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1. Introduction

Nonlinear partial differential equations play an important part in various branches of science
such as fluid mechanics, solid state physics, plasma physics and quantum mechanics. The coupled
Schrédinger-KdV equations are put forward to model nonlinear dynamics of one-dimensional
Langmuir and ion-acoustic waves in a system of coordinates moving at the ion-acoustic speed [18, 19].
In detail, we consider the system [9]

[€U; + puy, — qvu — slufu=0, (x,f)e Rx(0,T], (1.1)
Vit @ + BV +plul?), =0,  (x,1) € Rx(0,T], (1.2)
ulx,n) =ux+1L1, vix,t)=vix+1L1t), (x,1)eRx(,T], (1.3)
u(x,0) = p(x), v(x,0)=0¢(x), x€R, (1.4)

where i = V-1, m is a positive integer, p,q, s, €, @, 3, p are real constants with p # 0 and €, >
0. The complex-valued function u and the real-valued function v describe electric field of Langmuir
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oscillations and low-frequency density perturbation, respectively. The initial functions ¢ and ¢ are
given [-periodic functions. Hence, it suffices to take a single period [0, /]. For Eqgs (1.1) and (1.2), there
are four physical invariants to be considered:

The number of plasmons

!
I = f lu(x, H)[*dx. (1.5)
0
The number of particles
!
L, = f v(x, t)dx. (1.6)
0
The energy of oscillations
: qp 1 2 2, P4 49, »
I = f [—V”” + pplul” + goviul” + —ul” = —(v,)" | dx, (1.7)
o Lm+1 2 2
and the momentum
I
I, = f [qv2 - 2p61m(u12x)] dx. (1.8)
0

According to [2], these invariants may connect closely to accurate behaviors in time. Extensive
numerical studies have been presented for the coupled Schodinger-KdV equations in the last
decade, such as the finite element method [3], radial basis function (RBF) collocation method [4],
decomposition [5], variational iteration [6], exponential time differencing three-layer implicit
scheme(ETDT-P) [7], homotopy perturbation [8], and fourth-order conservative compact finite
difference scheme [9] and so on.

In the aspect of compact difference scheme, which is well known for the narrower stencils, i.e.,
fewer neighboring nodes it uses, and have less truncation error comparing with typical finite difference
schemes. A variety of fourth-order compact methods have been employed solving partial differential
equations [9, 12-14, 21-25, 28, 29]. Furthermore, Wang [26] proposed a conservative eighth-order
compact difference scheme for the nonlinear Schrédinger equation. In [27], Chen and Chen presented
a conservative eighth-order compact difference scheme for the Klein-Gordon-Schrodinger equations.
Motivated by ideas in [26,27], this article aims to construct a new general difference scheme which
can deal with the conservativeness of the invariants and convergence theorem easily. In detail, there
are following three advantages:

(i) The proposed scheme is compact, linearized, decoupled.

(i1) The proposed scheme preserves several invariants in discrete sense.

(ii1)) The operator form of scheme is novel and can be easily generalized from the fourth-order
compact method to the eight-order method for solving other equations.

The rest of the paper is organized as follows. In Section 2, we introduce an eighth-order
conservative compact finite difference scheme and apply it to solve the coupled Schodinger-KdV
equations numerically. The discrete conservation properties of the proposed nonlinear scheme is
analyzed and the convergence theorem of the linearized scheme is established in Section 3. Numerical
experiments are presented in Section 4. Finally, a brief conclusion is given in Section 5.
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2. The eighth-order compact finite difference scheme

The domain Q = {(x,7)|0 < x < [, 0 <t < T} is discretized into grids described by the set {x;, #,}
of nodes, in which x; = jh, j=0,1,...,J=I/handt, =nt,n=0,1,...,N = T /7, where h and 7 are
discretization parameters. Briefly, let u;’ = u(xj, ty), v’} = v(xj,1,) and &, = {xo, x1, ..., x;}. For more
convenient discussion, define the following difference operators and notations:

sl = ?+1T_ u;%, 6?(”? _ uiy — 2hu2 + U ’
5! = —u7+]h_ Y, Sl = /i _h”7‘1, Sl = il z_hu?“,
ot 2 G et T
j 2 J 2
A =1+ %62) U 412 (5uj |+ 32 + 5uj+1)
Aol =1+ %52) ! 2;2 (3102, +190u) + 31t ).
By =1+ %52 %5)2@%)“ = %( u , + 16U} +36u; + 161}, +uj+2)
Bt =1+ éi(;}gai ;3 Z:)(si(si) = oo (230, + 6881, + 23584 + 688u’, | + 231",
Ju; = 1+%26)2€)u’}:i(]1+2u +uj+1)

About the approximate formulas of the first and second-order spatial derivatives at all nodes (with
periodic boundary conditions) with the eighth-order accuracy, we have the following lemma. Note that
we denote ', = n g’ 2 or simply denote u; = (u,); in the following lemma. Similarly, the notations u//
and u/’

are the same meaning.
Lemma 1. [7] For u’ and u”, we have the following approximate formulas

’ ’ ’ ’ ’
Wi+ 16u;_| +36u; + 160}, +u’,,

5 . @.1)
:a(—suj_z - 32Ltj_1 + 32Mj+1 + 5uj+2) + O(h ),
23u/l, + 688u/., + 2358 + 688w/, +23u’,
2.2)

15
:ﬁ(Sluj_z + 1281/!]'_1 - 318Mj + 128Mj+1 + 31Mj+2) + 0(]18)

For the convenience to discrete and analyse the equations, we need to rewrite the relations (2.1) and
(2.2) to the operators forms.

