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1. Introduction

An essential area of applied theory of differential equations that deals with the study of oscillatory
processes in the social and technological sciences is the theory of oscillations, see [10, 18–23, 25, 34,
39, 41].

Fractional differential equations have popularity and gained importance during the past few years.
Several researchers trying to develop the earlier work with definitions of fractional derivatives like
Riemann-Liouville and Caputo derivative, see [17, 24, 28, 32, 35]. Khalil et al. [27] introduced a new
fractional derivative called the conformable derivative. Oscillation of theory conformable were done
by several authors [1, 3, 8, 16, 26, 29, 38]. The conformable fractional derivative seeks to extend the
common derivative while satisfying the properties of nature and provides a fresh approach.

The Emden-Fowler equations have been considered one of the important classical objects in the
theory of differential equations. This type of equation has a variety of interesting physical applications
occurring in astrophysics and atomic physics. The oscillation for the Emden-Fowler equation has
interest over the last 50 years, many results appeared in the oscillatory behavior of the Emden-Fowler
differential equations, see [5, 9, 15, 40, 42] and references cited therein. The references [4, 13, 14] lists
numerous studies have been conducted on Emden-Fowler generalization when the gradient term is
utilized.

Elliptic partial differential equations have various uses in physics as well as practically all branches
of mathematics, including harmonic analysis, geometry, and Lie theory. The Laplacian equation and
Poisson equation serve as the fundamental illustration of an elliptic PDE. The theory of elliptic PDE
have application in electrostatics, heat and mass diffusion and hydrodynamics, see [2, 6, 11, 12, 30, 33,
36, 43, 44].

Throughout the past few decades, the issue of oscillation and nonoscillation of elliptic partial
differential equation solutions has drawn a lot of attention. To the present time, there exists almost
no literature in conformable Emden-Fowler type elliptic partial differential equations is of the form

∆α
x u + c(x) | u |β−1 u | Dα(u) |1−β= 0 ∆α

x u =

n∑
i=1

∂α

∂xαi
(Dαu) (1.1)

where α, β ∈ (0, 1), ∆α
x is the conformable nabla operator, Dα(u) = (ux1 , ux2 , ..., uxn) for the conformable

gradient of order α of u with respect to the spatial variable x, ‖ . ‖ is the usual Euclidean norm on Rn.
c(x) : Rn → R is potential function c ∈ L1

loc(Ω), with Ω : {x ∈ Rn :‖ x ‖≥ 1}.
By a solution of (1.1), we mean a function u(x) : Rn → R which is absolutely continuous with first

α-fractional derivative in every compact subset of Ω and satisfies the Eq (1.1) a.e. in Ω.
A bounded domain G ⊂ Ω is said to be a nodal domain for (1.1) if there exists a nontrival function

u ∈ C2α(G;R) ∩ C(G;R) such that u is a solution of (1.1) with u = 0 on ∂G. Equation (1.1) is said to
be nodally oscillatory in Ω if for any r > 0 Eq (1.1) has a nodal domain contained in Ωr = Ω ∩ {x ∈
Rn : |x| > r}. Some different approach in the oscillation theory form the nodal domains. A bounded
domain is said to be the nodal domain of a nontrivial solution and u|∂Ω = 0.

By the Hartman-Winter Theorem, we get the function C(r)

C(r) =
β

rα

∫ r

1

∫
Ω(1,r)

r1−n+λc(x)dαxdαr (1.2)
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where

Ω(1, r) = {x ∈ Rn : 1 ≤ |x| ≤ r}.

The motivation for this work comes from the papers [7, 31, 37]. In this paper, we studied the α-
fractional partial differential equations for Emden-Fowler type elliptic equations (1.1) using the Riccati
technique by considering the two cases

i) there exists a finite limit limr→∞C(r) = C0;
ii) the case i) fails to hold and lim infr→∞C(r) > −∞.

We introduce several fundamental definitions, properties, and lemmas that are helpful throughout
the rest of this study in the following part, Section 2. We established the main findings in Section 3.
We provide an example to emphasize the key findings in Section 4.

2. Preliminaries

This part introduces several fundamental terms, characteristics, and lemmas that will be helpful
throughout the rest of the paper.

Definition 2.1. [27] Given f : [0,∞)→ R. Then, the conformable fractional derivative of f of order
α is defined by

Tα( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

for every t > 0 , α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0 and limt→o+ f α(t) exists, then
we define

f α(0) = lim
t→o+

f α(t).

