Research article

A general conservative eighth-order compact finite difference scheme for the coupled Schrödinger-KdV equations

Jiadong Qiu, Danfu Han* and Hao Zhou
School of Mathematics, Hangzhou Normal University, Hangzhou 310006, China
* Correspondence: Email: mhdf63@163.com.

Abstract

In this paper, we present a general conservative eighth-order compact finite difference scheme for solving the coupled Schrödinger-KdV equations numerically. The proposed scheme is decoupled and preserves several physical invariants in discrete sense. The matrices obtained in the eighth-order compact scheme are all circulant symmetric positive definite so that it can be used to solve other similar equations. Numerical experiments on model problems show the better performance of the scheme compared with other numerical schemes.

Keywords: Schrödinger-KdV equations; compact finite difference scheme; periodic boundary condition; conservation; error estimate
Mathematics Subject Classification: 65M06, 65M12, 65M15

1. Introduction

Nonlinear partial differential equations play an important part in various branches of science such as fluid mechanics, solid state physics, plasma physics and quantum mechanics. The coupled Schrödinger-KdV equations are put forward to model nonlinear dynamics of one-dimensional Langmuir and ion-acoustic waves in a system of coordinates moving at the ion-acoustic speed [18, 19]. In detail, we consider the system [9]

$$
\begin{align*}
& i \epsilon u_{t}+p u_{x x}-q v u-s|u|^{2} u=0, \quad(x, t) \in R \times(0, T], \tag{1.1}\\
& v_{t}+\alpha v_{x x x}+\left(\beta v^{m}+\rho|u|^{2}\right)_{x}=0, \quad(x, t) \in R \times(0, T], \tag{1.2}\\
& u(x, t)=u(x+l, t), \quad v(x, t)=v(x+l, t), \quad(x, t) \in R \times(0, T], \tag{1.3}\\
& u(x, 0)=\varphi(x), \quad v(x, 0)=\phi(x), \quad x \in R, \tag{1.4}
\end{align*}
$$

where $i=\sqrt{-1}, m$ is a positive integer, $p, q, s, \epsilon, \alpha, \beta, \rho$ are real constants with $p \neq 0$ and $\epsilon, \alpha \geq$ 0 . The complex-valued function u and the real-valued function v describe electric field of Langmuir
oscillations and low-frequency density perturbation, respectively. The initial functions φ and ϕ are given l-periodic functions. Hence, it suffices to take a single period $[0, l]$. For Eqs (1.1) and (1.2), there are four physical invariants to be considered:

The number of plasmons

$$
\begin{equation*}
I_{1}=\int_{0}^{l}|u(x, t)|^{2} d x \tag{1.5}
\end{equation*}
$$

The number of particles

$$
\begin{equation*}
I_{2}=\int_{0}^{l} v(x, t) d x \tag{1.6}
\end{equation*}
$$

The energy of oscillations

$$
\begin{equation*}
I_{3}=\int_{0}^{l}\left[\frac{q \beta}{m+1} v^{m+1}+p \rho\left|u_{x}\right|^{2}+q \rho v|u|^{2}+\frac{s \rho}{2}|u|^{4}-\frac{q \alpha}{2}\left(v_{x}\right)^{2}\right] d x \tag{1.7}
\end{equation*}
$$

and the momentum

$$
\begin{equation*}
I_{4}=\int_{0}^{l}\left[q v^{2}-2 \rho \epsilon \operatorname{Im}\left(u \bar{u}_{x}\right)\right] d x \tag{1.8}
\end{equation*}
$$

According to [2], these invariants may connect closely to accurate behaviors in time. Extensive numerical studies have been presented for the coupled Schödinger-KdV equations in the last decade, such as the finite element method [3], radial basis function (RBF) collocation method [4], decomposition [5], variational iteration [6], exponential time differencing three-layer implicit scheme(ETDT-P) [7], homotopy perturbation [8], and fourth-order conservative compact finite difference scheme [9] and so on.