Lemma 2. By the definition of the operators above, we have

By, = ArSzuj + O(h®), (2.3)
Bou] = ApSou; + O(R®), (2.4)
BByl = A1 F6:60u; + O(h®). (2.5)
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Proof. Assume that there is an operator Aj ’/ = Ajujy + duj + Ajujyy such that
B, = ASuj + O(h®). (2.6)

By computation and the definition of operators above, we have 4; = 5/42 and 1, = 32/42. Hence,
A} = A; and (2.3) holds. (2.4) can be proved similarly. At last, combining (2.3) and (2.4), (2.5)
follows directly. O

We note that Lemma 2 shows the discrete scheme has the eighth-order accuracy if we use the
operators A, A,, By and B, or their combinations to discrete the corresponding derivative values at
nodes.

In the temporal discretization, we need to evaluate the function values at mid-nodes ((n + %) -nodes).
The following lemma is necessary to ensure to approximate the function values at mid-nodes by values
at n- and (n + 1)-nodes, which can be obtained by Taylors expansion.

Lemma 3. For any smooth function g(t) and m € N*, we have

(8t )" = w(8(ta). 8(te)) = O, 2.7
where t, .1 = el gnd
1 N k. m—k
Ylu,v) = UV (2.8)
m+ 1 e

Proof. By using Taylor’s expansion, we have

§lt) = 8(t,1)) + 58/ (1,,)) + O(T), (2.9)
§(tn) = 8(t,1) = 38 (t)) + O, (2.10)
(i) = (800,) +32(800) " (8/1,0) + O, (2.11)
(81 = (801,2)) = 32(8(4,4)) (8 1,1p) + O, (2.12)

where z € N*. Letk < 3,k € N, from (2.11) and (2.12), we can obtain

() (@)™ + (gt )" ™ (gLt )"
= (g0t (g(t1))* (81" + (gl )" |

- [(8<fn+;>)2k * 0(72)] [2 (st,0))" " + 0(7%] (2.13)
=2(g(t,,1))" + O,
Plugging (2.13) into (2.8), (2.7) immediately follows. -

Denote the approximations of «} and v} by U and V7, respectively. Ignoring the truncation error
terms in Eqs (2.3)—(2.5) and (2.7), we obtain the following implicit compact scheme with truncation
error O(? + h®) by using the Crank-Nicolson method for temporal discretization and Lemmas 2 and 3:

1 n 1 n 1 n L n 1
€By(6,U") + pAad2U' — g8, (Vj+2Uj+2) _ 5B, ((|U|2)j+2Uj+2) _0, (2.14)
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1
n+s

1
B1B2(6,V}) + aﬂ1ﬂ2525iv;l+2 + BB A6 (V7 V}M) +932»7(15x(|U|2)j =0, (2.15)
Ul=U, V=V, n=01,...N, j=12...] (2.16)
U9 = o(x), V) =d(x). (2.17)

The schemes (2.14 and 2.15) are nonlinear and gotten by discretizing the temporal derivative with
the Crank-Nicolson method, which has the second-order O(7?) and discretizing the special derivatives
with the operators B, and 8,8, for (1.1) and (1.2), respectively, which has the eighth-order O(h®) by
Lemma 2.

As to the linearized form of (2.14 and 2.15), we will discuss in the next section.

3. The conservation and convergence analysis

3.1. Notations and preliminaries

Let H,(Qy,) = {ulu = {uj}, j=0,1,...,J and u; = ujH} denote the space of periodic real- or
complex-valued grid functions defined on €, with period J. The discrete inner product and the
corresponding discrete L?-norm on the grid function space H,(€Y,) are defined as

uiw;h, |lull = v<u,u),

(u,w) =

J
J=1

where W denotes the conjugate of w. Norm ||62u||> = <(5§u, 5iu> is well-defined with periodic condition
(u; = uj.;) and the discrete L™- and H'-norm are defined as

lullo = maxju,l, llulli = Vllull* + llozull*.
1<j<J

The following lemmas can be easily proved:
Lemma 4. For any grid functions u,w € H,(€;,), we have
<6xl/l, W> = - (I/t, 6}W> s <6)Acu’ W> = - <l/£, 6)?W> s

<5)2(u, w> = — (05U, Oxw) = — (O u, O W) = <u, 5iw> ,
S5h?
(Au, wy = (u, Ayw) = (u, w) — ") (Oxu, Oxw),

(Pt w)y = (1, Fow) = {2t ) — (Gt Gow)
ZM,W - M, 2W - M,W 252 xua xW 9
201? B,
(Buut, w) = (u Baw) = (u, w) = === (S, 63w) + = (2. w)
780h? 2K,
(Bou, w) = (u, Bow) = (u, w) — 3780 (Oxu, oxw) + % <5XM, 5xW> )

h2
(Ju,wy =, Jw) = (u,w) — T (Oxut, O3w) .
Lemma 5. For any grid functions u € H,(<,), we have

Re({0su, u)) = Re(0:Au, u)) = Re({8:B7 Ay, u)) = Re((6:8;" Aou, u)) = 0.
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Lemma 6. [20] For any grid functions u € H,(€Y;), we have
2 _1
llo5ull < Ellull, lulleo < A2 Jull,

