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1. Introduction 

Lifetime probability models are extensively used to analyze datasets in different fields, such as 

biological systems, renewable energies, health sciences, actuarial and risk measures, economics, and 

engineering. Various important distributions have been derived over the last century to serve as 

distributions in applied sciences. Among these models, the so-called Weibull distribution is famous in 

terms of its usefulness. In terms of reliability, Weibull distribution is most likely the most commonly 

used. The Weibull distribution is commonly used to characterize the lifetime distributions of systems 

that fail due to the failure of the “weakest link” [1]. The Weibull distribution is incredibly flexible and 

may be used with a very small number of samples. The Weibull module is particularly important, as it 

may provide insight into the process (or the physics of the failure). The Weibull is the best choice and, as a 

result, the best practice when there are fewer than 20 samples. For example, when the shape parameter is 

one, it reduces to an exponential, and the two resultant distributions are the Rayleigh distribution [2]. 



10746 

AIMS Mathematics  Volume 8, Issue 5, 10745–10757. 

Wind energy is one of the world’s fastest-growing renewable green energy sources, particularly 

in the United States, Europe, Canada, India, and Africa. Wind energy has become a significant element 

of the global power industry because it provides several benefits, including pure green energy and low 

rates, as well as the absence of pollutants that create acid rain or greenhouse gases. Wind power 

forecasting is critical for the efficient and cost-effective integration of wind energy into the electricity 

supply system. Wind power generated by a wind farm is highly dependent on the stochastic nature of 

wind speed, and unanticipated changes in wind power production raise the electrical system's 

operational costs [3,4]. 

Uncertainty in wind energy production estimations may be significantly decreased by using a 

probability model that appropriately depicts the wind speed distribution. The Weibull distribution has 

been utilized in previous studies to analyze wind speed data, and the model has also been used to 

explore wind energy potential [5]. The Weibull distribution does not always provide results so the 

authors generalized the Weibull distribution or introduced some more distribution for this modeling of 

wind speed data. For example, upper-truncated Weibull distribution [6], inverted Kumaraswamy 

distribution [5], Marshall-Olkin Power Lomax distribution [7], Marshall-Olkin inverse Lindley 

distribution [8], Alpha logarithmic transformed Log-normal distribution [9], and new Alpha Power 

Lindley distribution [10]. 

Classical statistical distributions can be used to model data with hundred percent exact and 

determinate observations. The classical probability models are not suitable candidates when 

uncertainty is found in observations or parameters of distributions. So, for these types of datasets, fuzzy-

logic-based distributions can be applied. For reliability analysis, fuzzy Rayleigh distribution was 

introduced and studied [11]. For biomass pyrolysis, the Fuzzy Rayleigh distribution was employed [12]. 

The estimate of a fuzzy Rayleigh distribution was explored by Van Hecke [13]. Further, Pak et al. [14] 

estimate the parameter of fuzzy Rayleigh distribution parameter for fuzzy lifetime data. Shafiq et al. [15] 

provided comprehensive work on distribution reliability concerns utilizing the fuzzy method. 

Chaturvedi et al. [16] utilized a fuzzy method to analyze hybrid censored data. 

Fuzzy logic which is the special case of neutrosophic logic gives information only about the 

measures of truth and falseness. The neutrosophic logic which is the generalization of fuzzy-based 

logic and interval-based logic gives information about the measure of indeterminacy additionally. The 

interval-based statistics did use crisp numbers and captured the data within the intervals. The 

neutrosophic logic used the set analysis, where any type of set can be used to capture the data inside 

the intervals. Recent studies showed the efficiency of neutrosophic logic over fuzzy-based logic. 

Zeema and Christopher [17] worked on the optimization of neutrosophic numbers and discussed the 

behavior in prediction problems. Sumathi and Sweety [18] introduced different methods to analyze 

trapezoidal neutrosophic data. Maiti et al. [19] introduced the programming for multilevel objectives 

under the neutrosophic environment. Abdel-Basset et al. [20,21] discussed the applications of 

neutrosophic logic in response systems and renewable energy, respectively. 