In the aspect of compact difference scheme, which is well known for the narrower stencils, i.e., fewer neighboring nodes it uses, and have less truncation error comparing with typical finite difference schemes. A variety of fourth-order compact methods have been employed solving partial differential equations [9, 12-14, 21-25, 28, 29]. Furthermore, Wang [26] proposed a conservative eighth-order compact difference scheme for the nonlinear Schrödinger equation. In [27], Chen and Chen presented a conservative eighth-order compact difference scheme for the Klein-Gordon-Schrödinger equations. Motivated by ideas in [26,27], this article aims to construct a new general difference scheme which can deal with the conservativeness of the invariants and convergence theorem easily. In detail, there are following three advantages:
(i) The proposed scheme is compact, linearized, decoupled.
(ii) The proposed scheme preserves several invariants in discrete sense.
(iii) The operator form of scheme is novel and can be easily generalized from the fourth-order compact method to the eight-order method for solving other equations.

The rest of the paper is organized as follows. In Section 2, we introduce an eighth-order conservative compact finite difference scheme and apply it to solve the coupled Schödinger-KdV equations numerically. The discrete conservation properties of the proposed nonlinear scheme is analyzed and the convergence theorem of the linearized scheme is established in Section 3. Numerical experiments are presented in Section 4. Finally, a brief conclusion is given in Section 5.

2. The eighth-order compact finite difference scheme

The domain $\Omega=\{(x, t) \mid 0 \leq x \leq l, 0 \leq t \leq T\}$ is discretized into grids described by the set $\left\{x_{j}, t_{n}\right\}$ of nodes, in which $x_{j}=j h, j=0,1, \ldots, J=l / h$ and $t_{n}=n \tau, n=0,1, \ldots, N=T / \tau$, where h and τ are discretization parameters. Briefly, let $u_{j}^{n}=u\left(x_{j}, t_{n}\right), v_{j}^{n}=v\left(x_{j}, t_{n}\right)$ and $\Omega_{h}=\left\{x_{0}, x_{1}, \ldots, x_{J}\right\}$. For more convenient discussion, define the following difference operators and notations:

$$
\begin{aligned}
& \delta_{t} u_{j}^{n}=\frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}, \quad \delta_{x}^{2} u_{j}^{n}=\frac{u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}}{h^{2}}, \\
& \delta_{x} u_{j}^{n}=\frac{u_{j+1}^{n}-u_{j}^{n}}{h}, \quad \delta_{\bar{x}} u_{j}^{n}=\frac{u_{j}^{n}-u_{j-1}^{n}}{h}, \quad \delta_{\hat{x}}^{n} u_{j}^{n}=\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}, \\
& u_{j}^{n+\frac{1}{2}}=\frac{u_{j}^{n+1}+u_{j}^{n}}{2}, \quad\left(|u|^{2}\right)_{j}^{n+\frac{1}{2}}=\frac{\left|u_{j}^{n}\right|^{2}+\left|u_{j}^{n+1}\right|^{2}}{2}, \\
& \mathcal{A}_{1} u_{j}^{n}=\left(1+\frac{5 h^{2}}{42} \delta_{x}^{2}\right) u_{j}^{n}=\frac{1}{42}\left(5 u_{j-1}^{n}+32 u_{j}^{n}+5 u_{j+1}^{n}\right), \\
& \mathcal{A}_{2} u_{j}^{n}=\left(1+\frac{31 h^{2}}{252} \delta_{x}^{2}\right) u_{j}^{n}=\frac{1}{252}\left(31 u_{j-1}^{n}+190 u_{j}^{n}+31 u_{j+1}^{n}\right), \\
& \mathcal{B}_{1} u_{j}^{n}=\left(1+\frac{20 h^{2}}{70} \delta_{x}^{2}+\frac{h^{4}}{70} \delta_{x}^{2} \delta_{x}^{2}\right) u_{j}^{n}=\frac{1}{70}\left(u_{j-2}^{n}+16 u_{j-1}^{n}+36 u_{j}^{n}+16 u_{j+1}^{n}+u_{j+2}^{n}\right), \\
& \mathcal{B}_{2} u_{j}^{n}=\left(1+\frac{780 h^{2}}{3780} \delta_{x}^{2}+\frac{23 h^{4}}{3780} \delta_{x}^{2} \delta_{x}^{2}\right) u_{j}^{n}=\frac{1}{3780}\left(23 u_{j-2}^{n}+688 u_{j-1}^{n}+2358 u_{j}^{n}+688 u_{j+1}^{n}+23 u_{j+2}^{n}\right), \\
& \mathcal{J} u_{j}^{n}=\left(1+\frac{h^{2}}{4} \delta_{x}^{2}\right) u_{j}^{n}=\frac{1}{4}\left(u_{j-1}^{n}+2 u_{j}^{n}+u_{j+1}^{n}\right) .
\end{aligned}
$$