1 1
ull2, < &lld=ull* + (— + 7) lul> Ve > 0.
E

Lemma 7. [12] For a real circulant matrix A = C(by, by, . ..,b,_1), all eigenvalues of A are given by

fu),k=0,1,2,...,n—1,

where f(x) = by + bix + byx® + ... + b, X", and py = cos(22) + isin(2Z),

3.2. Conservation and error analyses

For the compact schemes (2.14) and (2.15), we have the following conservative properties in the
discrete sense. The process of proof is similar to [9]. Since it still has some difference, so for the
convenience to read, we give the detail of proof as following:

Theorem 1. The compact schemes (2.14) and (2.15) preserve the discrete conservation laws of the
numbers of plasmons and particles, i.e.,

1U"P = 10 (3.1
and
J J
ny _ 0
Vih=>"Vih, (32)
j=1 j=1

where U" = (U}, U5, ..., UM
Proof. Setting G" 1s a vector with the component
no_ n+d el o+t el
Gi=qV,?U, > +s(UI); *U; *, (3.3)

then (2.14) can be written as
1
i€6,(ByU}) + pFad U = ByG. (3.4)

Computing the inner product (-, -) on both sides of Eq (3.4) with U nty, A G, 0,(A; tum, A 152G"
and 6,(A,'62U™), respectively, and applying Lemma 4, we obtain

i€ (6,(ByU"), U™ ?) = p (Aud:U™?, 62U ) = (8,G", U™ ?)

3.5
— <Gn, Un+%> _ %gz <5}Gn,5}Un+%> + %<6J2CGn,5)ZCUn+é> ’ ( )
i€ (6,(BoU"), A;'G") = p(6:U"2,6:G") = (B,G". A;' G"), (3.6)
i€ (6,(BaU"), 6,(A; ' UM) = p (85U"*2,5,(6:U") = (BoG", 6,(A;' U™). (3.7)
i€ (6(BoU"), AT'82G") + p (62U, 62G") = (B,G", A, ' 6°G"). (3.8)

AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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i€ (6,(BoU"), 6,(A; ' 62UM) + p (82U, 5,(62U")) = (BoG", 6(A'2U™)). (3.9)

By the Hermitian property of inner product and multiplying Eqs (3.7) and (3.9) by i€, we can obtain
i€ (0,(A;' U"), ByG") = € (8,(A,' U, 6,(ByU")) — ipe (5,(6:U"), 6zU" 2 . (3.10)
i€ (6,(A' S2U"), ByG") = € (8,(A'62U"), ,(BoU™) + ipe (8,(62U"), 682U ). (3.11)

By Lemma 4 and Eqgs (3.6), (3.8), (3.10) and (3.11), it follows that
& (6, U, 6,(B,U™) — ipe (8,(5:U"), 6:U"*)
=p(:U"" 1, 6:G") + (826", A, G").
& (22U, BBU) + ipe (U, 5U)
=— p(é‘iUn+%,6iGn> + (Bﬁ”,&—’lg‘éiG”),

(3.12)

(3.13)

Multiplying by p, % and % in Egs (3.5), (3.12) and (3.13), respectively, and eliminating the term

<6;U nts , 6;G">, we obtain

. n n+3 20h2p6 n+i n -h4p6 27+ 2rn

ipe (5,(BU"), U™ ) + i (62U, 5,(6:U")) — i = (s2Um2, 6,(52U™)
20h2€? i o B . S R—

s (8(BoU"), 5(A;'UM) + — (8.(BU"), (A 52U — p(G", U2 (3.14)
2012 ¢

- S (A'G". B,G") - f

=0 (A'62G", ByG") — p* (Ap6:U" 2, 65:U" 2 ) = 0.,

70

From the definition of G" we can see that <G", U”*%> is a real number. Hence, the imaginary part of
(3.14) is zero, i.e.,

20h>

4
70 70

(6:074.6,6:U") - -

Re ((@(Bz U, U"+%> + = (

SU™, 5t(5§U")>) = 0. (3.15)

Applying Lemma 4 in (3.15), we can obtain immediately that
o™ = o,

Computing the inner product (-, -y on both sides of Eq (2.15) with 1 := (1,1,...,1)T € H,(£Y;), we can

obtain
O(B1BV"). 1) + @ (A AS32V" 2, 1) + B(BoF S (V", V'), 1) (3.16)
+p (B A5:(UP)™.1) = 0, |

where
n+l n+l

(U™ = ((|U|2)’1’+%,(|U|2)2 s (U,

using the periodic conditions, one can have the equation

(6(B818,V"), 1) =0,

AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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i.e.,

With the periodic conditions, (3.2) immediately satisfies. The proof is finished.

Hereinafter we define

U= (U UL,

and

(BIBZV”“, 1) = (B,8,V",1).

