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1. Introduction

Let E be a real Banach space and let A and B be single-valued and multi-valued operators,
respectively, on E. Consider the variational inclusion problem:

find u € E such that 0 € (A + B)u. (1.1)

Problem (1.1) has been of interest to many authors largely due to its several applications in convex
minimization, variational inequalities and split feasibility problems (see, e.g., [20, 25, 28]).
Interestingly, the convex minimization problems arising from image restoration, signal processing and
machine learning can be transformed to an inclusion of the form (1.1) (see, e.g., [11,18,19,31] and
the referees therein). This interesting connection between problem (1.1) and concrete problems
arising from applications have made the problem of approximating zeros of sum of two (monotone or
accretive) operators a contemporary problem of interest (see, e.g., [1,17,29,36]).

Many iterative algorithms have been proposed for approximating solutions of problem (1.1) in the
setting of Hilbert spaces and Banach spaces (see, e.g., [2,3,18,20,26]). Of interest to us is the forward-
backward splitting algorithm (FBSA) which was studied by Passty [32] defined by:

X1 € H,
(1.2)
Xnel = (I + /lnB)_l(xn - /lnAxn), nz 1’

in the setting of a real Hilbert space, H. Under the assumption that A is @-inverse strongly monotone,
B is maximal monotone and {4,} is a sequence of positive real numbers satisfying some appropriate
conditions, Passty [32] proved that the sequence generated by (1.2) converges weakly to a solution
of problem (1.1). He also remarked that for the special case when B is the indicator function of a
nonempty closed and convex set, Lions [27] also proved weak convergence of the sequence generated
by (1.2) to a solution of problem (1.1).

Since strong convergence results are more desirable, in the literature, modifications of the
FBSA (1.2) by introducing a projection or Halpern or viscosity approximation techniques have been
proposed by many authors which guarantee strong convergence of the modified version of the
FBSA (1.2) to a solution of problem (1.1) in the setting of Hilbert spaces and Banach spaces more
general than Hilbert spaces see e.g., [3,21,39—-41] and the references therein.

Due to its simplicity, the Halpern-type modification of the FBSA (1.2) proposed by Takahashi et
al. [39] captured our interest. Their algorithm is defined in the following manner: given x; and u in H,
the next iterate is generated by

— — _1 —
{yn = + (1 — ) + 3,B) "I = L,A)x,, 13

X1 = BuXy + (1 _ﬁn)ym n>1,
where A : H — H is a-inverse strongly monotone, B : H — 2# is set-valued maximal monotone and,
{a,}, 6.} € (0,1), {4,} C (0, c0) are sequences satisfying some appropriate conditions. Later, in 2016,

Pholasa et al. [33] extended the theorem of Takahashi et al. [39] to Banach spaces. They proved the
following theorem:
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Theorem 1.1. Let X be a uniformly convex and g-uniformly smooth Banach space. Let A : X — X be
an a-inverse strongly accretive of order g and B : X — 2% be an m-accretive operator. Assume that
Q = (A + B)"'0 # 0. We define a sequence {x,} by the iterative scheme: for any x, € X,

Xn+1 = ﬁnxn + (1 _Bn)(a'nu + (1 - a’n)-],?n(xn - /1nAxn)7 (14)

for each n > 1, where u € X, an = I+ /lnB)_l, {a,} € (0,1), {B,} < [0,1) and {4,} < (0, c0)
are sequences satisfying some appropriate conditions. Then the sequence {x,} converges strongly to a
solution of (1.1).

Now, let us recall the inertial acceleration method which is based on a discrete version of a second
order dissipative dynamical system (see, e.g., [6, 7, 30] for more about the discretization of the
system). The inertial procedure can be regarded as a method of speeding up the convergence
properties of existing iterative algorithms (see, e.g., [5, 14-16, 22, 34, 37]). Recently, the inertial
procedure is of interest to many researchers with motivations varying from the fact that the method
accelerates convergence or for the purpose of academic exercise. For example, it is known that inertial
acceleration strategy published by Nesterov improves the theoretical rate of convergence of the
forward-backward Algorithm (1.2) (see [11]).

In 2018, Cholamjiak et al. [20] incorporated the inertial acceleration strategy in a Halpern-type
FBSA to accelerate the convergence of the sequence to a solution of problem (1.1). They proved the
following theorem:

Theorem 1.2. Let H be a real Hilbert space. Let A : H — H be an a-inverse strongly monotone
operator and B : H — 2% be a maximal monotone operator such that Q == (A + B)™'0 # 0. Let {x,)}
be a sequence generated by u, xy, x, € H and

n = Xn Hn n — Xn-1),
{y Xy + 0,(x, — X,-1) (L.5)

Xns1 = Qulh + By + Yud s Gn = Ayn), 021,

where {6,}, {a,}, {B.), {y.} and {A,} are real sequences satisfying some appropriate conditions. Then
the sequence {x,} converges strongly to a solution of (1.1).