Neutrosophic statistics which utilizes the idea of neutrosophic logic is found to be more efficient 

than classical statistics [22]. Neutrosophic statistics deal with the data having imprecise, interval, and 

uncertain observations. Neutrosophic statistics reduce to classical statistics when no indeterminacy is 

found in the data or the parameters of statistical distribution. Various applications of neutrosophic logic 

can be read in [23–25]. The idea of neutrosophic statistics was given by Smarandache [26]. 

In recent years, there has been a significant increase in the development of neutrosophic 

distributions. They work on the modeling of a variety of phenomena involving uncertain observations. 
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Several authors introduced the most useful neutrosophic probability distributions to analyze these 

types of data sets. Alhabib et al. [27] proposed neutrosophic Uniform, neutrosophic exponential, and 

neutrosophic Poisson distributions. Alhasan and Smarandache [28] introduced some neutrosophic 

distributions such as the neutrosophic Weibull distribution, neutrosophic Rayleigh distribution, 

neutrosophic three-parameter Weibull distribution, neutrosophic five-parameter Weibull distribution, 

neutrosophic beta Weibull distribution, and neutrosophic inverse Weibull distribution. Patro and 

Smarandache [29] proposed neutrosophic normal and binomial distributions. Aslam [30] proposed 

neutrosophic Raleigh distribution and used it for modeling wind speed data. Sherwani et al. [31] 

proposed neutrosophic Beta distribution, and Ahsan-ul-Haq [32] proposed neutrosophic 

Kumaraswamy distribution. Aslam [33] introduced the probability density for the Weibull distribution 

under indeterminacy and used it to design the sampling plan for testing average wind speed and recently 

in 2023 Ahsan-ul-Haq and Zafar [34] proposed neutrosophic discrete Ramos-Louzada distribution.  

A rich literature on various statistical distributions is available that can be applied to model 

various types of data. The existing classical distributions can be applied only when all observations in 

the data are uncertain. But, in practice, data is not always precise, certain, and exact and the existing 

distributions can be applied for modeling this type of data. Aslam [33] introduced the Weibull 

distribution under indeterminacy and applied it to wind testing. By exploring the literature and 

according to the best of our knowledge, there is no work on the properties of Weibull distribution under 

indeterminacy. To fill this gap, in this paper, we will introduce various properties of the Weibull 

distribution under indeterminacy. We will derive some statistical properties of the neutrosophic 

Weibull distribution. The parameters are estimated using the maximum likelihood estimation approach 

and the performance of these derived estimators is assessed via a simulation study. The application of 

the neutrosophic Weibull distribution will be given using wind speed data. It is expected that the 

neutrosophic Weibull model will be quite effective to model the wind speed data than the existing 

Weibull distribution under classical statistics. 

The remainder of the article is as follows. The neutrosophic Weibull is recalled in Section 2. Some 

statistical properties are derived in Section 3. The parameter estimation and simulation are performed 

in Section 4. Section 5 is based on the application of the neutrosophic Weibull distribution. We 

conclude our study in the last section. 

2. Neutrosophic Weibull distribution 

Let 𝑥𝑁 = 𝑥𝐿 + 𝑥𝐿𝐼𝑁  is a nonnegative neutrosophic random variable and 𝛼𝑁 = 𝛼𝐿 +

𝛼𝑈𝐼𝑁 , 𝛽𝑁 = 𝛽𝐿 + 𝛽𝑈𝐼𝑁 are neutrosophic scale and shape parameters, where 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] is the measure 

of indeterminacy and the first part of neutrosophic forms presents the determinate part and the second 

part presents the indeterminate part? The probability density function (pdf) of the neutrosophic Weibull 

distribution [33] is given by 

𝑓(𝑥𝑁) = {(
𝛽𝐿

𝛼𝐿
) (

𝑥𝐿

𝛼𝐿
)
𝛽𝐿−1

𝑒
−(

𝑥𝐿
𝛼𝐿

)
𝛽𝐿

} + {(
𝛽𝑈

𝛼𝑈
) (

𝑥𝑈

𝛼𝑈
)
𝛽𝑈−1

𝑒
−(

𝑥𝑈
𝛼𝑈

)
𝛽𝑈

} 𝐼𝑁;  𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈].  (1) 