LU,

(3.17)

(U"? = (UDA UL, ..., (UDH,

1 < -
UV = (UIVEL U3V, UV, (U V) = —— S ()R vy .
m+ 1 &

The compact schemes (2.14) and (2.15) are equivalent to the following matrix equations:

i€By(5,U") + pAL62U"™ 7 — gB, (Vn+%,Un+%) — sB, ((|U|2)n+%_Un+%) -0,
BiBy(5,V") + @A 1Ax8:52V"" 2 + BB A (V" V') + pBoA S(IUPY2 = 0,

(3.18)
(3.19)

where Ay, A,, B; and B, are J X J matrices corresponding to the operators A;, A,, B; and B,,

B]Z—

respectively,
32 5
: 5 32
A =—
=1 0
5
1
B,= ——
3780
AIMS Mathematics

0 5
5
O ) A2
5 32 5
0 5 32
36 16 1
16 36 16
1 16 36
1
7000 1
0O O
1 O
16 1
2358 688 23
688 2358 688
23 688 2358
23
0
23
688 23

190 31 O 31
: 31 190 31
: 31 190 31
31 -~ 0 31 190
0 1 16
1 0 1
16 0 O
1 0}
16 36 16 1
1 16 36 16
0 1 16 36
0 23 688
23 23
688 0
23
688 2358 688 23
23 688 2358 688
0 23 688 2358

Volume 8, Issue 5, 10596-10618.
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By the properties of circulant matrices, we can see that matrices A;, A,, B; and B, are circulant
symmetric positive definite [10]. Let A;', A;', B, and B;' denote inverse operators of A, Ay, B;
and B,, respectively. The matrices corresponding to the operators 62, 6z, A;', A", B;' and B, are
also circulant, therefore, they commute under multiplication.

The compact schemes (2.14) and (2.15) can be equivalently written as

€O, U) + pBy AU = gV U+ s(UR) U, (3.20)
@v"+5(a81853uyu¥ “2+ﬁBlyuwumJﬂ“)+p313u0U|f“)— . 3.21)

which can be obtained by multiplying 8,' and B;'8B;" in both side of (2.14) and (2.15), respectively.
By applying Lemma 7, we can obtain the following result:

Lemma 8. [14] For any grid function u € H,(£2,), we have the inequalities
32 B 105,
P < (8" Ao, u) < == Ju,
1 _ 21
25l < (A B, u) < Tl
Define
ety = (85" Ao, ), Wiy = (AT Buu,u).

Lemma 8 shows that |||-|||[p and [|||||» are norms on H,(€2;) equivalent to the discrete L*-norm ||||. For
the proof of the following theorem, we want the relations (3.20) and (3.21).

Theorem 2. The compact schemes (2.14) and (2.15) preserve the energy of oscillations in discrete

sense, i.e.,
— Z(W”)’"”h U+ gp S VU + 2 20", - Loty
= (3.22)
_ 0ym+1 0 01O od_ 9Y o o2
= 2 Z(v Y™k + pplllssU°Il +qu21 VIUIRA+ LIU°I, - LR
where

J
1, = > U I*h.

=1

Proof. Computing the inner product (-, -) on both sides of Eq (3.20) with 6,U", we can obtain the
following equation with the commutativity under multiplication of circulant matrices:

ie(8,U",6,U") — p(B;' ApbcU"™>, 6,6:U" )

=q <Vn+%_Un+%’ 5,U"> +s <(|U|2)n+%.Un+%, 5tUn> ' (3.23)

AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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Then taking the real part of Eq (3.23), we obtain

- 2= (=L I = oL ")
= L ((vtumt o) - (vt o)) (3.24)
n 2_‘5;- (<(|U|2)n+%'Un+1, Un+l> _ <(|U|2)n+%.Un, Un>) )

Multiplying Eq (3.24) with 27 and summing from O to n, we obtain

n

PUIS=U™ G + SN+ g (V2o 17) = 2 ) (Ve = VLUt )
k=1

(3.25)
= lS-UIE + oo Vi U012
= pll6sU I, + SIU°lE + g (V2 1U°).
Setting W" is a vector with the component
n+t n Yrn n+l
Wi = By AotV + B (Vi VI + p(IUP) 2,
then Eq (3.21) can be written as
5V} +6:B87' AW} = 0. (3.26)

Computing the inner product (-, -) on both sides of Eq (3.26) with W" and applying Lemma 5, we can
obtain

a (6,V", 8, A6V 3 + (6, V (V" V) + p (8, (UPY™2) = 0, (3.27)

It follows from definition (2.8) that

J J
<6,V”, w(Vn’ Vn+l)> — ; Z(V;z+1)m+lh _ Z(Vy)nﬁ]h ]
j=1 j=1

(m+ Dt
It is easy to see that
(6,v", 85! Ans2V™E) = —%GH@V"“HPQ ~ 6=V 13-
Multiplying Eq (3.27) with 27 and summing from O to n, we have

2B <
6}Vn+] 2 _ V’-H—] m+1h
ol 5, —mﬂjzzl(j )

—pZn: <Vk+1 _ Vk, |Uk+1|.2 + |Uk|.2> (3.28)

k=0

2B <
— 6} o2 _ Qm+lh.
allls=VOlI —mH;(v,)

AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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Since

<Vk+l _ Vk’ |Uk+1|.2 + |Uk|.2>

k=0

S |l

<Vk+1 _ Vk—l, |Uk|‘2> " <Vn+l —ym, |Un+1|.2> " <V1 _ VO, |U0|‘2> ’
k=1

the Eq (3.28) becomes

2,8 J n
n+1112 n+1\m+1 k+1 k—1 k|2 n+1 n n+12
alllézV |||Q—m2(v,- ) h—pZ(v —VELIURP) = p (Vi v U )
; . (3.29)
= alloxV I~ 22 S WO p (V= VO,
j=1

Multiplying Egs (3.25) and (3.29) with p and 1, respectively, and subtracting the results, (3.22) follows
immediately. O