About the approximate formulas of the first and second-order spatial derivatives at all nodes (with periodic boundary conditions) with the eighth-order accuracy, we have the following lemma. Note that we denote $u_{j}^{\prime}=\frac{\partial u\left(x_{j}, t\right)}{\partial x}$ or simply denote $u_{j}^{\prime}=\left(u_{x}\right)_{j}$ in the following lemma. Similarly, the notations $u_{j}^{\prime \prime}$ and $u_{j}^{\prime \prime \prime}$ are the same meaning.
Lemma 1. [1] For u^{\prime} and $u^{\prime \prime}$, we have the following approximate formulas

$$
\begin{align*}
& u_{j-2}^{\prime}+16 u_{j-1}^{\prime}+36 u_{j}^{\prime}+16 u_{j+1}^{\prime}+u_{j+2}^{\prime} \\
= & \frac{5}{6 h}\left(-5 u_{j-2}-32 u_{j-1}+32 u_{j+1}+5 u_{j+2}\right)+O\left(h^{8}\right), \tag{2.1}\\
& 23 u_{j-2}^{\prime \prime}+688 u_{j-1}^{\prime \prime}+2358 u_{j}^{\prime \prime}+688 u_{j+1}^{\prime \prime}+23 u_{j+2}^{\prime \prime} \\
= & \frac{15}{h^{2}}\left(31 u_{j-2}+128 u_{j-1}-318 u_{j}+128 u_{j+1}+31 u_{j+2}\right)+O\left(h^{8}\right) . \tag{2.2}
\end{align*}
$$

For the convenience to discrete and analyse the equations, we need to rewrite the relations (2.1) and (2.2) to the operators forms.

Lemma 2. By the definition of the operators above, we have

$$
\begin{gather*}
\mathcal{B}_{1} u_{j}^{\prime}=\mathcal{A}_{1} \delta_{\hat{x}} u_{j}+O\left(h^{8}\right), \tag{2.3}\\
\mathcal{B}_{2} u_{j}^{\prime \prime}=\mathcal{A}_{2} \delta_{x}^{2} u_{j}+O\left(h^{8}\right), \tag{2.4}\\
\mathcal{B}_{1} \mathcal{B}_{2} u_{j}^{\prime \prime \prime}=\mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} u_{j}+O\left(h^{8}\right) . \tag{2.5}
\end{gather*}
$$

Proof. Assume that there is an operator $\mathcal{A}_{1}^{*} u_{j}^{\prime}=\lambda_{1} u_{j-1}+\lambda_{2} u_{j}+\lambda_{1} u_{j+1}$ such that

$$
\begin{equation*}
\mathcal{B}_{1} u_{j}^{\prime}=\mathcal{A}_{1}^{*} \delta_{\hat{x}} u_{j}+O\left(h^{8}\right) . \tag{2.6}
\end{equation*}
$$

By computation and the definition of operators above, we have $\lambda_{1}=5 / 42$ and $\lambda_{2}=32 / 42$. Hence, $\mathcal{A}_{1}^{*}=\mathcal{A}_{1}$ and (2.3) holds. (2.4) can be proved similarly. At last, combining (2.3) and (2.4), (2.5) follows directly.