Suppose that 𝑥𝐿 = 𝑥𝑈 = 𝑥𝑁, the pdf can be written as 
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𝑓(𝑥𝑁) = {(
𝛽𝑁

𝛼𝑁
) (

𝑥𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝐿
𝛼𝑈

)
𝛽𝑁

} (1 + 𝐼𝑁).      (2) 

Note that when 𝐼𝐿 = 0, the neutrosophic quantities reduce to classical statistics.  

The pdf curves of the NW distribution are presented in Figure 1.  

 

 

Figure 1. The pdf curves for NNW distribution. 

The corresponding cumulative distribution function (cdf) is  

𝐹(𝑥𝑁) = 1 − {𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

(1 + 𝐼𝑁)} + 𝐼𝑁;  𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈].     (3) 

The survival and hazard rate functions of NW distribution are  

𝜆(𝑥𝑁) = {𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

(1 + 𝐼𝑁)} + 𝐼𝑁        (4) 
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and 

ℎ(𝑥𝑁) =

{(
𝛽𝑁
𝛼𝑁

)(
𝑥𝑁
𝛼𝑁

)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

}+{(
𝛽𝑁
𝛼𝑁

)(
𝑥𝑁
𝛼𝑁

)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

}𝐼𝑁

{𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

(1+𝐼𝑁)}+𝐼𝑁

.     (5) 

3. Statistical properties 

Some mathematical properties of NW distribution derived, such as moments, incomplete 

moments, and quantile function.  

Theorem 1. Let X be a random variable that follows NW distribution, then the neutrosophic ordinary 

moment given by 

𝐸(𝑋𝑟) = 𝛼𝑁
𝑟 Γ (1 +

𝑟

𝛽𝑁
) (1 + 𝐼𝑁).       (6) 

Proof. The ordinary moments can be obtained as  

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

0

 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟 [{(
𝛽𝑁

𝛼𝑁
) (

𝑥𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

} + {(
𝛽𝑁

𝛼𝑁
) (

𝑥𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

} 𝐼𝑁] 𝑑𝑥
∞

0
. 

Using transformation 𝑦 = (
𝑥𝑁

𝛼𝑁
)
𝛽𝑁

, we get  

𝐸(𝑋𝑟) = 𝛼𝑁
𝑟 ∫ 𝑦

𝑟

𝛽𝑁𝑒−𝑦𝑑𝑦
∞

0
+ 𝛼𝑁

𝑟 𝐼𝑁 ∫ 𝑦
𝑟

𝛽𝑁𝑒−𝑦𝑑𝑦
∞

0
. 

After some algebraic simplification, we get the following expression. 

𝐸(𝑋𝑟) = 𝛼𝑁
𝑟 Γ (1 +

𝑟

𝛽𝑁
) (1 + 𝐼𝑁).       (7) 

The first four moments about the origin are  

𝐸(𝑋) = 𝛼𝑁
1  Γ (1 +

1

𝛽𝑁
) (1 + 𝐼𝑁) 

𝐸(𝑋2) = 𝛼𝑁
2  Γ (1 +

2

𝛽𝑁
) (1 + 𝐼𝑁) 

𝐸(𝑋3) = 𝛼𝑁
3Γ(1 +

3

𝛽𝑁
) (1 + 𝐼𝑁) 

𝐸(𝑋4) = 𝛼𝑁
4Γ (1 +

4

𝛽𝑁
) (1 + 𝐼𝑁). 