Definition 2.2. [27] Let a ≥ 0 and t ≥ a . Also, let f be a functiondefined on (a, t] and α ∈ (0, 1).
Then, the α - fractional integral of f is given by

Ia
α( f )(t) = Iα1 (tα−1)( f ) =

∫ t

a

f (x)
x1−α dx,

where the integral is the usual Riemann improper integral and α ∈ (0, 1).

Properties 2.1. [27] Let α ∈ (0, 1] and f , g be α-differentiable at some point t > 0. Then,

(1) Tα(a f + bg) = aTα( f ) + bTα(g).

(2) Tα( f g) = f Tα(g) + gTα( f ).

(3) Tα(tp) = ptp−α.

(4) Tα(C) = 0, C ∈ R.

(5) Tα( f
g ) =

gTα( f )− f Tα(g)
g2 .

(6) If f is differential, then Tα( f (t)) = t1−α d f (t)
dt .
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Definition 2.3. [3] Let f be a function with m variable x1, ......, xm, the conformable partial derivative
of f of order 0 < α ≤ 1 in xi is defined as follows

∂α

∂xαi
f (x1, ......, xm) = lim

ε→0

f (x1, ..xi−1, xi + εx1−α
i ...., xm) − f (x1, ......, xm)

ε
.

Definition 2.4. [3] Consider the scalar field f (x) and the vector field F(x) that are assumed to possess
partial conformable derivative of order α with respect to all the Cartesian coordinates xi, i = 1, 2, 3.
We define the conformable gradient of order α of the scalar field f as follows

∇αx f =
∑3

i=1(∂αxi
f )ei,

where ei is the unit vector in the i direction. The conformable gradient of order α of the vector fieldF
is defined as follows

∇αx F =
∑3

i=1(∂αxi
Fi).

Definition 2.5. A solution of Eq (1.1) is called oscilatory if it has arbitrarily large zeros in G, and
is called nonoscillatory otherwise. Equation (1.1) are said to be oscillatory if all their solutions are
oscillatory.

Lemma 2.1. If −→r =
−→xi +
−→yj +
−→zk and r = |

−→r | then Dα f(r) = r1−αD(f(r)).

Proof. If f is differentiable, then using the Properties 2.1, we get

Dα f (r) = r1−αD( f (r)).

The proof of Lemma 2.1 is completed. �

Lemma 2.2. If f(t) = At - Bt
β+1
β , then

At − Bt
β+1
β ≤

(
Aβ

B(β + 1)

)β A
β + 1

where β ∈ (0, 1).

Proof. If f differentiable, then

f ′(t) = A −
β + 1
β

Bt
(
β+1
β −1

)
= A −

β + 1
β

Bt
1
β

so that the maximum point of f is realized in

t =

(
Aβ

B(β + 1)

)β
.

Consequently,

f (t) ≤ A
(

Aβ
B(β + 1)

)β
− B

(
Aβ

B(β + 1)

)β+1

=

(
Aβ

B(β + 1)

)β A
β + 1

.

Hence, the proof is completed. �

AIMS Mathematics Volume 8, Issue 6, 12622–12636.



12626

First we introduce the Riccati technique. There exists a Ωr = {x ∈ Rn :‖ x ‖≥ r} and a solution
u of (1.1) which is positive on Ωr. Let vector function W =

(
|Dαu|β−1Dαu
|u|β−1u

)
be the solution of Riccati

equation defined on the set Ωr.
The i - component of gradient is

∂αWi

∂xαi
=

∂α

∂xαi

(
|Dαu|β−1Dαu

)
(|u|β−1u)

−
β
(
|Dαu|β−1Dαu

)
∂αu
∂xαi

|u|β−1u2 .

Taking the summation, we get

divαW + βc(x) + β ‖ W ‖
β+1
β = 0, (2.1)

where divαW =
∑n

i=1
∂αWi

∂xαi
.

For the next, we define

Ω(a) = {x ∈ Rn : a ≤ r};
Ω(a, b) = {x ∈ Rn : a ≤ r ≤ b};

S (a) = {x ∈ Rn : r = a}.