We note that Lemma 2 shows the discrete scheme has the eighth-order accuracy if we use the operators $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}$ and \mathcal{B}_{2} or their combinations to discrete the corresponding derivative values at nodes.

In the temporal discretization, we need to evaluate the function values at mid-nodes $\left(\left(n+\frac{1}{2}\right)\right.$-nodes $)$. The following lemma is necessary to ensure to approximate the function values at mid-nodes by values at n - and $(n+1)$-nodes, which can be obtained by Taylors expansion.

Lemma 3. For any smooth function $g(t)$ and $m \in \mathbb{N}^{*}$, we have

$$
\begin{equation*}
\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{m}-\psi\left(g\left(t_{n}\right), g\left(t_{n+1}\right)\right)=O\left(\tau^{2}\right), \tag{2.7}
\end{equation*}
$$

where $t_{n+\frac{1}{2}}=\frac{t_{n}+t_{n+1}}{2}$ and

$$
\begin{equation*}
\psi(u, v)=\frac{1}{m+1} \sum_{k=0}^{m} u^{k} v^{m-k} . \tag{2.8}
\end{equation*}
$$

Proof. By using Taylor's expansion, we have

$$
\begin{align*}
& g\left(t_{n+1}\right)=g\left(t_{n+\frac{1}{2}}\right)+\frac{\tau}{2} g^{\prime}\left(t_{n+\frac{1}{2}}\right)+O\left(\tau^{2}\right), \tag{2.9}\\
& g\left(t_{n}\right)=g\left(t_{n+\frac{1}{2}}\right)-\frac{\tau}{2} g^{\prime}\left(t_{n+\frac{1}{2}}\right)+O\left(\tau^{2}\right), \tag{2.10}\\
& \left(g\left(t_{n+1}\right)\right)^{z}=\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{z}+\frac{\tau}{2} z\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{z-1}\left(g^{\prime}\left(t_{n+\frac{1}{2}}\right)\right)+O\left(\tau^{2}\right), \tag{2.11}\\
& \left(g\left(t_{n}\right)\right)^{z}=\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{z}-\frac{\tau}{2} z\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{z-1}\left(g^{\prime}\left(t_{n+\frac{1}{2}}\right)\right)+O\left(\tau^{2}\right), \tag{2.12}
\end{align*}
$$

where $z \in \mathbb{N}^{*}$. Let $k<\frac{m}{2}, k \in \mathbb{N}$, from (2.11) and (2.12), we can obtain

$$
\begin{align*}
& \left(g\left(t_{n}\right)\right)^{k}\left(g\left(t_{n+1}\right)\right)^{m-k}+\left(g\left(t_{n}\right)\right)^{m-k}\left(g\left(t_{n+1}\right)\right)^{k} \\
= & \left(g\left(t_{n}\right)\right)^{k}\left(g\left(t_{n+1}\right)\right)^{k}\left[\left(g\left(t_{n}\right)\right)^{m-2 k}+\left(g\left(t_{n+1}\right)\right)^{m-2 k}\right] \\
= & {\left[\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{2 k}+O\left(\tau^{2}\right)\right]\left[2\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{m-2 k}+O\left(\tau^{2}\right)\right] } \tag{2.13}\\
= & 2\left(g\left(t_{n+\frac{1}{2}}\right)\right)^{m}+O\left(\tau^{2}\right) .
\end{align*}
$$