The neutrosophic mean, neutrosophic variance, and neutrosophic dispersion index of the distribution 

are given by 

𝑀𝑒𝑎𝑛𝑁 = 𝐸(𝑋) = 𝛼𝑁𝛤 (1 +
1

𝛽𝑁
) (1 + 𝐼𝑁). 
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𝜎𝑁
2 = 𝛼𝑁

2  Γ (1 +
2

𝛽𝑁
) (1 + 𝐼𝑁) − [𝛼𝑁Γ (1 +

1

𝛽𝑁
) (1 + 𝐼𝑁)]

2

    (8) 

𝐷𝐼𝑁 =
𝛼𝑁

2Γ (1 +
2
𝛽𝑁

) (1 + 𝐼𝑁) − [𝛼𝑁Γ (1 +
1
𝛽𝑁

) (1 + 𝐼𝑁)]
2

𝛼𝑁𝛤 (1 +
1
𝛽𝑁

) (1 + 𝐼𝑁)
. 

Theorem 2. The quantile function of neutrosophic Weibull distribution is 

𝑥𝑝 = 𝛼𝑁 {− log [1 −
𝑝

1+𝐼𝑁
]}

1

𝛽𝑁    𝑓𝑜𝑟    0 < 𝑝 < 1.     (9) 

Proof. the quantile function can be obtained as  

𝐹(𝑋𝑁) = 𝑝 

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

= 1 −
𝑝

(1 + 𝐼𝑁)
 

(
𝑥𝑁

𝛼𝑁
)
𝛽𝑁

= − log [1 −
𝑝

(1 + 𝐼𝑁)
] 

𝑥𝑁 = 𝛼𝑁 {− log [1 −
𝑝

(1 + 𝐼𝑁)
]}

1
𝛽𝑁

. 

The first, second, and third quartiles can be obtained by taking 𝑝 =
1

4
,
1

2
, & 

3

4
 as: 

𝑄1𝑁 = 𝛼𝑁 {− log [1 −

1
4

(1 + 𝐼𝑁)
]}

1
𝛽𝑁

, 

𝑄2𝑁 = 𝛼𝑁 {− log [1 −

1
2

(1 + 𝐼𝑁)
]}

1
𝛽𝑁

, 

and  

𝑄3𝑁 = 𝛼𝑁 {− log [1 −

3
4

(1 + 𝐼𝑁)
]}

1
𝛽𝑁

. 

The Eq (9) is also called a random number generator when 𝑝 follows a uniform distribution with 

ranges 0 and 1.  

Theorem 3. The neutrosophic mean time between failures of NW distribution given by 

Proof. The MTBF is defined as  
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𝑀𝑇𝐵𝐹𝑁 = ∫ 𝑅(𝑥)𝑑𝑥

∞

0

 

= (1 + 𝐼𝑁) ∫ 𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

𝑑𝑥
∞

0
. 

Using substitution 𝑦 = (
𝑥𝑁

𝛼𝑁
)
𝛽𝑁

 

= (1 + 𝐼𝑁)
𝛼𝑁

𝛽𝑁
∫ 𝑦

1

𝛽𝑁
−1

𝑒−𝑦𝑑𝑦
∞

0
  

=
𝛼𝑁

𝛽𝑁
Γ (

1

𝛽𝑁
) (1 + 𝐼𝑁). 

Theorem 4. The neutrosophic value at risk (VaR) of the distribution is given by 

𝑉𝑎𝑅𝑁𝑝 = 𝛼𝑁 {− log [1 −
𝑝

(1+𝐼𝑁)
]}

1

𝛽𝑁. 

Researchers use the VaR as a common measure of financial market risk.  

Theorem 5. The neutrosophic Tail value at risk (TVaR) of the distribution is given by 

𝑇𝑉𝑎𝑅𝑁𝑝 = 𝛼𝑁Γ (1 +
1

𝛽𝑁
, (

𝑉𝑎𝑅𝑁𝑝

𝛼𝑁
)
𝛽𝑁

) (1 + 𝐼𝑁). 