Lemma 2.3. Let the Eq (1.1) be nonoscillatory, i.e., (1.1) has a positive solution on Ωa for some a ≤ 1.
The following statements are equivalent:

i) ∫
Ω(a,∞)

r1−n+λ ‖ W ‖
β+1
β dαx < ∞; (2.2)

ii) there exists a finite limit

lim
r→∞

C(r) = C0; (2.3)

iii) there exists a infinite limit

lim inf
r→∞

C(r) > −∞. (2.4)

Proof. Let the Eq (1.1) be nonoscillatory. There exists a number a ∈ R+ and a solution u of (1.1) which
is positive on Ωa. Let, vector function W =

(
|Dαu|β−1Dαu
|u|β−1u

)
is the solution of Riccati equation defined on

the set Ωa.

divαW + βc(x) + β ‖ W ‖
β+1
β = 0.

By the Gauss divergence theorem [37],

divα(rα−n+λW) =rα−n+λdivαW + Dα(rα−n+λ)
−→
W

=rα−n+λdivαW + r1−αD(rα−n+λ)〈W, ei〉,
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that is,

divα(rα−n+λW) = rα−n+λdivαW + (α − n + λ)r−n+λ〈W, ei〉,

where ei is the unit vector in the i direction and 〈W, ei〉 is the usual scalar product in R, implies that W
satisfies the equality ∫

S (r)
rα−n+λ〈W, ei〉dS −

∫
S (a)

rα−n+λ〈W, ei〉dS +

β

∫
Ω(a,r)

rα−n+λc(x)dx + β

∫
Ω(a,r)

rα−n+λ ‖ W ‖
β+1
β dx−

(α − n + λ)
∫

Ω(a,r)
r−n+λ〈W, ei〉dx = 0. (2.5)

Therefore, i)⇒ ii). Next, we suppose that (2.2) holds, then the Cauchy inequality gives∫
Ω(a,r)

r−n+λ〈W, ei〉dx ≤
(∫

Ω(a,r)
rα−n+λ ‖ W ‖

β+1
β dx

) 1
2
(∫

Ω(a,r)
r−α−n+λ ‖ W ‖

β−1
β dx

) 1
2

=

(∫
Ω(a,t)

rα−n+λ ‖ W ‖
β+1
β dx

) 1
2
(
ωn ‖ W ‖

β−1
β

∫ r

a
r−α−1+λdr

) 1
2

,

where ωn is the measure of the unit sphere in Rn and ωn = 2Π
n
2

Γ n
2

. Therefore,∫
Ω(a,∞)

r−n+λ〈W, ei〉dx < ∞. (2.6)

Combining (2.5) and (2.6), we get

Ĉ − β
∫

Ω(1,r)
rα−n+λc(x)dx =

∫
s(r)

rα−n+λ〈W, ei〉dS

+ (α − n + λ)
∫

Ω(r,∞)
r−n+λ〈W, ei〉dx − β

∫
Ω(r,∞)

rα−n+λ ‖ W ‖
β+1
β dx (2.7)

where

Ĉ =

∫
s(a)

rα−n+λ〈W, ei〉dS + (α − n + λ)
∫

Ω(a,∞)
r−n+λ〈W, ei〉dx

+ β

∫
Ω(1,a)

rα−n+λc(x)dx − β
∫

Ω(a,∞)
rα−n+λ ‖ W ‖

β+1
β dx

is a finite number. Next, we will show that

Ĉ = αC0. (2.8)

One can prove this results as in the proof of the Lemma 2.1 in [33]. This implies ii) ⇒ iii) is trivial.
To show, iii)⇒ i), we suppose that (2.4) holds and (2.2) does not hold. Let us define the function

Φ(r) :=
∫ r

a
β

∫
Ω(a,r)

r1−n+λ ‖ W ‖
β+1
β dαxdαr.
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This function satisfies

lim
r→∞

Φ(r)
r
→ ∞ f or r → ∞ (2.9)

and

β

∫
Ω(a,∞)

r1−n+λ ‖ W ‖
β+1
β dαx = ∞.

Similarly, the rest of the proof follows from the Lemma 2.1 [33]. �

For the next, we define

σ(r) =

∫
S (r)

rα−n+λ〈W, ei〉ds, (2.10)

Q(r) = rβ
(
αCo − β

∫
Ω(1,r)

r1−n+λc(x)dαx
)
,

and

H(r) =
1
rβ

∫
Ω(1,r)

r3−n+λc(x)dαx

where α, β, λ ∈ (0, 1).