Plugging (2.13) into (2.8), (2.7) immediately follows.
Denote the approximations of u_{j}^{n} and v_{j}^{n} by U_{j}^{n} and V_{j}^{n}, respectively. Ignoring the truncation error terms in Eqs (2.3)-(2.5) and (2.7), we obtain the following implicit compact scheme with truncation error $O\left(\tau^{2}+h^{8}\right)$ by using the Crank-Nicolson method for temporal discretization and Lemmas 2 and 3:

$$
\begin{equation*}
i \epsilon \mathcal{B}_{2}\left(\delta_{t} U_{j}^{n}\right)+p \mathcal{A}_{2} \delta_{x}^{2} U_{j}^{n+\frac{1}{2}}-q \mathcal{B}_{2}\left(V_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}}\right)-s \mathcal{B}_{2}\left(\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}}\right)=0, \tag{2.14}
\end{equation*}
$$

$$
\begin{align*}
& \mathcal{B}_{1} \mathcal{B}_{2}\left(\delta_{t} V_{j}^{n}\right)+\alpha \mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} V_{j}^{n+\frac{1}{2}}+\beta \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} \psi\left(V_{j}^{n}, V_{j}^{n+1}\right)+\rho \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}}\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}}=0, \tag{2.15}\\
& U_{j}^{n}=U_{j+J}^{n}, \quad V_{j}^{n}=V_{j+J}^{n}, \quad n=0,1, \ldots, N, \quad j=1,2, \ldots, J, \tag{2.16}\\
& U_{j}^{0}=\varphi\left(x_{j}\right), \quad V_{j}^{0}=\phi\left(x_{j}\right) . \tag{2.17}
\end{align*}
$$

The schemes (2.14 and 2.15) are nonlinear and gotten by discretizing the temporal derivative with the Crank-Nicolson method, which has the second-order $O\left(\tau^{2}\right)$ and discretizing the special derivatives with the operators \mathcal{B}_{1} and $\mathcal{B}_{1} \mathcal{B}_{2}$ for (1.1) and (1.2), respectively, which has the eighth-order $O\left(h^{8}\right)$ by Lemma 2.

As to the linearized form of (2.14 and 2.15), we will discuss in the next section.

3. The conservation and convergence analysis

3.1. Notations and preliminaries

Let $H_{p}\left(\Omega_{h}\right)=\left\{u \mid u=\left\{u_{j}\right\}, j=0,1, \ldots, J\right.$ and $\left.u_{j}=u_{j+J}\right\}$ denote the space of periodic real- or complex-valued grid functions defined on Ω_{h} with period J. The discrete inner product and the corresponding discrete L^{2}-norm on the grid function space $H_{p}\left(\Omega_{h}\right)$ are defined as

$$
\langle u, w\rangle=\sum_{j=1}^{J} u_{j} \bar{w}_{j} h, \quad\|u\|=\sqrt{\langle u, u\rangle},
$$

where \bar{w} denotes the conjugate of w. Norm $\left\|\delta_{x}^{2} u\right\|^{2}=\left\langle\delta_{x}^{2} u, \delta_{x}^{2} u\right\rangle$ is well-defined with periodic condition $\left(u_{j}=u_{j \pm J}\right)$ and the discrete L^{∞} - and H^{1}-norm are defined as

$$
\|u\|_{\infty}=\max _{1 \leq j \leq J}\left|u_{j}\right|, \quad\|u\|_{1}=\sqrt{\|u\|^{2}+\left\|\delta_{\bar{x}} u\right\|^{2}} .
$$

The following lemmas can be easily proved:
Lemma 4. For any grid functions $u, w \in H_{p}\left(\Omega_{h}\right)$, we have