Recently, Adamu et al. [4] extended the result of Cholamjiak et al. [20] to 2-uniformly convex and
uniformly Banach spaces and proved a strong convergence theorem. Furthermore, some applications
to convex minimization and image restoration problems were presented in their paper to support the
results with numerical experiments.

Another acceleration strategy which is currently of interest is the relaxation technique. This method
is based on a convex combination of the “x,.,” term in the existing algorithm and “x,”. The influence
of this convex combination is what is called the relaxation technique. Interested readers may see, for
example, [8, 24] for motivation about this technique. This strategy has been used to accelerate the
convergence of the FBSA and some of its modified versions which guarantee strong convergence (see,
e.g., [2,8,9,18] and the references therein). Recently, in 2021, Cholamyjiak [18] combined the inertial
and relaxation acceleration strategies in a modified FBSA. They proved the following theorems:

Theorem 1.3. Let H be a real Hilbert space and let A : H — H be monotone and Lipschitz continuous
and B : H — 2" be maximal monotone. Suppose the solution set of the VIP (1.1) (A + B)™'0 is
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nonempty. Let x; € H, let {x,} be a sequence generated by

Yn = (I + /lnB)_l(xn - /lnAxn)’

Xn+l = (1 - Hn)-xn + enyn + en/ln(A-xn - A)’n), (16)
— M n”xn_ n”
/ln+1 = min {/ln’ ﬁfon_B);n”}’

where 4; > 0, {6,} C [a,b] C (0,1), {u,} C [c,d] C (0,1). Then the sequence generated by (1.6)
converges weakly to a solution of problem (1.1).

Theorem 1.4. Under the same hypothesis as in Theorem 1.3 above, given xy, x; € H, let {x,} be a
sequence generated by

Wy = Xy + (X — Xp1),
Yn = (I + /lnB)_l(Wn - /lnAwn),
Xnel = (1 - en)wn + gnyn + en/ln(AWn - Ayn)’

— 1 ﬂn”wn_)’n” }
Aye1 = min {’l"’ TAw,—By,l |

where g >0, 0 € (0,1], u € (0, 1), @ € [0, 1) such that
0(1 — u?) 1-60 a(l+a)
+ > .
(2 — 6+ ub)? 0 (1-a)?

Then the sequence {x,} converges weakly to a solution of problem (1.1).

(1.7)

Recently, Adamu et al. [2] used the idea of Halpern approximation technique and also combined the
inertial and relaxation acceleration strategies in a modified FBSA to obtain strong convergence. They
proved the following theorems:

Theorem 1.5. Let E be a 2-uniformly convex and uniformly smooth real Banach space with dual space,
E*. Let A : E — E* be a monotone and L-Lipschitz continuous mapping, B : E — 2F" be a maximal
monotone mapping and T : E — E be a relatively nonexpansive mapping. Assume the solution set
Q=(A+B)'0NF(T) # 0, given x, € E, let {x,} be a sequence defined by:

Yo =I5 I (Tx, = ,Ax,),

Zn = I Ty = (Ay, — AXy)),

g = J (Budzn + (1 = Bu)JTzy),

X1 = I = 0)Tx, + O, (ynJu+ (1 = yu)u)),

(1.8)

where an = (J+A,B)7'J, J is the normalized duality map, {6,}, {5,} C (0, 1], {y,} € (0, 1) are sequences
that satisfy some appropriate conditions. Then, {x,} converges strongly to a solution of problem (1.1).

Theorem 1.6. Under the same setting as in Theorem 1.5, given xy,x, € E, let {x,} be a sequence
defined by:

wy = J W Ux, + a,(Jx, — Jx,21)),

Yo =I5 T (Iwy = ,Aw,),

2 = I (Jyn = Ay, — Awy)), (1.9)
ty = I Budzn + (1 = B)I Tz),

X1 = J7HA = 0)Iwy + 0,(yuJu + (1 = y,)Juy)),
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where {,} is a real sequence that satisfies some appropriate conditions. The remaining parameters
are the same as in Theorem 1.5. Then, {x,} converges strongly to a solution of problem (1.1).

Remark 1.1. Looking at the results of Cholamjiak et al. [18] and Adamu et al. [2] with their
competitive numerical illustrations, it is natural to ask the following question:

Question 1. Can the idea of combining inertial and relaxation acceleration strategies be
incorporated in an existing algorithm involving accretive operators?

Motivated by Question 1, our contribution in this paper are the following:

(1) We incorporate the inertial and relaxation acceleration strategies in Algorithm (1.4) of Pholasa
et al. [33] to get a relaxed inertial Halpern-type forward-backward splitting algorithm involving
accretive operators in Banach spaces for solving problem (1.1).

(2) Unlike in the results of Cholamjiak et al. [18] and Adamu et al. [2], in this paper, we study the
effect of the inertia and relaxation parameters and provided the best choice for these parameters
in the examples we considered.