Lemma 2.4. Consider (2.3) holds and the Eq (1.1) have a nonoscillatory solution. Then the equation

Q(r) −
(
(α − n + λ)r1−α

β + α − 1
+ 1

)
l +

βr(1−(α+λ))

ωn(α + β + λ − 1)
l
β+1
β ≤ 0,

and

rβ−2
(
βrβH(r) − βτβεH(τε) − τ2

εσ(τε)
)
−

(
2rα−1

1 + α − β
+

(α − n + λ)r1−α

3 − α − β
− 1

)
L

+
βr(1−(α+λ))

ωn(3 − α − λ − β)
L

β+1
β ≤ 0

are solvable.

Proof. Let W be the solution of the Riccati Eq (2.1) defined on Wa for some a ∈ R. From Cauchy
inequality gives

σ
β+1
β (r) = ωnrα−1+λ

∫
S (r)

rα−n+λ ‖ W ‖
β+1
β ds. (2.11)

The equalities (2.7) and (2.8) gives

rβσ(r) = Q(r) +
βrβ

ωn

∫ ∞

r
s1−(α+λ)σ

β+1
β (s)ds − (α − n + λ)rβ

∫ ∞

r
s−ασ(s)ds. (2.12)
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Differentiate (2.5) with respect to r, multiply by r2 and integrating over τ to R, we get

Rβσ(R) = Rβ−2(τ2σ(τ) + βτβH(τ) − βRβH(R)) + 2Rβ−2
∫ R

τ

s−ασ(s)ds+

Rβ−2
∫ R

τ

(α − n + λ)s2−ασ(s)ds −
Rβ−2

ωn

∫ R

τ

βs(3−(α+λ))σ
β+1
β (s)ds.

Now, substituting R = r and τ = τε

rβσ(r) = rβ−2(τ2
εσ(τε) + βτβεH(τ) − βrβH(r)) + 2rβ−2

∫ r

τ

s−ασ(s)ds+

rβ−2
∫ r

τ

(α − n + λ)s2−ασ(s)ds −
rβ−2

ωn

∫ r

τ

βs(3−(α+λ))σ
β+1
β (s)ds. (2.13)

Let us introduce the notation

l = lim inf rβσ(r). L = lim sup rβσ(r).

Obviously, for any 0 < ε < min{l, 1 − L} there exists τε > r0 and rε > τε such that

l − ε < rβσ(r) < L + ε. (2.14)

Due to this fact we have from (2.12) and (2.13) gives

l − ε > Q(r) −
(α − n + λ)r1−α

(α + β − 1)
(l − ε) +

βr1−(α+λ)

ωn(α + β + λ − 1)
(l − ε)

β+1
β ,

that is,

L + ε < rβ−2(τ2
ερ(τε) + βτβεH(τε) − βrβH(r))+(

2rα−1

(1 + α − β)
+

(α − n + λ)r1−α

3 − α − β

)
(L + ε) −

(
βr(1−(α+λ))

ωn(3 − α − β − λ)

)
(L + ε)

β+1
β .

Therefore,

Q(r) −
(
(α − n + λ)r1−α

α + β − 1
+ 1

)
l +

βr1−(α+λ)

ωn(α + β + λ − 1)
l
β+1
β ≤ 0

and

rβ−2
(
βrβH(r) − βτβεH(τε) − τ2

εσ(τε)
)
−

(
2rα−1

1 + α − β
+

(α − n + λ)r1−α

3 − α − β
− 1

)
L

+
βr(1−(α+λ))

ωn(3 − α − λ − β)
L

β+1
β ≤ 0.

Hence, the Lemma is proved. �

Lemma 2.5. Let Eq (1.1) has oscillatory solution u. Then all the solutions of Eq (1.1) are oscillatory.
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Proof. Assume the contrary. Let u be nonoscillatory solution of Eq (1.1). There exists r0 > 0 such that
uDαu > 0. Let us introduce the notation

σ(r) =

∫
S (r)

rα−n+λ〈W, ei〉dS ,

ρ(r) =

∫
S (r)

rα−n+λ〈W, ei〉dS .