Proof. The 𝑇𝑉𝑎𝑅𝑁𝑝 is obtained as  

𝑇𝑉𝑎𝑅𝑁𝑝 =
1

1−𝑝
∫ 𝑥𝑓(𝑥)

∞

𝑉𝑎𝑅𝑁𝑝
𝑑𝑥  

𝑇𝑉𝑎𝑅𝑁𝑝 =
1

1−𝑝
∫ 𝑥 [(

𝛽𝑁

𝛼𝑁
) (

𝑥𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

+ (
𝛽𝑁

𝛼𝑁
) (

𝑥𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

𝐼𝑁]
∞

𝑉𝑎𝑅𝑁𝑝
𝑑𝑥. 

Using substitution 𝑦 = (
𝑥𝑁

𝛼𝑁
)
𝛽𝑁

  

𝑇𝑉𝑎𝑅𝑁𝑝 =
1

1−𝑝
[∫ 𝛼𝑁𝑦

1

𝛽𝑁𝑒−𝑦∞

(
𝑉𝑎𝑅𝑁𝑝

𝛼𝑁
)
𝛽𝑁 𝑑𝑦 + 𝐼𝑁 ∫ 𝛼𝑁𝑦

1

𝛽𝑁𝑒−𝑦∞

(
𝑉𝑎𝑅𝑁𝑝

𝛼𝑁
)
𝛽𝑁 𝑑𝑦]  

𝑇𝑉𝑎𝑅𝑁𝑝 =
1

1−𝑝
𝛼𝑁Γ(1 +

1

𝛽𝑁
, (

𝑉𝑎𝑅𝑁𝑝

𝛼𝑁
)
𝛽𝑁

) (1 + 𝐼𝑁). 

4. Parameters estimation and simulation  

The parameters are estimated using the famous maximum likelihood approach. The likelihood 

function is  

∏ 𝑓(𝑥𝑖)
𝑛
𝑖=1 = ∏ [{(

𝛽𝑁

𝛼𝑁
) (

𝑥𝑖𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

} + {(
𝛽𝑁

𝛼𝑁
) (

𝑥𝑖𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

} 𝐼𝑁]𝑛
𝑖=1 . 

The log-likelihood function is written as  
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𝐿(𝛼𝑁 , 𝛽𝑁 , 𝐼𝑁) = ∑ log [{(
𝛽𝑁

𝛼𝑁
) (

𝑥𝑖𝑁

𝛼𝑁
)
𝛽𝑁−1

𝑒
−(

𝑥𝑁
𝛼𝑁

)
𝛽𝑁

} (1 + 𝐼𝑁)]𝑛
𝑖=1 .   (10) 

Now by differentiating the above log-likelihood equation w.r.t. α can be written  

𝜕𝑙

𝜕𝛼𝑁
= ∑

𝛽𝑁((
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

−1)

𝛼𝑁

𝑛
𝑖=1 .        (11) 

𝜕𝑙

𝜕𝛽𝑁
= ∑

1−𝛽𝑁((
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

−1) log(
𝑥𝑖𝑁
𝛼𝑁

)

𝛽𝑁

𝑛
𝑖=1 .      (12) 

The derived ML estimates are asymptotically normally distributed with a joint bivariate normal 

distribution given by  

(𝛼̂𝑁 , 𝛽̂𝑁)~𝑁2[(𝛼𝑁 , 𝛽𝑁), 𝐼−1(𝛼𝑁 , 𝛽𝑁)]  𝑓𝑜𝑟 𝑛 → ∞, 

where 𝐼−1(𝛼𝑁 , 𝛽𝑁)  are the diagonal elements of the Fisher information matrix (FIM), which is 

defined as 

FIM = I = [
𝐼𝛼𝑁𝛼𝑁

𝐼𝛼𝑁𝛽𝑁

𝐼𝛼𝑁𝛽𝑁
𝐼𝛽𝑁𝛽𝑁

] = −E

[
 
 
 
 

𝜕2𝑙

𝜕2𝛼𝑁

𝜕2𝑙

𝜕𝛼𝑁𝜕𝛽𝑁

𝜕2𝑙

𝜕𝛼𝑁𝜕𝛽𝑁

𝜕2𝑙

𝜕2𝛽𝑁 ]
 
 
 
 

. 