The paper is structured as follows. In the next section, we recall some basic concepts on operators
in Banach spaces. In Section 3, we prove strong convergence results for relaxed inertial Halpern-type
forward-backward splitting algorithm. In the last section, a numerical example is given to illustrate the
performance of the proposed algorithms.

2. Preliminaries

The following definitions and lemmas are needed in the proof of our main theorem. Assume that £
is a real normed space with dual space E* and C is a nonempty closed and convex subset of E. For
any a € E and r > 0, the notation B(a, r) means the set {x € E : ||x — al|| < r}. The notation J, is the
generalized duality mapping defined, for any x € E, by

Ty = {x" € B e x) = (Il ] = ).

Observe that when g = 2, J; is the duality mapping denoted by J. Analytic representations of the
generalized duality mapping on some classical Banach spaces can be found in [10].
Let T : E — 2F be a set-valued operator. Recall that the operator T is said to be

e a contraction if there exists k € (0, 1) such that for all x,y € E,

lln =<l < kllx = yll,
wheren € Tx,{ € Ty. If 0 < k < 1, then T is called nonexpansive.
e accretive if for all x,y € E, there exists j,(x —y) € J,(x — y) such that
(n- 4. j(x=) 20,

wheren € Tx,{ € Ty.
e strongly accretive if there exists y > 0 and for all x,y € E, there exists j,(x —y) € J,(x —y) such
that

(n= ¢ Jgx =) 2 ylx =l
wheren e Tx,l € Ty.
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e a-inverse strongly accretive (a-isa) of order g, if there exist @ > 0,¢q > 1 and for all x, y € E, there
exists j,(x —y) € Jy(x —y) such that
(n= ¢, g =) = alln - 211,

wheren e Tx,l € Ty.
e m-accretive if T is accretive and R(/ + AT) = E, forall 1 > 0.

Lemma 2.1. [I2] For g > 1, let J, be the generalized duality mapping. Then, for all x,y € E, there
exists j,(x +y) € J,(x +y) such that
b+ 114 < Il + g (3, j(x + 7)) -

Lemma 2.2. [42] Let E be a uniformly convex real Banach space and let ¢ > 1 and r > 0. Then
there exist strictly increasing continuous and convex functions ¢,y : [0, 00) — [0, c0) with ¢(0) = 0
and ¥(0) = 0 such that, for all x,y € B(0, r),

(i) [l + (1= DlI* < Al + (1= D Y11 = A1 = D(llx =yl for any 4 € [0, 1],
(if) w(llx =yl < Il - g {x. j,0)) + (g = DI,

where j,(x +y) € J,(x +y).

Lemma 2.3. [28] Let E be a g-uniformly smooth real Banach space and let A : C — E be an a-isa of
order g. Then the following inequality holds for all x,y € C

I = 24) x = (I = AA) Y| < llx = ylI” = Aag — kA7) JAx = Ayll,

where «, > 0 is the g-uniform smoothness coeflicient of E (see, e.g., [42] for an explicit definition
of k,). In particular, if 0 < 2 < aqg — x,49"" then (I — AA) is nonexpansive.

Remark 2.1. Let A : E — 2F be an m-accretive map. The resolvent J; : E — 2F of A is defined by
Jix:={ueE:xecu+AAu}.

It is well-known that J% is single valued with F(J4) := A™'0 and J¢ is firmly nonexpansive. In the
sequel we adopt the following notation:

W= U8 -2A) = U - AB) (I - 2A), 1> 0.
The following statements are true (see [28]),

(i) for 1> 0, FW}") = (A + B)™'0,

(i) forO<A<eand x € E, ||x - Wf’Bx” <2 ||x - W?’Bx”.
Lemma 2.4. [28] Let E be a uniformly convex and g-uniformly smooth real Banach space and let
A : E — E be an a-isa mapping of order g and B : E — E be an m-accretive mapping. Then

given r > 0, there exists a continuous, strictly increasing and convex function ¢ : [0,00) — [0, c0)
with ¢(0) = 0 such that for all x,y € B(0, r),

Wi~ WAB|T <l = yll7 — A (g — 297k, ) lAx — Ay
—o (I = J) (I = A4) x = (I = J3) (I = AA) ).
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Lemma 2.5. [23] Let {d,} be a sequence of a nonnegative real numbers such that
dn+1 < (1 - ﬂn) dn + ﬂnTn and dn+1 < dn — +pna

where {1, } is a sequence in (0, 1), {n,} is a sequence of nonnegative real numbers, {p,} and {7,} are real
sequences. Then lim,_,, d, = 0 if

(1) Xy On = o0,
(ii) 1im, o0 py = O,
(111) limy_,e 17,, = O implies lim sup,_,, 7, < 0, for any subsequence {n;} C {n}.

Lemma 2.6. [38] Suppose that {a,} and {b,} are two sequences of nonnegative numbers such that
aye1 < a, + b, foralln > 1.

If 377, b, converges, then lim, ., a, exists.
3. Relaxed inertial Halpern-type forward-backward splitting algorithm

The following assumption is central in the proof of our results.
Assumption 3.1.