$$
\begin{aligned}
& \left\langle\delta_{x} u, w\right\rangle=-\left\langle u, \delta_{\bar{x}} w\right\rangle, \quad\left\langle\delta_{\hat{x}} u, w\right\rangle=-\left\langle u, \delta_{\hat{x}} w\right\rangle, \\
& \left\langle\delta_{x}^{2} u, w\right\rangle=-\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle=-\left\langle\delta_{x} u, \delta_{x} w\right\rangle=\left\langle u, \delta_{x}^{2} w\right\rangle, \\
& \left\langle\mathcal{A}_{1} u, w\right\rangle=\left\langle u, \mathcal{A}_{1} w\right\rangle=\langle u, w\rangle-\frac{5 h^{2}}{42}\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle, \\
& \left\langle\mathcal{A}_{2} u, w\right\rangle=\left\langle u, \mathcal{A}_{2} w\right\rangle=\langle u, w\rangle-\frac{31 h^{2}}{252}\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle, \\
& \left\langle\mathcal{B}_{1} u, w\right\rangle=\left\langle u, \mathcal{B}_{1} w\right\rangle=\langle u, w\rangle-\frac{20 h^{2}}{70}\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle+\frac{h^{4}}{70}\left\langle\delta_{x}^{2} u, \delta_{x}^{2} w\right\rangle, \\
& \left\langle\mathcal{B}_{2} u, w\right\rangle=\left\langle u, \mathcal{B}_{2} w\right\rangle=\langle u, w\rangle-\frac{780 h^{2}}{3780}\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle+\frac{23 h^{4}}{3780}\left\langle\delta_{x}^{2} u, \delta_{x}^{2} w\right\rangle, \\
& \langle\mathcal{J} u, w\rangle=\langle u, \mathcal{J} w\rangle=\langle u, w\rangle-\frac{h^{2}}{4}\left\langle\delta_{\bar{x}} u, \delta_{\bar{x}} w\right\rangle .
\end{aligned}
$$

Lemma 5. For any grid functions $u \in H_{p}\left(\Omega_{h}\right)$, we have

$$
\operatorname{Re}\left(\left\langle\delta_{\hat{x}} u, u\right\rangle\right)=\operatorname{Re}\left(\left\langle\delta_{\hat{x}} \mathcal{A}_{1} u, u\right\rangle\right)=\operatorname{Re}\left(\left\langle\delta_{\hat{x}} \mathcal{B}_{1}^{-1} \mathcal{A}_{1} u, u\right\rangle\right)=\operatorname{Re}\left(\left\langle\delta_{\hat{x}} \mathcal{B}_{2}^{-1} \mathcal{A}_{2} u, u\right\rangle\right)=0 .
$$

Lemma 6. [20] For any grid functions $u \in H_{p}\left(\Omega_{h}\right)$, we have

$$
\begin{gathered}
\left\|\delta_{\bar{x}} u\right\| \leq \frac{2}{h}\|u\|, \quad\|u\|_{\infty} \leq h^{-\frac{1}{2}}\|u\|, \\
\|u\|_{\infty}^{2} \leq \varepsilon\left\|\delta_{\bar{x}} u\right\|^{2}+\left(\frac{1}{\varepsilon}+\frac{1}{l}\right)\|u\|^{2} \quad \forall \varepsilon>0 .
\end{gathered}
$$

Lemma 7. [12] For a real circulant matrix $A=C\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$, all eigenvalues of A are given by

$$
f\left(\mu_{k}\right), k=0,1,2, \ldots, n-1,
$$

where $f(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}$, and $\mu_{k}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)$.

3.2. Conservation and error analyses

For the compact schemes (2.14) and (2.15), we have the following conservative properties in the discrete sense. The process of proof is similar to [9]. Since it still has some difference, so for the convenience to read, we give the detail of proof as following:

Theorem 1. The compact schemes (2.14) and (2.15) preserve the discrete conservation laws of the numbers of plasmons and particles, i.e.,

$$
\begin{equation*}
\left\|U^{n}\right\|^{2}=\left\|U^{0}\right\|^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{J} V_{j}^{n} h=\sum_{j=1}^{J} V_{j}^{0} h \tag{3.2}
\end{equation*}
$$

where $U^{n}=\left(U_{1}^{n}, U_{2}^{n}, \ldots, U_{J}^{n}\right)^{T}$.
Proof. Setting G^{n} is a vector with the component

$$
\begin{equation*}
G_{j}^{n}=q V_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}}+s\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}}, \tag{3.3}
\end{equation*}
$$

then (2.14) can be written as

$$
\begin{equation*}
i \epsilon \delta_{t}\left(\mathcal{B}_{2} U_{j}^{n}\right)+p \mathcal{A}_{2} \delta_{x}^{2} U_{j}^{n+\frac{1}{2}}=\mathcal{B}_{2} G_{j}^{n} \tag{3.4}
\end{equation*}
$$

Computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of Eq (3.4) with $U^{n+\frac{1}{2}}, \mathcal{A}_{2}^{-1} G^{n}, \delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right), \mathcal{A}_{2}^{-1} \delta_{x}^{2} G^{n}$ and $\delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right)$, respectively, and applying Lemma 4 , we obtain

$$
\begin{align*}
& i \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), U^{n+\frac{1}{2}}\right\rangle-p\left\langle\mathcal{A}_{2} \delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{\bar{x}} U^{n+\frac{1}{2}}\right\rangle=\left\langle\mathcal{B}_{2} G^{n}, U^{n+\frac{1}{2}}\right\rangle \\
= & \left\langle G^{n}, U^{n+\frac{1}{2}}\right\rangle-\frac{20 h^{2}}{70}\left\langle\delta_{\bar{x}} G^{n}, \delta_{\bar{x}} U^{n+\frac{1}{2}}\right\rangle+\frac{h^{4}}{70}\left\langle\delta_{x}^{2} G^{n}, \delta_{x}^{2} U^{n+\frac{1}{2}}\right\rangle, \tag{3.5}\\
& i \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \mathcal{A}_{2}^{-1} G^{n}\right\rangle-p\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{\bar{x}} G^{n}\right\rangle=\left\langle\mathcal{B}_{2} G^{n}, \mathcal{A}_{2}^{-1} G^{n}\right\rangle, \tag{3.6}\\
& i \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right)\right\rangle-p\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{\bar{x}} U^{n}\right)\right\rangle=\left\langle\mathcal{B}_{2} G^{n}, \delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right)\right\rangle . \tag{3.7}\\
& i \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \mathcal{A}_{2}^{-1} \delta_{x}^{2} G^{n}\right\rangle+p\left\langle\delta_{x}^{2} U^{n+\frac{1}{2}}, \delta_{x}^{2} G^{n}\right\rangle=\left\langle\mathcal{B}_{2} G^{n}, \mathcal{A}_{2}^{-1} \delta_{x}^{2} G^{n}\right\rangle, \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
i \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right)\right\rangle+p\left\langle\delta_{x}^{2} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{x}^{2} U^{n}\right)\right\rangle=\left\langle\mathcal{B}_{2} G^{n}, \delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right)\right\rangle . \tag{3.9}
\end{equation*}
$$

By the Hermitian property of inner product and multiplying Eqs (3.7) and (3.9) by $i \epsilon$, we can obtain

$$
\begin{align*}
& i \epsilon\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right), \mathcal{B}_{2} G^{n}\right\rangle=\epsilon^{2}\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right), \delta_{t}\left(\mathcal{B}_{2} U^{n}\right)\right\rangle-i p \epsilon\left\langle\delta_{t}\left(\delta_{\bar{x}} U^{n}\right), \delta_{\bar{x}} U^{n+\frac{1}{2}}\right\rangle . \tag{3.10}\\
& i \epsilon\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right), \mathcal{B}_{2} G^{n}\right\rangle=\epsilon^{2}\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right), \delta_{t}\left(\mathcal{B}_{2} U^{n}\right)\right\rangle+i p \epsilon\left\langle\delta_{t}\left(\delta_{x}^{2} U^{n}\right), \delta_{x}^{2} U^{n+\frac{1}{2}}\right\rangle . \tag{3.11}
\end{align*}
$$