In the following convergence analysis, we will take the symbol C as a general positive constant
independent of /# and 7, not necessarily the same at different occurrences. We assume that there is a
positive constant Y™* such that the exact solutions u# and v of the coupled system satisfy

max {[[u"[leos 1] lloos V" [leos IV} leo} < Y, 0 <n < N. (3.30)
Let Yy = 2(Y* + 1)? and define a smooth function W¥(r, s) € C*(R?) as

‘ﬂ(’”,s)’ r2+SZSYO’

0, P+ s> Yo+ . (33D

Y(r,s) = {

Since schemes (2.14) and (2.15) are nonlinear, we change it into the following linearized compact
scheme to reduce computational cost:

0% _ O
€8, [%) + gﬂzai(u?* +UY) - g8, (VIUY) = s8, (UL UY), (3.32)
VO* VO
BB, [f] + 2ﬂ1ﬂ25 02(VY + VD) + BBLAG (VY V) = —pBry AU, (3.33)
i€By(5,U") + pﬂgézU Bz (V107) = 58 ((|U|2) 7). (3.34)
B1Bo(6, V) + aA, A6:6,V 24 BBLASY (VI V) = —pBoA, 5:(UE ) (3.35)

where U° = (U + U%)/2, U" = 3U"/2 - U""'/2, and U™ = 2U" — U™ forn > 1.
We can prove that the temporal and spatial convergence rates of the linearized compact
schemes (3.34) and (3.35) are second- and eighth-order, respectively.

AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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Lemma 9. Let {y,} be a nonnegative real sequence, ¢ a nonnegative constant, d and t are positive
constants. If

yn+1Sc+dTZy,- for n >0,
i=0

then
Vi1 < (¢ + d1ye)e®™™ D for n>0.

Theorem 3. Suppose that u,v € C*(0, T; C''(R)) are the exact solutions to Egs (1.1) and (1.2), k377! =
o(1), and that assumption (3.30) holds. Let U and V be the solutions of (3.34) and (3.35). Then there
exists a constant C = C(Y*, T) such that

max {|lu" = U"ll; + V" = V"|l)} < C( + 1Y),
0<n<N

for h and 7 sufficiently small.

Proof. Let E, = u" — U" and E] = V" — V". By Egs (1.1), (1.2), (3.34) and (3.35), and ignoring the
subindex j, we obtain

(€Bo(G,E") + pPoSEL'T = gBT" + sByT0 + 1, (3.36)
B1B,(6,E") + aﬂlﬂzé,géiET% = BB A6 TE — pBr AT + 17, (3.37)

where
Tr =9t - Um0, T = (uP) it - (UP) 0",
T! = WO/ V) — WV, V), T = (uP) - (UP) .

By the assumption (3.30) and definition (3.31), one can see that ¥((v", v**!)) = y((v",v"*!)), and hence,
the truncation errors 7 and 7" are such that 7' = O(z* + h®) and " = O(z* + h®). Under the smoothness
assumption of u# and v, we have

6,1y =0 +h%) and &) = O +I).

From (3.36) and (3.37), we can obtain the following equations:

1
i€6,E" + pB; AE, T = qT" + sT! + R", (3.38)
1
AT'BI(S,EY) + aB; A6:6°E,? = —B6:T — p5:T" + R, (3.39)

where R! = B;'r" and R" = B, A;'r1.
We use the induction argument as in [15-17] to estimate the error bounds. To obtain our error
estimate, we assume that there exists a constant /iy > 0 such that, for 0 < & < hy,

max{[|Ejlle, |Eoll, 16:E; oo 6B ) <1, 1 <n<k. (3.40)
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Since E? = E? = 0, it is easy to see that

IE < C(@* +h°) and |Ell < C(7° + K°).

> 1, by computing the inner product (-,-) on both sides of (3.38) with E, 2. we can obtain
following equation by Lemma 4:

Forn >

. I n+d n+id R n ity .
le<6,E E > <82 A5 EE 6! >:q<T1,E >+s<T2,E > <R E > (3.41)
Taking the imaginary part of (3.41), we can obtain the inequality

I’H—le

€
Z—T{IIEZ”II ~IE}IP) < %IIT"II + IIT"II + IIR”II + IIE (3.42)

By computing the inner product (-,-) on both sides of (3.39) with ET? we can obtain following
equation by Lemma 4:

<ﬂ1181(5,E") E"+2> <B | A,6:6E" 6+ E”+2>

(3.43)
_ﬁ<Tg,5 E”+2> +p<T;;,5 E"+2> <R” E"+2>.
Since
T" = B’ + E"9" — E" B,
T3 = (ul?)".E; + [2Re(L.E,)" - (E.J*)'] &' = [2Re(LE,)" - (E.*)"| £,
T = @E,)" + wE,) - (EJ2Y,
we can have the inequality
ITTIP + TP + T3P + 1T51P < CUESIP + WEMN + IE P + ENP). (3.44)
By Lemma 5, Eq (3.43) and inequality (3.44), we have
ziTnnE’J*‘m,% —ENEY < CUE,IP + IE;IP + I1E;"IIP) (3.45)

+ CHIENP + IES P + I6=E311 + I6=E0 1P + IR}
Summing inequalities (3.42) and (3.45) side by side, and using inequality (3.44), we can have following
inequality with EY = EO = 0:

k+1
ellEL I + IESIE < Cr > MIELR + NELIP + ozEP + IR 1P + IR |P). (3.46)

n=1

By Computing the inner product (-,-) on both sides of (3.38) with §,E”. we can obtain following
equation by Lemma 4:

1
i€ (6,E",5,E") — p< 1ﬂ26xEZ+2,6x6tEZ>:q(T”,étEZ)+s(T”,étEZ)+(R’;,6,EZ). (3.47)
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Taking the real part of (3.47) and summing from O to k, we can obtain

k k k
pP k+11112 n n n n n n
—USES G = — qRe| > (T1,6,E) |- sRe| > (T3, 8,EL) | -Re| > (R, 6]
27_||| lllp q ( ( t >] [n=0< t >) (nz()( t >] (3.48)

n=0
= MY+ M% + M.