(i) For g > 1, let E be a real Banach space that is uniformly convex and g-uniformly smooth and let
A : E — E be an a-isa of order q, and B : E — 2F be a set-valued m-accretive operator such

that Q .= (A+ B)"'0 = {x € E : 0 € (Ax + Bx)} is nonempty.
(ii) Let {B,} € (0, 1) be a sequence such that lim,_,., 8, = 0 and Y., | 8, = 0.
(iii) Let {A,} C (0, 00) be a sequence such that 0 < A < Kq/lg_l < aq.
(iv) Let {y,} € (0,1) be a sequence with lim,,_,, v, = O.
(v) Let {6,} C (0, 1] be an increasing sequence.
(vi) Let {&,} C (0, 0) be a sequence such that with Y, | &, < .

Algorithm 3.1. Relaxed inertial Halpern-type forward-backward splitting algorithm.

Step 0. Choose arbitrary points xo, x; € E, @ € (0, 1) and setn = 1.

Step 1. Choose a,, such that 0 < a,, < @,, where

. &En
an = min {a/’ ”xn_xn—lll} ’ Where Xn i Yn-1> (3‘1)
a, otherwise.

Step 2. Compute

Y = X + @y (X = X)),

Vo = Bt + (L= B) I} (Vn = Ay 5

Xt = (1= 6,) Xy + 0, (Yuyn + (1 = ya) va) -
Step 2. Update n = n + 1.
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Remark 3.1. By Assumption 3.1, (vi) and Step 1, we deduce that

lim ay ”xn - xn—l” =0.
n—co

Lemma 3.1. Let {x,} be the sequence generated by Algorithm 3.1, then {x,} is bounded.

Proof. Let W, := an (I = A,A) and z € Q. Then, W, is nonexpansive (see [13], page 8). Using the
nonexpansivity of W, and Remark 2.1, we get

”ﬁnu + (1 _ﬁn) Wnyn - Z”
1Bn(u — 2) + (1 = B) Wy, — 2|

lva =zl

< Ballu =zl + (1 =B) [IWayn —zli
= ﬁn ||M - Z” + (1 _ﬁn) ”Wnyn - WnZ”
< Bullu—=zll+ (=B lly. -zl

Using the Inequality (3.2), and the fact that 6, € (0, 1], we get

||xn+1 - Z”

AIMS Mathematics

i IA IAN

IA

IA

IA

IA

(1 = 6,) xp + O, (Yuyn + (1 = yu) vi) — 2l

(1 =6 l1x, = 2l + 6, [y + (1 = ya) vi) — 2l

(1 =60) l1xy = 2l + 6, (Y llyn — 2l + (1 = y) v, = 2lD)

(1 =60) l1x, — 2l + O yullyn — 2ll + 6, (1 = ) v — 2l

(1 =6 1x, — 2l + Opyu llyn — 2l

+6, (1 = ¥,) Bl = 2l + (1 = Bo) lly, — 2l

(1 =6 1x, = 2l + 6yu llyn — 2l

+B,0, (1 = yu) llu = zll + 6, (1 = y,) (1 = Bo) llyn =l

(1 =0 1, — 2l + (Onyn + 0, (1 = y,) (1 = B)) [y — 2|

+B,0, (1 = ) |l =zl

(1 =6 l1xy = 2ll + (6 = Bubr (1 = yu)) lyn — 2l

+B,0, (1 =) |l =zl

(1 =60) llx, = 2l + (6 = B (1 — y)) llxn + @y (X — X-1) — 2
B0, (1 = y) llue — 2|

(1 =6 1x, — 2l + (6, = B (1 — ya)) (X — 2l + @ 12, — X401l
8,0, (1 = y) |l — 2|

(1 = B0, (1 =y ) 1X0 = 2l + (00 — B0 (1 = 1)) @ |1x0 — Xl
B0, (1 = y) |l — 2|

(1 =B (L =y ) X0 = zll + (1 = B (1 = 1)) @ |10 = Xl
+B,0, (1 =) |lu =zl

(1 =0, (1 =) (lx, = 2ll + @ 1%, = Xp1l]) + B (1 = ) llue = 2|
max {||x, — zll + @, ||x, — X1l llee = 2]} -

(3.2)
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If max {||x, — z|| + @, [|x, — x.—1ll, llu — zll} = |lu — z||, we have that {x,} is bounded. Otherwise, there
exists ny > 1 such that

X1 = 2ll < lxy = 2ll + @ 1%, = X0l , YV 12> 1o,

From the Eq (3.1), we note that a,, < ”x‘g— for all n > 1. Thus,

—Xn-11l”

(o) (o)
Z ay, ”xn - xn—l” < Z &y < 0.

n=1 n=1

By Lemma 2.6, {||x, — z||} has a limit. Therefore, {x,} is bounded.

Next, we prove strong convergence theorem for the sequence generated by our proposed

Algorithm 3.1.