𝜕2𝑙

𝜕2𝛼𝑁
= −

𝛽𝑁 (−1 + (
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

+ (
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

𝛽𝑁)

𝛼𝑁
2

, 

𝜕2𝑙

𝜕𝛼𝑁𝜕𝛽𝑁
=

−1 + (
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

+ (
𝑥𝑖𝑁
𝛼𝑁

)
𝛽𝑁

𝛽𝑁 log (
𝑥𝑖𝑁
𝛼𝑁

)

𝛼𝑁
, 

𝜕2𝑙

𝜕2𝛽𝑁
= −

1

𝛽2
𝑁

− (
𝑥𝑖𝑁

𝛼𝑁
)
𝛽𝑁

log (
𝑥𝑖𝑁

𝛼𝑁
)
2

. 

If the information matrix is replaced with the actual information matrix, the asymptotic behavior 

remains true. So, the approximate 100(1 − 𝜃)% two-sided confidence interval for the parameters 𝛼 

and 𝛽 are given by 

𝛼̂𝑁 = ±𝑍𝜃 2⁄ √𝐼𝛼𝑁𝛼𝑁
−1      and    𝛽̂𝑁 = ±𝑍𝜃 2⁄ √𝐼𝛽𝑁𝛽𝑁

−1   

where 𝑍𝜃 is the 𝜃-th percentile of standard normal distribution.  

Next, we present a simulation study to check the performance of estimates. To run simulations, we 

generate N=10000 random samples of sizes 𝑛 = 30,50,80, and 100  from NNW distribution. The 

average estimates (AEs) and mean square errors (MSEs) are reported in Table 1. The numerical results 

are derived using R (version 4.2.2, 2022) software. 
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Table 1. Simulation results for the NWD. 

Sample  Actual Values  AE MSE 

𝒏 𝜶 𝜷 𝑰𝑵 𝜶̂ 𝜷̂ 𝜶̂ 𝜷̂ 

30 

0.5 0.5 0.0 

0.5257 0.5224 0.0391 0.0066 

50 0.5109 0.5113 0.0224 0.0032 

80 0.5094 0.5084 0.0147 0.0021 

100 0.5054 0.5078 0.0106 0.0017 

30 

0.5 0.5 0.1 

0.3231 0.5858 0.0347 0.0095 

50 0.3220 0.5893 0.0381 0.0128 

80 0.3196 0.5864 0.0364 0.0101 

100 0.3220 0.5849 0.0349 0.0094 

30 

1.0 1.0 0.1 

0.7959 1.1914 0.0580 0.0689 

50 0.7952 1.1816 0.0527 0.0517 

80 0.8005 1.1766 0.0465 0.0435 

100 0.7957 1.1670 0.0471 0.0376 

30 

1.5 1.5 0.5 

0.9339 2.1178 0.3283 0.5364 

50 0.9268 2.0417 0.3329 0.3639 

80 0.9271 2.0406 0.3310 0.3403 

100 0.9303 2.0399 0.3269 0.3285 

300 0.9275 2.0109 0.3285 0.2730 

The simulation results show that the average bias decreases with an increase in sample size. It 

means the agreement between practice and theory improves as the sample size increases. The MSEs 

of the estimators also decreases with an increase in sample size. It is evident that the derived estimators 

are consistent, and the maximum likelihood estimator of the parameters performs well, yielding exact 

and accurate results. 

5. Applications 

In this section, the distribution is applied to real-life data sets. For this purpose, wind speed data 

of Bahawalpur station is considered. Some summary measures of this data set are given in Table 2. 

Table 2. Some descriptive measures for the first dataset. 

Min. Q1 Median Q3 Mean var skewness Kurtosis Max. 