By using a method of summation by parts together with assumptions (3.30) and (3.40), we have the
inequalities

k
n n C
IME|+ M3 < C D (IENP + IELIPY + ZIESIP,
n=1 T

k
_ C C
IME < C S HIEDP + IS.RLIPY + ZIESIE + Z IR,
oy T T

By (3.48) and the above estimates, we can obtain

k
lI6=E G < CUIELHIP + 1RGP + Cr ZZ{IIEZII2 +IEIP + l6.R;~ P}, (3.49)

n=1

For any real-valued grid function f, an operator O is defined by

Jj-l J-1
h : h

@fj:;fkh+§fj, j=12....J, @fozkz;fkh+§f,, (3.50)

with @ f; = O fj,;. The following results can be easily proved:

1
5:0f; = 6:f;, 0:9f; = Z Ui+ 2+ fi) = TS, (3.51)
J (< 2

(f0f) =) f;-Ofjh= > {Z fjh} >0, (3.52)

=1 =1

12

1O£11 < Ellfllz- (3.53)

Then define a matrix J corresponding to the operator 7, i.e.,

21 0 -1
1 2 1

1

J_ZO 0
: o1 201
I --- 0 1 2

IxJ

It’s obvious that J is invertible and J! is circulant symmetric positive definite as the scale J of matrix
is an odd integer. By computing the inner product (-, -) on both sides of (3.39) with §,(J'®E,)" and
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applying Lemma 4, (3.51) and (3.52), we can obtain

(T A BIGOED, SO ) + a (B, AudeEL 5,552 ) s
= B(T3, 6,E) + p(T}, S,E) + (R., 6T 'OF,)")

Since J, A, B; are circulant symmetric positive definite, so there exists G such that J _IAIIBI = GG’ .
By (3.51) and (3.52), we can have

(T A B1(6,E2). 6,(OE,)") = (6(GE,)". 6(O(GE,))")
2

1 < ) ) (3.55)
= 5(hjzz;(s,((;lzv)j =C" > 0.
Summing Eq (3.54) from O to k together with (3.55), we can obtain
k o k k k
C" + —|l6=EX |13 = T! 6,E") + T" 6,E") + R, 6(9 'OFE,)"
Z; S IS<ES I ,3;< EL) p;< E) Z;( " 6T OE,)") (3:56)

= M} + Mt + M.

By using a method of summation by parts together with assumptions (3.30) and (3.40), we have the
inequalities

k
n n C
M1+ M3 < € ) QIENIP + IELIP)Y + ZIEIP,

n=1

k
_ . e c C
Mg < CZ{IIJ OEI + lI5.R I + —IT 'OEMIP + ;IIR'JIIZ-

n=1

Noticing that J(I - 62 + 25262 — £526262) = I — £62626262, we have

167 xYx 64 xYxYx 256 “xY xYxY x0

-1 h2 2 h4 2 2 h6 22 &2 8
g :I_Zéx+E6x6x_a6x6x6x+0(h ).

By using Lemma 6 and (3.53), the above inequality can be written as
k
_ C C
IMEL < C D ER +llo.R: Py + ZNES P + ZIRYP,
— T T

Multiplying Eq (3.56) with 27, we can obtain

k
No=EL IR, < C ) (ENE + IER + ISR 12} + CUES I + IRYP). (3.57)

n=1
Since the norms |||, [||-|ll, and [||-|[[p are equivalent, we can have the following inequality by
summing (3.46), (3.49) and (3.57):
IES I +IES T < CURGIP + IRYIP)

S ny2 ny2 n—1712 n—1112 n—1112 n—1712 (358)
+CTZ{||EV||1+||EM|| +16:R, 7 + 16,8117 + IR 7 + [IRT 17}

n=1
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Taking 7 sufficiently small and applying Lemmas 8 and 9, we can obtain
IEST + IES < €t + '), (3.59)

Moreover, we need to confirm the inequality in (3.40) holds for n = k + 1 to complete our proof. We
can get the following inequalities by Lemma 6:

IEX | < CIEM I < C(Y*, ho, T)( + 1Y),
16.E 0 < THES = ENlww < C(Y* o, T)(r + h377Y),

and similar inequalities hold for ||E¥*!||., and ||6,EX||... Then it’s easy to see that the inequalities above
hold for n = k + 1 when 2877! = o(1), i.e., K®7™! - 0ash — 0, and taking A sufficiently small, which
implies that assumption (3.40) is valid for n = k + 1. The proof is finished. O

Corollary 1. By applying Lemma 6, we can obtain the following optimal order convergence rate under
the same conditions in Theorem 3:

max {|[u" — Ul + V' = V'lls} < C(* + B%).
0<n<N
4. Numerical experiments

In this section, some numerical examples are presented to illustrate the conservative properties and
eighth-order accuracy of the proposed compact scheme. The ultimate compact schemes (3.32)—(3.35)
can be written as the following linear matrix equations:

C,U» =D, U° + E\(U°, V%),

C,V* = D,V° + E,(U°, V),
CU™ = DU+ F((UPY, 0, 1),
CV™! = DoV + Fy(V, V™, (U,

where Ey, E,, F; and F, are nonlinear terms. Our numerical experiments are conducted using Matlab
(R2019b). The invariants Iy, I, I3 and I, are tested by the discrete formulations:

J J
Iy =h Y \USE, B,=h) VI,
j=1 j=1

@ n
+ ppIBT AU + gpVIIUE + |U;?|4 - %(Bllﬂlafvj)z),

J
I, =h Z (-2
J=
J
Ly =h > (a1 = 20elm(U}B; A,6:07)),
j=1

and the errors of invariants are defined as
0 _mn 0 _qmn 0 _m 0
|Ilh Ilh . Er= |12h - IZhl’ E; = |I3h - I3h|’ Ey = |I4h - I4h|'

Moreover, the accuracy of the proposed scheme is tested by the discrete L2- norm (|lu — U|| + |[v — V||)
and L®- norm (|| — Ul + ||V = V|o)-
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Example 1. [8] We consider the following Cauchy problem:

(x,H) e Rx(0,T],
Vit Ve + B3V + ), =0, (x,0) e Rx(0,T],
u(x,0) = p(x), v(x,0) = ¢(x),

i, + Uy —vu = 0,

X ER,

whose exact solutions are given by u(x,t) = exp(i(x + t/4)) and v(x,t) = 3/4. we then compute the
equations with 2 = 7/20 and 7 = 0.001 in the spatial interval [0, 2x]. The errors of the numerical
invariants at different time are listed in Table 1, which indicates that the proposed compact scheme
preserves the conservation properties. Table 2 shows that the convergence rate of the proposed compact
scheme is eighth-order in space.

Table 1. Errors of invariants at different time: 4 = 7/20, T = 0.001.

t E, E, E; E,
1 3.73346E-11 1.11910E-13 9.03455E-12 7.48273E-11
5 1.86450E-10 5.69322E-13 4.50811E-11 3.73753E-10
10 3.72820E-10 1.32072E-12 8.96581E-11 7.47615E-10
Table 2. Convergence rates at different time: 7 = /10, 7 = 0.1.
t h T L? — error Rate L* — error Rate
2 h T 1.09158E-03 4.35476E-04
h/2 7/16 4.80890E-06 7.82649 1.91847E-06 7.82649
h/4 7/256 1.89240E-08 7.98935 7.54999E-09 7.98927
5 h T 2.94823E-03 1.17617E-03
h/2 7/16 1.20760E-05 7.93156 4.81764E-06 7.93156
h/4 7/256 4.73303E-08 7.99517 1.88923E-08 7.99439
10 h T 6.04262E-03 2.41066E-03
h/2 7/16 2.41903E-05 7.96460 9.65142E-06 7.96447
h/4 7/256 1.02970E-07 7.87605 4.42506E-08 7.76890

Example 2. [3] We consider the following coupled equations:

ieu; + Eu“ - Evu =0, (x,/)eRx(0,T],
v, + %v + %(V2 +u*), =0, (x,)e RX(0,T],
with exact solutions
u(x,t) = —6 V3e tanh(¢) exp (ic ((i - E) t— Ex)) ,
5 cosh(¢) 20e 6 3
v(x, 1) = —%COS};@, &= e/10(x + ct),
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where c is an arbitrary positive constant. In addition, we set the artificial boundary conditions u(a, t) =
u(b,t) = 0 and v(a,t) = v(b,t) = 0 to satisfy the physical condition that |¢| and v tend to zero as
|x| — oco. Our simulations are conducted by taking € = 1, the traveling wave speed ¢ = 0.45 and initial
conditions

_ 6 V3¢ tanh(é) ., €
u(x,0) = — 5 COSh(f)eXp(lC(_gx»’
v(x,0) = —% ! & = +c/10(x + ct).

5 cosh?(¢)’

Table 3 lists the numerical solutions at r = 0.001, with 2 = 0.25, = = 0.00001 and [a, b] = [-30, 30],
where the scheme MECS expands [a,b] to [-150,150] for reducing boundary truncation error.
Compared with the numerical results obtained by the fourth-order compact scheme (FCS) in [9] and
exponential time differencing three-layer implicit scheme with Padé approximation (ETDT-P) in [7].
We can see that the eighth-order compact scheme (ECS) and modified eighth-order compact scheme
(MECS) give better approximations. In addition, MECS gives much more accurate error estimate than
ECS, which is caused by boundary truncation error. The numerical solution profiles of |U| and V, as
well as the contours in Figure 1 show that the waves traveling with a speed ¢ = 0.45 keep the shape
and hight, which are in good agreement with the exact solutions.