Theorem 3.1. Let {x,} be a sequence generated by Algorithm 3.1. Then {x,} converges strongly to

7€ Q.

Proof. Let z € Q. Using Lemmas 2.1 and 2.4, we have

v, =zl

IA 1l

IA

Batt + (1= B) I3, 0 = uAya) =2

Bt + (1 = ) Wy — 2

(1 =B IWay = Wadl! + B (1 = 2, (v = 2))

(1 =B (Ilyn = 2ll* = 4 (g = A4 ) 1Ay — Azl

= 9 lyn = A (Ay, = AD) = Woyal) + By (1 = 2, jo(va = 2))

(1 =B Iy = 2ll” = 4, (1 = B (g = A'k,) 1Ay, = Az

—(1=B)" @ llyn = Au (Ayn = AD = Woyal) + @B (u = 2. jgva = 2)) . (33)

Next, using Inequality (3.3), Lemma 2.2 and the fact that ¢ > 1, we get that

141 — 2l

AIMS Mathematics

i IA IA 1

IA

(1 = 6,) X, + 6 Gy + (1= 7) vi) = 2

(1 = 6,) Gon = 2) + 0 (rayn + (1= 7) v) = DI

(1= ) 16, = 20l + 6, [y + (1 = 7) v) = 2l

(1= 6) 15, = 27 + 6y i llyw — 2l + (1 = 7,) vy = 2l

(1= 0) 15, = 217 + By Ly = 2lI? + 6, (1= ) [, — 21

(1= 0) 15, = 217 + 6 llyn = 2l + 6, (1 = %) (4 = B)" [y = 21
— 4, (1= B (g = 44", ) 1Ay, — A2l

= (1= B)* @ (llyw — i (Ay, = A2) = W,yll)

0B (1 = 2, jy(vn = 2)))

(1= 0) 15, = 27 + B llyn = 2l + 6, (1 = %) (1 = B Iy, — 2ll?
0, (1 = y) Ay (1 = B)* (g = 27k, ) 1Ay, — A2l

=0, (1 = ¥) (1 = B)? @ (llyn — A (Ayn — A2) = Wiyall)
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IA

IA

0, (1= 7) B (1 = 2, fg(vn = 2))

(1= 0) 15 = 27 + @y + 6, (1= 7 (1= B)) [y = 21
0, (1 = ) Ay (1 = B)* (g = 27k, ) 1Ay, — Azll?
=0, (1 = ¥) (1 = B)? @ (llyn = A (Ayn — A2) = Wyall)
0, (1= 7,) B (1 = 2, fg(vn = 2))

(1= 6 116, = 2l + (6, = 6,8, (1 = 7))y - 2l

0, (1 = ) Ay (1 = B)* (g = 27k, ) 1Ay, — A2l
=0, (1 = ¥) (1 = B)? @ (llyn = A (Ayn — A2) = Wyall)
0, (1= 7,) B (1 = 2, fg(vn = 2))

(1= 0) 15 = 217 + (B = 6,8, (1 = %)) 1 + (6 = Xm1) = 2l
0, (1 =) Ay (1 = B)* (g — 27k, ) 1Ay, — A2l
=0, (1 =7) (1 = B,)" @ (lyn — Ay (Ay, = A2) = Wyl
0, (1= ¥) gBy (1t = 2, jy(va = 2))

(1= 0) 15, = 27 + B = 6,8, (1 = Y) Gk = 2) + @y (s = X))
0, (1 =) Ay (1 = B)* (g — 27k, ) 1Ay, — A2l
=0, (1 =7) (1 = B,)" @ (lyn = Ay (Ay, = AZ) = Wyl
0, (1= 72) gB, (1t = 2, jy(va = 2))

(1= 6) 15, = 217 + (8 = 6,8, (1 = %)) (Ilx, = 2
+qat, (X = X1, JgOn = 2)))

0, (1 =) Ay (1 = B)* (g — A7k, ) 1Ay, — A2l
=0, (1 =7) (1 = B,)" @ (lyn — Ay (Ay, = A2) = Wyl
0, (1= 72) 4By (1t = 2, jy(va = 2))

(1= 6) 1, = 217 + O = 6,8, (1 = ) llx, = 2l
+qaty 0 = 08, (1 = y) (%0 = Xu1, O = 2))

0, (1 =) Ay (1 = B)* (g = A7k ) 1Ay, — A2
=0, (1 =7) (1 = B,)7 @ (lyn — Ay (Ay, = AZ) = Wyl
0, (1= %) @B (= 2, Jg(va = 2))

(1= 6, + (6 — 0,8, (1 = 7)) llx, — I

+qaty 0 = 08, (1 = y) (%0 = %01, O = 2))

=00 (1= 7,) u (1 = )7 (g = A0k, ) 1Ay — Acll?
=0, (1 =7) (1 = B,)" @ (lyn = Ay (Ay, = AZ) = Wyl
+0, (1= ) @B (= 2. jo(va = 2))

(1= 6,8, (1 = 7,)) l1x, — 2l

+qaty O = 080 (1 = y2) (%0 = Xu1, O = 2))

0, (1= 7,) 4 (1= B)* (g = A0k, ) 1Ay — Adll?
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—9” (1 - )/n) (1 _IBn)q 80(||)’n - /ln (Ayn _AZ) - WnynH)
0, (1 =7) @By (1 = 2, jg(vn = 2)) .