There exists r3 > r2 such that

σ(r) < ρ(r) r3 < r < r3 + ε, σ(r3) = ρ(r3). (2.15)

Because of this fact we have from (2.13) that

σ(r) = σ(r3) + (α − n + λ)
∫ r

r3

σ(s)
sα

ds −
β

ωn

∫ r

r3

s(1−(α+λ))σ
β+1
β (s)ds ≥ ρ(r3)+

(α − n + λ)
∫ r

r3

ρ(s)
sα

ds −
β

ωn

∫ r

r3

s(1−(α+λ))ρ
β+1
β (s)ds = ρ(r) f or r3 < r < r3 + ε,

but this contradicts the Eq (2.15) and hence it is proved. �

Lemma 2.6. Let there exists the function v which is locally absolutely continuous together with its first
derivative and satisfying the inequalities

∆α
x v + c(x) | v |β−1 v | Dαv |1−β≤ 0. f or r > r0. (2.16)

almost everywhere. Then Eq (1.1) is nonoscillatory.

3. Main results

In this paper, the following main results has been established.

Theorem 3.1. (Hartman-Wintner Type Oscillation Criteria) If

−∞ < lim
t→∞

inf C(r) < lim
r→∞

sup C(r) ≤ ∞. (3.1)

or if

lim
r→∞

C(r) = ∞, (3.2)

then the Eq (1.1) is oscillatory

Proof. Suppose on the contrary that (3.1) holds and there exists number a such that positive solution
of (1.1) on Ωa exists. Then, Lemma 2.3 would implies that there exists a finite limit lim

r→∞
C(r), this

contradicts our assumption. �

Corollary 3.1. (Leighton-Wintner Type Criteria) If

lim
r→∞

∫
Ω(1,r)

r1−n+λc(x)dαx = ∞. (3.3)

then Eq (1.1) has no positive solution on Ωa for any a > 1.
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Theorem 3.2. Let Eq (1.1) has oscillatory solution u. Then

Q(r) ≥
βr1−(α+λ)

ωn(α + β + λ − 1)
N

β+1
β −

(α − n + λ)r1−α

α + β − 1
N − M, (3.4)

and

H(r) ≥
1

βr2(β−1)

[
rβ−2(τ2

εσ(τε) + βτβεH(τε)) + rβ−1h(ε) − M
]
. (3.5)

are oscillatory. Moreover,

lim inf rβσ(r) ≥ M, lim inf rβσ(r) ≤ N. (3.6)

where M is the least nonnegative root of equation and N is the largest root of equation.

Proof. On the contrary we assume the Eq (1.1) have the nonoscillatory solution. The Eq (2.1) has the
solution of σ : [r0,∞)→ (0,∞) satisfying the condition

lim inf rβσ(r) ≥ M, lim inf rβσ(r) ≤ N.

Clearly, for any 0 < ε < 1 − N(0 < ε < 1) there exists rε such that

M − ε < rβσ(r) < N + ε, f or r > rε .

tβσ(r)
(
2rα−β + (α − n + λ)r2−α−β −

βr2−(α+β+λ)

ωn
(rβσ(r))

1
β

)
≤ h(ε),

where h(ε) = (N + ε)
(
2rα−β + (α − n + λ)r2−α−β −

βr2−(α+β+λ)

ωn
(N + ε)

1
β

)
(h(ε) = 1). Finally, from (2.12)

and (2.13) we get

Q(r) ≤
βr1−(α+λ)

ωn(α + β + λ − 1)
N

β+1
β −

(α − n + λ)r1−α

(α + β − 1)
N − M, f or r > rε ,

and

H(r) ≤
1

βr2(β−1)

[
rβ−2(τ2

εσ(τε) + βτβεH(τε)) + rβ−1h(ε) − M
]
, f or r > rε ,

but this contradicts (3.4) and (3.5) and hence the theorem is proved. �

Theorem 3.3. Let (2.3) holds and

lim sup
r→∞

rα(C0 −C(r))
log r

>

(
1 + α − n + λ

β + 1

)β+1

ωβ
n. (3.7)

Then the Eq (1.1) is oscillatory.
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Proof. By contradiction, a solution W of the Riccati equation defined on Ωa and there exists number
a ≥ 1. We combine the Eqs (2.7) and (2.8) and by using integration by parts, we obtain

rα(C0 −C(r)) =

∫ r

a

∫
S (r)

r(α−n+λ)〈W, ei〉dS dr − βr
∫ ∞

r

∫
S (r)

r(α−n+λ) ‖ W ‖
β+1
β dS dr

−β

∫ r

a
r
∫

S (r)
r(α−n+λ) ‖ W ‖

β+1
β dS dαr + (α − n + λ)r

∫ ∞

r

∫
S (r)

r−n+λ〈W, ei〉dS dr

+(α − n + λ)
∫ r

a
r
∫

S (r)
r−n+λ〈W, ei〉dS dαr + constant,

that is,

rα(C0 −C(r)) =

∫ t

a
σ(s)ds −

βr
ωn

∫ ∞

r
s1−(α+λ)σ

β+1
β (s)ds −

β

ωn

∫ r

a
s1−λσ

β+1
β (s)ds

+ (α − n + λ)r
∫ ∞

r
s−ασ(s)ds + (α − n + λ)