0.0004 2.4118 3.3181 4.3006 3.5049 2.8053 1.1346 6.0846 20.073 

For comparison of the distribution is done with the classical Weibull distribution. The model 

parameters are estimated using the maximum likelihood method. The best model is selected using log-

likelihood, Akaike information criteria (AIC), and Bayesian Information Criteria (BIC). 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂) 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(𝐿̂) 

where 𝐿̂ is the maximized loglikelihood value, 𝑘 is the number of parameters, and 𝑛 is the sample size. 

The maximum likelihood estimates and model selection information are listed in Table 3. We plot 



10754 

AIMS Mathematics  Volume 8, Issue 5, 10745–10757. 

the fitted density curves over observed wind speed observations. 

Table 3. MLEs and goodness-of-it measures for the first dataset. 

Model 
𝜶̂ 

(𝑺𝑬) 

𝜷̂ 

(𝑺𝑬) 
𝑰𝑵 LogLik AIC BIC 

WD 3.943394 2.155532 0 -130683.9 261371.8 261390.1 

NWD 

4.337733 2.371085 0.1 -125756.0 251518.1 251545.5 

4.732073 2.586638 0.2 -124587.8 249181.7 249209.1 

5.126412 2.802192 0.3 -126932.5 253871.0 253898.4 

Table 3 lists the MLEs and goodness-of-fit measures from the classical Weibull distribution and 

neutrosophic Weibull distribution with different indeterminacy parameter values. It is found that the 

model of the distribution could be chosen as the best distribution as compared to the classical Weibull 

distribution. It is worth noting that the indeterminacy parameter plays a crucial role in better fitting.  

The second dataset is about the case study on the light-emitting diodes (LED) manufacturing 

process that focuses on the luminous intensities of LED sources. The process distribution has been 

justified and is fairly close to the Weibull distribution. A sample of size n = 30 is taken from the stable 

process. The data observations are; 2.163, 5.972, 1.032, 0.628, 2.995, 3.766, 0.974, 4.352, 3.920, 1.375, 

0.618, 4.575, 1.027, 6.279, 2.821, 7.125, 5.443, 1.766, 7.155, 0.830, 3.590, 5.965, 3.177, 4.634, 7.261, 

2.247, 6.032, 4.065, 5.434, and 1.336. Some summary measures of this data set are given in Table 4. 

Table 4. Some descriptive measures for the second dataset. 

Min. Q1 Median Q3 Mean var Skewness Kurtosis Max. 

0.618 1.473 3.678 5.441 3.619 4.705 0.1522 1.7497 7.261 

Table 5 shows the MLEs and goodness-of-fit metrics for the classical Weibull and neutrosophic 

Weibull distributions with varying indeterminacy parameter values. It is found that the model of the 

distribution could be chosen as the best distribution as compared to the classical Weibull distribution. 

It is worth mentioning that the indeterminacy parameter is very important in the improved fitting. 

Table 5. MLEs and goodness-of-it measures for the second dataset.  

Model 
𝜶̂ 

(𝑺𝑬) 

𝜷̂ 

(𝑺𝑬) 
𝑰𝑵 LogLik AIC BIC 

WD 4.055706 1.717136 0 -63.4225 130.845 133.647 

NWD 

4.461277 1.888850 0.1 -61.0455 128.091 132.295 

4.866847 2.060563 0.2 -59.8764 125.753 129.956 

5.272418 2.232277 0.3 -59.8570 125.714 129.918 

6. Conclusions 

Some basic properties of neutrosophic Weibull distribution were studied in this paper. The 

application of the neutrosophic Weibull distribution was given using the wind speed data. From the 

analysis, it was concluded that the neutrosophic Weibull distribution is more flexible than the Weibull 
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distribution under classical statistics. The decision-makers can apply the neutrosophic Weibull 

distribution when uncertainty is presented in observations or parameters. Some more properties of the 

neutrosophic Weibull distribution can be studied in future research. Other statistical distributions can 

be derived using the same method as future research. The distribution for multivariate distribution can 

be extended in future research. The G-families of distributions under neutrosophic statistics can be 

considered as future research, see [35]. 
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