Now, we have
ner —2ll” < (1= 6,8, (1 = yi)) llxa — 2l
+qat, 0, = 0,8, (1 = v) (%0 = Xuc1, jgOn = 2))
0, (1= ) gBy (1 = 2, jy(va = 2))
for each n > ng, and
Bos =2l < 1o = 20l = 6, (1= %) 4, (1 = B (g = 247k, ) 1Ay, — Azl
=0, (1 = ¥) (1 = B)? @ (lyn = Au (Ayn — AZ) = Wayall)
+qty 0y = 080 (1 = y)) (%0 = Xa1, jgOn = 2))
0, (1 =7,) @B (1 = 2, g = 2)) .
for each n > ny. We define the following sequences

dn = ||-xn+l_zllq’

v, = (1 = Yn)0uPns
n 1 - n 1 - n . .
Tp = i (ﬂn (1ﬁ_(7n) Y ) <xn — Xn-1, .]q(yn - Z)> + CI(” -, ]q(vn - Z)> 5
M= O (1=7) 4, (1= B (g — 207k, ) Ay, — A2l
+9n (1 - 7n) (1 _:Bn)q QD(”yn - /ln (Ayn - AZ) - WnYn”) s

Pn = 4, 6, - Qnﬁn (1- Yn)) <xn = Xn-1, ]q(Yn - Z)>
0, (1 =7,) By (1 = 2 jy(va = 2)) -

From the Inequalities (3.4) and (3.5), it means that we have

dpy1 <1 =9)d, + 9,7, and d,. <d,—n,+ pn.
By Assumptions 3.1 (ii), (iv) and (v), it follows that

D1t = (1 =08, = .

n=1 n=1

Using boundedness of {y,}, {v,} and {6,}, Assumption 3.1 (ii) and Remark 3.1, we obtain
lim Pn = il_)r?o qa, (6, — Qnﬁn (1 - yn)) <xn — Xn-1, jq(yn - Z)>

0, (1 =7,) @By (1 = 2, jy(vn = 2)))
0.

Lastly, by Lemma 2.5, we assume that lim;_,, 17,, = O for any subsequence {n;} C {n}. That is,

]}Ln;lo (an (1 - ynk) Ank (1 _ﬁnk)q (a/q - /IZ,(_IKQ) ||Ayl’lk - AZ”q

(3.4)

(3.5)

AIMS Mathematics Volume 8, Issue 5, 11037-11056.
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+9nk (1 - ynk) (1 _IBnk)q QD(

By property of ¢, it can be seen that

fim s, = Ac] = Jimm

Ve = Ang (Aynk —Az) - Wi Y

ynk - /lnk (Aynk - AZ) - Wl’lkynk

)=o.

=0.

That is
0 = /}1—{2 ||y"lk = An (Ayn, — AZ) = Wy v,
= ]}1_{1; ||(Wnkynk - ynk) + ﬂnk (Aynk - AZ)”
< ]}1_)12, (| Wnkynk — Y + /lnk Aynk - AZ”)
= lim [Waiyne = yu|| + lim 4,, |4y, - Az

By Assumption 3.1 (iv), and lim;_,, ||Aynk - Az” = 0, we can write

lim [[W,,.ys, = yu]| = 0. (3.6)
In addition, we notice that
Wnkynk ]l = | Wnkynk T V|| TP T X
= | Wnkynk = Y| T (P T Ay (xnk - xnk—l) — Xy
= | Wnkynk = Yn|| T Uy || K — xnk*1|| :
From Remark 3.1, it implies that
| Wodm = Xn || = 0, k — oo. (3.7)
Also, it should be noted that
Ve — Vi = Xnp = V|| T Oy || X — xnk—1||
= X — (ﬂnku + (1 _ﬁnk)']fnk (ynk - /lnkAynk)) ‘ + Ay | Xy — -xnk—1||
= P~ (ﬁmu + (1 _ﬁnk)‘]f,,k (I - /l”lkA)ynk) + Qg || X — x”lk—1||
= (X (ﬁnku + (1 _ﬁnk) Wnkynk) T Qg || X — ‘xnk_1||
= (X (ﬁnku + (1 _IBnk) Wnkynk) +13nkxﬂk _ﬂnkxnk T Ay || Xy — xnk_1||
= LBnk (xnk - I/t) + (1 _ﬁnk) (xnk - Wnkynk) + @y (| X, — Xny—1
< B |[Xm = u” + (l _IBnk) X = Wi V|| + @ || X, — 'xnk_1|| :
By boundedness of {x,,}, Assumption 3.1 (ii), Remarks 3.1 and 3.7, we have
/}1_{2 Ve = V|| = 0. (3.8)