∫ r

a
σ(s)ds + constant

=

∫ r

a

(
(1 + α − n + λ)σ(s) −

βs1−λ

ωn
σ

β+1
β (s)

)
ds

+ r
∫ ∞

r

(
(α − n + λ)s−ασ(s) −

βs1−(α+λ)

ωn
σ

β+1
β (s)

)
ds + constant

≤

∫ r

a

(
(1 + α − n + λ)sβσ(s) −

βs−λ

ωn
(sβσ(s))

β+1
β

)
ds
sβ

+ constant.

Using Lemma 2.2, we get

≤

(
1 + α − n + λ

β + 1

)β+1

(ωn)β log r + constant.

Hence,

rα(C0 −C(r))
log r

≤

(
1 + α − n + λ

β + 1

)β+1

ωβ
n +

const
log r

,

a contradiction. Hence, the proof is complete. �

Corollary 3.2. Assume (2.3) hold, and

lim sup
r→∞

1
log r

∫
Ω(1,r)

r1+α−n+λc(x)dαx >
(
1 + α − n + λ

β + 1

)β+1

ωβ
n.

Then the Eq (1.1) is oscillatory.

Corollary 3.3. Assume (2.3) hold, and

lim inf
r→∞

[Q(r) + H(r)] >
(1 + α − n + λ)β+1

β + 1
ωβ

n.

Then the Eq (1.1) is oscillatory.
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Corollary 3.4. Assume (2.3) hold, and each conditions are guarantees the oscillation of the Eq (1.1)

lim inf
r→∞

Q(r) >
(
1 + α − n + λ

β + 1

)β+1

ωβ
n,

lim inf
r→∞

H(r) >
(
1 + α − n + λ

β + 1

)β+1

ωβ
n.

4. Example

In this section, we give an example to illustrate the main results.

Example 4.1. Consider the conformable partial differential equations in Emden-Fowler type
Laplacian equation

∆α
x u +

(n − 1 − α − λ)β+1

(β + 1)(β+1)r2α | u |β−1 u | Dα(u) |1−β= 0.

In paper [27, Lemma 4], for a linear equation β = 1, λ < β and here β = 1, λ = 0 and α = 1. Then

(2 − n)
2

r( −n
2 −1)

(
−n
2

+ n − 1
)

+
(n − 2)2

4
r( −n

2 −1) = 0.

By apply the result of Theorem 3.3, Corollaries 3.2–3.4 in the right hand side, the solution is satisfied.

5. Conclusions

In this paper, the authors have obtained some new oscillation criteria for certain class of conformable
Emden-Fowler type elliptic partial differential equations by using Riccati technique. These newly
derived results extend and complements the known results in the existing literature for the integer-
order equations. To prove the effectiveness of our result we have illustrate with an example.

Acknowledgments

The authors are thankful to the reviewers valuable comments and suggestions that improved the
quality of the paper.

The work of U.F. G. was supported by the government of the Basque Country for the
ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively.

Conflict of interest

The authors declare no conflict of interest.

References

1. T. Abdelijawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
https://doi.org/10.1016/j.cam.2014.10.016

AIMS Mathematics Volume 8, Issue 6, 12622–12636.

http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.10.016


12634

2. W. Allegretto, On the equivalence of two type of oscillation for elliptic operators, Pac. J. Math., 55
(1974), 319–328. https://doi.org/10.2140/pjm.1974.55.319

3. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivatives, Open Math., 7
(2015), 889–898.

