyuBt 0.6 S 059 dg 6L | IO 4t 4 et ()2
(y§ Ou* /0] (5.24)
Sfls o = [ 7o t)dzdg——vn*o/
Substituting z by 4 in (4.24), we get
* h ou* /aZ ,
_f uB (9{-‘ 0 |3 */al dé+ut™ () h (5.25)
Sfls* Ey’;l = [ [ F o0 dde - —Vﬂ*(y)
We integrate (5.24) from O to z, it comes:
ou* A ou* /o h?
[ [ B 00 o deay - 5% [} la”*j(jldf g
a5 S (y) ) '
+54f|s*(y)| =", r)dtdgdy——Vn o).
From (5.25), we deduce
h? h
,LlT*(y’) 5\[ S*(y) __:u j(‘)
\/_ ls* ()l 2 (5.27)
ar V2 kg ) A h
v [ g+ D1 [ 7,8 dedy - VR,

By (5.26) and (5.27), we deduce (4.13).

AIMS Mathematics Volume 8, Issue 6, 12637-12656.



12653

Proof of Theorem 4.5. Suppose that the boundary value problem (4.8) admits two solutions which we
denote by (u*’l, n*’l) and (u*’z, n*’z). Taking 9 = u*? and ¥ = u™!' respectively, as test function in (4.8)
then by summing two inequalities, we get

5 5 8*12720 *16
U]

i=1

2 5.28)
1 8u*2 T o 0 (
_/lZf - i _(M*I_M*Z)dydz
Q 2 i= 1 (92 (9 (9
= i, kR = RGr* )| luf! = uldy’ < 0.
We apply (5.16) and (5.17), we obtain
u H— - u*’z) < ||/k\||L°°(l"b)f |R(—7T*’1) - R(—ﬂ*’2)| lu*! — u*?|dy’. (5.29)
0z L@y T
By the inequality (3.16), then we apply the Holder inequality on the second term of (5.29), we have
— I _ u*,2
”52 ) w©@)?
e q 1/q o
<h*||k|| o r,y C ( f R(—*1) = R(=n*?%) dy’) — (u*™! = u*?
Le(Tp)~0 Fb| | az( ) Q)
whence —
o Pkl ) C
v 1 %2 Ip)*~0 _x AN L pr k2
H o u*?) o ST [R=7*") = RC=7*)| - (5.30)

Using the fact that R is a linear continuous operator W‘%”(l" ») into L' (I',), there exists a constant C,
depending on R, such that

|R(=*") = R(=7*?)||,.p., < C1 7 = 27 (5.31)

LTy — Li(Ty)

Combining (5.30) and (5.31) we deduce that if ||k|| Lo, < k for sufficiently small k, then we have
0

v (u*,l _ u*,z)

= 0.
0z

L @Q)>?

Using Poincaré’s inequality, we get
!~ 2], = 0.

The uniqueness of the n* in the Eg ('p) follows from (4.13), in fact we take first in the Reynolds
equation (4.13) the pressure value 7 = n*! then 7* = 7% respectively, at the end by subtracting the
equations obtained, it becomes:

h3 *,2 ’r _
f 12v( - *?) Vudy' = 0.
*,1

Choosing v = n*! — 72 and by Poincaré’s inequality, we find
a*! = 72, almost everywhere in I,

This ends the proof of the Theorem 4.5.
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6. Conclusions

The aim of this study is to examine the strong convergence of the velocity of a non-Newtonian
incompressible fluid whose viscosity follows the power law with Coulomb friction, where we give
in a first step the description of the problem and basic equations. Then, we present the functional
framework. The following paragraph is reserved for the main convergence results. Finally, we give the
detail of the proofs of these results. In the future work we will extend and develop our work to new
space.
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