AIMS Mathematics
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By Assumption 3.1 (iii), there exists 4 > 0 such that 4 < A4, for all n > 1. Using Remark 2.1, we
obtain that

<2|

||W/114’By"k — Y Wnkynk — Y

This implies that

lirkn sup ||W34’Bynk — | < lirkn sup 2| Wone = Y| -

= 0 which it follows that

By (3.6), we get lim sup, _, 2| WoVne = Yy

<0,

0 < lim sup ||Wf’B)’nk — Y
k—o0

ie., limsup,_, ||Wf’Bynk — Y|l = 0. By the fact that

0 < liminf W32y, = || < limsup [|[W-y, = y]| = O
—00 k—00
then we have lim inf;_,, ||Wf’B Y = Yne|| = 0. Observe that
||Wj]4’Bynk - vnk < ”W?’Bym{ _)’nk + )’nk - vnk
which implies, by (3.8), that
. A,B
lim [[W32y,,, = v, [| = 0. (3.9)

Moreover, we have that

A.B
||WA Vi, = Vg

A,B A,B
||WA Ve = W,

A,B
+ ||W/1 Vo, — Vi,

A,B
+ ||WA Y = Vi

IANIA

Vg = Yy
by using the fact that W, is nonexpansive. From (3.8) and (3.9), we get

=0. (3.10)

1}1—{2 ”Wf ,ank = Ve
We now construct z; = tu + (1 — t)Wf’B z; where t € (0,1). Using theorem of Reich (see [35]), z,
converges strongly to the unique fixed point z € F (Wf’B ) = (A + B)"'0. By the fact that Wf’B is
nonexpansive, using Lemma 2.1, it follows that

q q

= |+ a-owitz —v,
= ||tu +(1 - t)Wf’Bz, =V + 1V, — 1V,
= [r@=viy+a-n (Wit -,
(1= 07| WPz = v ||" + gt (1 = Vi g @ = v))

(1= 0 (|WiPz = WP, || + Wi v, = v )’

||Zt - vnk
q

IA

IA

+qt <” = Vi Jg (@ = V”")>
(1-1)1 (||Zt = Vi

IA

q .
+ ||W;"ank -V, ) +qt <u — Vs g (& — vnk)>

AIMS Mathematics Volume 8, Issue 5, 11037-11056.
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)q

A,B
+ ||W/l Vi, — Vi,

= (1= 0 ||z = v,

+qt<u — Vi + 2= % Jg (20— vnk)>
= (1=0(||z = va,

+qt <z, — Vs Jg (2 — Vnk)>
= (1=0(||z = va,
+qt <z, — Vs Jg (1 — Vnk)>
(1 =07 (||z0 = v,

+qt ||z = vu|[*

A,B
+ ||WA Vi, — Vi,

)+t (u =z jy (2 = )

AB
+ ||W/l Vi, = Vg

) =gt (2= w iy (zo = v)

IA

+ ||W:l4’ank ~ Vn )q —-qt <Zt —Uu, jq (Zt - Vnk)>

It implies that

-0
qt

q

A.B
+ ||Wﬂ Vi = Vi

-V

)+

(”Zt ~ Vi gt

(2= . jg (2 = va) <

Hence, we have

(1—t)ch+(qf‘l)cq:((l_t)“qt_l)cq (3.11)

lim sup <z, — U, jg (z = Vnk)> < qt

k—o0 qt qt

(1-0)7+gt-1
qt

where C = limsup,_,, ||z, — V. ||- Observe that lim,_,o
on bounded sets and the fact that z; — zast — 0, i.e.,

= 0. By the uniform continuity of j,

lim lz, — || = 0, (3.12)

we get

tim |y (e = va) = Jy(e = va)|| = 0. (3.13)

Thus, by (3.12) and (3.13), we have

<Zz —u, jq (Zz - Vnk)> - <Z — U, jq (Z - V"k)>
= (G -2+ @=w.jy =) = (2= jy (2= va))

= <Zt - % jq (Zt - Vnk)> + <Z —u, jq (Zf - Vnk)> - <Z - u, jq (Z - vnk)>

= <Zt - % jq (Zt - Vnk)> + <Z —u, jq (Zl - vnk) - jq (Z - Vnk)>

< <Zt — %, jq (Zt - Vnk)>

S CSTICETAEVACEIN)
.