4. L. Baldelli, R. Filippucci, Existace results for elliptic problems with gradient terms via a priori
estimates, Nonlinear Anal., 198 (2020), 111–894. https://doi.org/10.1016/j.na.2020.111894

5. L. M. Berkovich, The generalized Emden-Fowler equation, Sym. Nonlinear Math. Phys., 1 (1997),
155–163.

6. M. Bhakta, P. Nguyen, On the existenceand multiplicity of solutions to fractional Lane-
Emden elliptic systems involoving measures, Adv. Nonlinear Anal., 9 (2020), 1480–1503.
https://doi.org/10.1515/anona-2020-0060

7. T. Chantladze, N. Kandelaki, A. Lomtatide, Oscillation and nonoscillation criteria of a second
order linear equation, Georgian Math., 6 (1999), 401–414. https://doi.org/10.1515/GMJ.1999.401

8. G. E. Chatzarakis, K. Logaarasi, T. Raja, V. Sadhasivam, On the oscillation of conformable
impulsive vector partial diferential equations, Tatra Mt. Math. Publ., 76 (2020), 95–11.
https://doi.org/10.2478/tmmp-2020-0021

9. Z. Dosla, M. Marini, On super-linear Emden-Fowler type differential equations, J. Math. Anal.
Appl., 416 (2014), 497–510. https://doi.org/10.1016/j.jmaa.2014.02.052

10. S. G. Deo, V. Lakshmikantham, V. Raghavendra, Ordinary differential equation, MGH Education,
India.

11. L. C. Evans, Partial differential equations, American Mathematical Society, USA, 2022.

12. F. Fiedler, Oscillation criteria of Nehari-type for Sturm-Liouville operators and elliptic
operators of second order and lower spectrum, P. Roy. Soc. Edinb. A, 10 (1988), 127–144.
https://doi.org/10.1017/S030821050002672X

13. R. Filippucci, Nonexistence of positive weak solutions of elliptic in-equalities, Nonlinear Anal., 70
(2009), 2903–2916. https://doi.org/10.1016/j.na.2008.12.018

14. R. Filippucci, R. G. Ricci, P. Pucci, Non-existence of nodal and one-signed solutions
for nonlinear veriational equations, Arch. Ration. Mech. Anal., 127 (1994), 255–280.
https://doi.org/10.1007/BF00381161

15. R. H. Fowler, Further studies of Emden’s and similar differential equations, Q. J. Math., 2 (1931),
259–288. https://doi.org/10.1093/qmath/os-2.1.259

16. T. Gayathi, M. Deepa, M. S. Kumar, V. Sadhasivam, Hille and Nehari type oscillation
crteria for conformable fractional differential equation, Iraqi J. Sci., 62 (2021), 578–587.
https://doi.org/10.24996/ijs.2021.62.2.23

17. S. R. Grace, R. P. Agarwal, P. J. Y. Wong, A. Zafer, On the oscillation of
fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 222–231.
https://doi.org/10.2478/s13540-012-0016-1

18. P. Hartman, Ordinary differential equations, J. Wiley and Sons, New York, 1964.

AIMS Mathematics Volume 8, Issue 6, 12622–12636.

http://dx.doi.org/https://doi.org/10.2140/pjm.1974.55.319
http://dx.doi.org/https://doi.org/10.1016/j.na.2020.111894
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0060
http://dx.doi.org/https://doi.org/10.1515/GMJ.1999.401
http://dx.doi.org/https://doi.org/10.2478/tmmp-2020-0021
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2014.02.052
http://dx.doi.org/https://doi.org/10.1017/S030821050002672X
http://dx.doi.org/https://doi.org/10.1016/j.na.2008.12.018
http://dx.doi.org/https://doi.org/10.1007/BF00381161
http://dx.doi.org/https://doi.org/10.1093/qmath/os-2.1.259
http://dx.doi.org/https://doi.org/10.24996/ijs.2021.62.2.23
http://dx.doi.org/https://doi.org/10.2478/s13540-012-0016-1


12635

19. P. Hartman, On non-oscillatory linear differential equations of second order, Am. J. Math., 74
(1952), 389–400. https://doi.org/10.2307/2372004

20. C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, et al., Oscillation
result for half-linear delay difference equations of second-order, MBE, 19 (2022), 3879–3891.
https://doi.org/10.3934/mbe.2022178

21. S. S. Santra, A. Scapellato, Necessary and sufficient conditions for the oscillation of second-
order differential equations with mixed several delays, J. Fix. Point Theory A., 24 (2022), 18.
https://doi.org/10.1007/s11784-021-00925-6