Table 3. Comparison of numerical solutions with exact solutions and other methods: ¢ =

0.001, T = 0.00001, i = 0.25.

x  MECS ECS FCS ETDT-P Exact solution
ImU -20  3.7904E-03 3.7904E-03 3.7904E-03 3.7904E-03  3.7904E-03
-10 2.1428E-01 2.1428E-01 2.1428E-01 2.1428E-01 2.1428E-01
0 -3.013332E-09 -3.013332E-09 -3.0140E-09 -2.4973E-09 -3.013332E-09
10 2.1424E-01 2.1424E-01 2.1424E-01 2.1424E-01 2.1424E-01
20 3.7915E-03 3.7915E-03 3.7915E-03 3.7915E-03  3.7915E-03
[[ImE,,|| 5.1605E-14 1.5738E-05 1.4412E-05 3.8279E-05
ReU -20  -2.6597E-02 -2.6597E-02 -2.6597E-02 -2.6597E-02 -2.6597E-02
-10 1.5188E-02 1.5188E-02 1.5188E-02 1.5188E-02  1.5188E-02
0 -8.928390E-05 -8.928390E-05 -8.928328E-05 -8.9282E-05 -8.928390E-05
10  -1.5200E-02 -1.5200E-02 -1.5200E-02 -1.5200E-02 -1.5200E-02
20  2.6592E-02 2.6592E-02 2.6592E-02 2.6592E-02  2.6592E-02
|[ReE,|| 3.9746E-14 9.7531E-05 8.0273E-05 7.5941E-06
Vv -20 -6.6886E-04 -6.6886E-04 -6.6886E-04 -6.6886E-04 -6.6886E-04
-10 -4.5256E-02 -4.5256E-02 -4.5256E-02 -4.5256E-02 -4.5256E-02
0  -8.1000E-01 -8.1000E-01 -8.1000E-01 -8.1000E-01 -8.1000E-01
10 -4.5239E-02 -4.5239E-02 -4.5239E-02 -4.5239E-02 -4.5239E-02
20 -6.6861E-04 -6.6861E-04 -6.6861E-04 -6.6861E-04 -6.6861E-04
IIE 7.6034E-14 1.1311E-06 7.2736E-07 1.0331E-07
AIMS Mathematics Volume 8, Issue 5, 10596-10618.
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Figure 1. Numerical solution profiles of |U| and V(a and b) and the contours(c and d):
t € [0,30], [a,b] = [-70,30], h = 0.5, 7 = 0.001.

Example 3. [11] We consider the following coupled equations:
i, + gy —ovu+ ufu =0, (x,f)e Rx(0,T],

1
Vi + Vi + E(v2 —oluf*), =0, (x,/) e Rx(0,T],

with exact solutions

V2C* (1 + 60)
cosh(VC*(x — ct))’

12C* [ o
v(x,t) = , 2c=1+ ,/1+=(1+60),
cosh*(VC*(x = ct)) 3

where o € (—1/6,0) and w € R. Set the artificial boundary conditions u(a,t) = u(b,t) = 0 and
v(a,t) = v(b,t) = 0. Our simulations are conducted by taking o = —1/12, w = 0, [a, b] = [-40,70],

u(x, t) = exp(i(wt + cx/2)) C* =c?/4 + ?,
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the traveling wave speed ¢ = (1 + V71/72)/2 and initial conditions

V2C* (I + 60)

cosh( C*x)
de=1+ 1/1+%(1+6o-).

The errors of the numerical invariants at different times are listed in Table 4, which indicates that the
proposed compact scheme preserves the conservation properties. Table 5 shows that the convergence
rate of the proposed compact scheme is eighth-order in space. The numerical solution profiles of |U]|
and V, as well as the contours in Figure 2 show that the waves traveling with a speed ¢ = 0.99652 keep
the shape and hight, which are in good agreement with the exact solutions.

., C' =74+ W2,

u(x,0) = exp(icx/2)
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Figure 2. Numerical solution profiles of |U| and V(a and b) and the contours(c and d):

t €[0,30], h =0.25, 7 = 0.001.
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Table 4. Errors of invariants at different time: 2 = 0.1, 7 = 0.001.

t E, E, E; E,
1 1.35891E-13 8.96330E-10 1.65457E-10 3.32290E-10
5 7.79488E-13 9.67230E-08 8.24029E-10 1.65427E-09
10 1.53033E-12 2.48881E-07 1.64719E-09 3.30639E-09
Table 5. Convergence rates at different time: 7 = 1, 7 = 0.1.
t h T L* — error Rate L® — error Rate
1 h T 2.83547E-02 1.60049E-02
h/2 7/16 8.47660E-05 8.38589 5.63783E-05 8.14915
h/4 7/256 3.28192E-07 8.01280 2.20134E-07 8.00062
5 h T 7.81002E-02 3.78102E-02
h/2 7/16 2.60905E-04 8.22566 1.49546E-04 7.98205
h/4 7/256 1.01440E-06 8.00675 5.81734E-07 8.00601
10 h T 1.44349E-01 7.50822E-02
h/2 7/16 4.75731E-04 8.24520 2.60189E-04 8.17277
h/4 7/256 1.84463E-06 8.01067 1.00971E-06 8.00947

5. Conclusions

In this paper, we propose an eighth-order compact finite difference scheme by constructing several
circulant symmetric positive definite matrices to obtain the numerical solution of coupled Schrédinger-
KdV equations. The performance of proposed compact scheme is evaluated by conservation properties
and error estimate. Numerical examples demonstrate the better performance of the proposed compact
scheme in accuracy compared with FCS and ETDT-P given in [7,9]. Since the matrices have good
properties, we can discuss the possibility that the proposed compact scheme can be applied to other
equations such as nonlinear Dirac equation [21], generalized Rosenau-RLW equation [22], Klein-
Gordon-Schrodinger equation [23], coupled Gross-Pitaevskii equations [24] and regularized long wave

equation [25].
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