IA

1 . .
+ iz = ull | iy (2 = Vi) = g (2 = Vi)

llze = 2ll ||z = Vi,
Hence, lim,_,o <z, —u, jg(z — vnk)> = <z —u, jy(z— vnk)>. From (3.11), it can be seen that

lim sup <Z —u, jg(z— v,,k)> <0. (3.14)

k—o0

AIMS Mathematics Volume 8, Issue 5, 11037-11056.
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Furthermore, note that, by boundedness of {y,}, and Remark 3.1, it can be seen that

li qan, (1 _ﬁnk (1 - )/nk))
im sup
k—o0 ﬁnk (1 - 7nk)

Now, we obtain, by (3.14) and (3.15), that

v =" <0. (3.15)

xnk - xnkfl ||

: g (1 =B, (1 = ¥n)) : .
llmsup( X = X1 JgWn, = 2)) + q (U = 2, gV, — 2)
NS ﬁnk (1 _ynk) < k k=1 Jq\Vng > < q\"ni >
. qay, (1 _ﬁnk (1 - ’)/nk)) .
= limsup X = Xp—15> JqOm — 2)
k—co IBnk (1 - ynk) < ‘ ‘ I >
+¢ lim sup <u =2 Jg(Vn, — Z)>
k—oco
. qay, (1 _ﬁnk (1 - ynk)) g-1
< llmsup X — X=1|| || Ve — <
k—sc0 B (1= ¥,) ‘ ‘ ” ‘ ”
+¢ lim sup <u =2, JgWn, — Z)>
k—o0
< 0.

That is, lim sup,_,., 7, < 0. By Lemma 2.5, we can conclude that lim,,_,, d,, = 0. Therefore,

limx, =z€ (A + B0,

n—oo

which completes the proof.

Corollary 3.1. Setting a, = 0 in Algorithm 3.1, we get a relaxed Halpern-type forward-backward
splitting algorithm.

4. Numerical illustration

In this section, we give a numerical example to illustrate the performance of our proposed
Algorithm 3.1 in the setting of [4(R). Furthermore, we shall study the effect of the relaxation
parameter and inertial parameter in the performance of our proposed algorithm. We consider the
classical Banach space:

=

L(R) = {{xn}CR: imr‘ < oo} with norm ||| :(imr‘) .
n=1

n=1
For the purpose of numerical illustration, we considered the subspace of [4(R) consisting of finite
nonzero terms

Dy :={{x,} CR: {x,} = {xp. %0, . %,0,0,0,-+-}}, for some k > 1.

This is to enable us compute the norm of a vector x € [4(R).
Consider the space Dy. Let A, B : Dy — D, be defined by

1234

3
Ax = 5x+(§’§’4_1’§’0’0"")’ and Bx = Ex'

AIMS Mathematics Volume 8, Issue 5, 11037-11056.
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Then it is easy to show that A is 5-inverse strongly accretive and B is m-accretive. Furthermore,

_ _1(1 23 4 . _ 1 _ 1 —

the set @ = ~5(4.3.1.4,0,0, -+ ). In Algorithm 3.1, we choose B, = gy o = gy An = 0.5
and we study the performance of the algorithm as we vary 6, as presented in Table 1. In addition, we
initialized the vector u to be zeros and choose x, = (2,1,3,0,0,0,0,---)and x; = (2,0,1,1,0,0,---).
We set maximum number of iterations n = 200 using a tolerance of 107, The results of the experiment

are presented in Tables 1 and 2.

Table 1. Numerical results for different values of the 6,.

O n [1X+1 — sl
L 26 7.12E-06
g 9 9.00E-06
. 9 9.68E-06
. 22 8 47E-06
BueT 48 9.64E-06

Remark 4.1. The results from the experiment presented in Table 1 above suggests that as the relaxation
parameter 6, increases to one but NOT one, we have a better approximation with less number of
iterations.

From Table 1, we saw that choosing the relaxation parameter 6§, = 2 gave the best

3n+l1
approximation. So, in the next table, with this choice of 6, = 3521’ we shall investigate the
performance of Algorithm 3.1 as we vary the inertial parameter, @,. From Step 1, first choose
a, = a,. Then, we choose @, = a and vary «, be a constant less than @. Choosing €, = ﬁ and

a = 0.999 we obtain the following results:

Table 2. Numerical results for the varied inertial parameter «,,.

a, 0, n 1241 — |
n 2n

[ o 26 7.12E-06
@, — 6 8.95E-06
0.9 2 199 2.27E14

0.5 — 55 9.01E-06
0.1 2 10 8.80E-06
0.001 — 9 9.01E-06

Remark 4.2. The results presented in Table 2 above suggest that the choice of the inertial parameter

AIMS Mathematics Volume 8, Issue 5, 11037-11056.
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defined in Step 1 of Algorithm 3.1 as «, = «, gives better approximation and satisfies the tolerance in
fewer number of iterations. Also, we observed that in this example as that as we choose the inertial
parameter close to one the algorithm diverges.

5. Conclusions

This paper presents a relaxed inertial Halpern-type forward-backward splitting algorithm involving
accretive operators in the setting of uniformly convex and g-uniformly smooth real Banach spaces.
Strong convergence of the sequence generated by the proposed method is proved to a solution of the
variational inclusion problem (1.1). Furthermore, a relaxed Halpern-type forward-backward splitting
algorithm for solving the variational inclusion problem (1.1) is obtained as a corollary. Finally, a
numerical example that demonstrates the effect of the inertial and relaxation parameters is presented.
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