22. O. Moaaz, A. Muhib, T. Abdeljawad, S. S. Santra, M. Anis, Asymptotic behavior of
even-order noncanonical neutral differential equations, Demonstr. Math., 55 (2022), 28–39.
https://doi.org/10.1515/dema-2022-0001

23. O. Bazighifan, S. S. Santra, Second-order differential equations: Asymptotic
behavior of the solutions, Miskolc Mathematical Notes, 23 (2022), 105–115.
https://doi.org/10.18514/MMN.2022.3369

24. H. Hilfer, Applications of fractional calculus in physics, World Scientific Publicing Company,
Singapore, 2000.

25. E. Hille, Nonoscillation theorems, T. Am. Math. Soc., 64 (1948), 234–252.
https://doi.org/10.1090/S0002-9947-1948-0027925-7

26. U. N. Katugampola, A new fractional derivative with classical properties, arXiv:14140.6535, 2014.

27. R. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of Fractional derivative, J.
Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002

28. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier Science B.V., Amsterdam, The Netherlands, 204 (2006).

29. A. Kilicman, V. Sadhasivam, M. Deepa, N. Nagajothi, Oscillatory behavior of
three dimensional α-fractional delay differential systems, Symmetry, 10 (2018), 769.
https://doi.org/10.3390/sym10120769

30. W. Lian, V. Radulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of
fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611.
https://doi.org/10.1515/acv-2019-0039

31. A. Lomtatidze, Oscillation and nonoscillation of Emden-Fowler type equation of second order,
Arch. Math., 32 (1996), 181–193.

32. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential
equations, John Wiley and Sons, New York, 1993.

33. E. Muller-Pfeiffer, Oscillation criteria of Nehari-type for the Schrödinger equation, Math. Nachr.,
96 (1980), 185–194. https://doi.org/10.1002/mana.19800960116

34. Z. Nehari, Oscillation criteria for second-order linear differential equations, T. Am. Math. Soc., 85
(1957), 428–445. https://doi.org/10.1090/S0002-9947-1957-0087816-8

35. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

AIMS Mathematics Volume 8, Issue 6, 12622–12636.

http://dx.doi.org/https://doi.org/10.2307/2372004
http://dx.doi.org/https://doi.org/10.3934/mbe.2022178
http://dx.doi.org/https://doi.org/10.1007/s11784-021-00925-6
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0001
http://dx.doi.org/https://doi.org/10.18514/MMN.2022.3369
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1948-0027925-7
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/https://doi.org/10.3390/sym10120769
http://dx.doi.org/https://doi.org/10.1515/acv-2019-0039
http://dx.doi.org/https://doi.org/10.1002/mana.19800960116
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1957-0087816-8


12636

36. D. Qin, V. Radulescu, X. Tang, Ground states and geomentrically distinct solutions for
peridic systems Choquard-Pekar equations, J. Differ. Equations, 275 (2021), 652–683.
https://doi.org/10.1016/j.jde.2020.11.021

37. R. Marik, Oscillation criteria for the Schrodinger PDE, Adv. Math. Sci. Appl., 10 (2000), 495–511.

38. V. Sadhasivam, M. Deepa, K. Saherabanu, On the oscillation of conformable fractional differential
non-linear differential equations, Int. J. Math. Arch., 9 (2018), 189–193.

39. C. Swanson, Comparsion and oscillation theory of linear differential equations, Academic Press,
New York, 1968.

40. Y. Wang, Y. Wei, Liouville property of fractional Lane-Emden equation in general unbounded
domain, Adv. Nonlinear Anal., 10 (2021), 494–500. https://doi.org/10.1515/anona-2020-0147

41. A. Winter, A criterion of oscillatory stability, Q. Appl. Math., 7 (1949), 115–117.
https://doi.org/10.1090/qam/28499

42. J. S. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360.
https://doi.org/10.1137/1017036

43. J. Wu, Theory and applications of partial functional differential equations, Springer, New York,
1996.

44. N. Yoshida, Oscillation theory of partial differential equations, World Scientific, Singapore, 2008.
https://doi.org/10.1142/7046

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 6, 12622–12636.

http://dx.doi.org/https://doi.org/10.1016/j.jde.2020.11.021
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0147
http://dx.doi.org/https://doi.org/10.1090/qam/28499
http://dx.doi.org/https://doi.org/10.1137/1017036
http://dx.doi.org/https://doi.org/10.1142/7046
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Example
	Conclusions