By Lemma 4 and Eqs (3.6), (3.8), (3.10) and (3.11), it follows that

$$
\begin{align*}
& \epsilon^{2}\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right), \delta_{t}\left(\mathcal{B}_{2} U^{n}\right)\right\rangle-i p \epsilon\left\langle\delta_{t}\left(\delta_{\bar{x}} U^{n}\right), \delta_{\bar{x}} U^{n+\frac{1}{2}}\right\rangle \\
= & p\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{\bar{x}} G^{n}\right\rangle+\left\langle\mathcal{B}_{2} G^{n}, \mathcal{A}_{2}^{-1} G^{n}\right\rangle . \tag{3.12}\\
& \epsilon^{2}\left\langle\delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right), \delta_{t}\left(\mathcal{B}_{2} U^{n}\right)\right\rangle+i p \epsilon\left\langle\delta_{t}\left(\delta_{x}^{2} U^{n}\right), \delta_{x}^{2} U^{n+\frac{1}{2}}\right\rangle \tag{3.13}\\
= & -p\left\langle\delta_{x}^{2} U^{n+\frac{1}{2}}, \delta_{x}^{2} G^{n}\right\rangle+\left\langle\mathcal{B}_{2} G^{n}, \mathcal{A}_{2}^{-1} \delta_{x}^{2} G^{n}\right\rangle .
\end{align*}
$$

Multiplying by $p, \frac{20 h^{2}}{70}$ and $\frac{h^{4}}{70}$ in Eqs (3.5), (3.12) and (3.13), respectively, and eliminating the term $\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{\bar{x}} G^{n}\right\rangle$, we obtain

$$
\begin{align*}
& i p \epsilon\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), U^{n+\frac{1}{2}}\right\rangle+i \frac{20 h^{2} p \epsilon}{70}\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{\bar{x}} U^{n}\right)\right\rangle-i \frac{h^{4} p \epsilon}{70}\left\langle\delta_{x}^{2} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{x}^{2} U^{n}\right)\right\rangle \\
& +\frac{20 h^{2} \epsilon^{2}}{70}\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \delta_{t}\left(\mathcal{A}_{2}^{-1} U^{n}\right)\right\rangle+\frac{h^{4} \epsilon^{2}}{70}\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), \delta_{t}\left(\mathcal{A}_{2}^{-1} \delta_{x}^{2} U^{n}\right)\right\rangle-p\left\langle G^{n}, U^{n+\frac{1}{2}}\right\rangle \tag{3.14}\\
& -\frac{20 h^{2}}{70}\left\langle\mathcal{A}_{2}^{-1} G^{n}, \mathcal{B}_{2} G^{n}\right\rangle-\frac{h^{4}}{70}\left\langle\mathcal{A}_{2}^{-1} \delta_{x}^{2} G^{n}, \mathcal{B}_{2} G^{n}\right\rangle-p^{2}\left\langle\mathcal{A}_{2} \delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{\bar{x}} U^{n+\frac{1}{2}}\right\rangle=0 .
\end{align*}
$$

From the definition of G^{n} we can see that $\left\langle G^{n}, U^{n+\frac{1}{2}}\right\rangle$ is a real number. Hence, the imaginary part of (3.14) is zero, i.e.,

$$
\begin{equation*}
\operatorname{Re}\left(\left\langle\delta_{t}\left(\mathcal{B}_{2} U^{n}\right), U^{n+\frac{1}{2}}\right\rangle+\frac{20 h^{2}}{70}\left\langle\delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{\bar{x}} U^{n}\right)\right\rangle-\frac{h^{4}}{70}\left\langle\delta_{x}^{2} U^{n+\frac{1}{2}}, \delta_{t}\left(\delta_{x}^{2} U^{n}\right)\right\rangle\right)=0 . \tag{3.15}
\end{equation*}
$$

Applying Lemma 4 in (3.15), we can obtain immediately that

$$
\left\|U^{n+1}\right\|^{2}=\left\|U^{n}\right\|^{2}
$$

Computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of Eq (2.15) with $\mathbf{1}:=(1,1, \ldots, 1)^{T} \in H_{p}\left(\Omega_{h}\right)$, we can obtain

$$
\begin{align*}
\left\langle\delta_{t}\left(\mathcal{B}_{1} \mathcal{B}_{2} V^{n}\right), \mathbf{1}\right\rangle+\alpha\left\langle\mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} V^{n+\frac{1}{2}}, \mathbf{1}\right\rangle & +\beta\left\langle\mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} \psi\left(V^{n}, V^{n+1}\right), \mathbf{1}\right\rangle \\
+ & \rho\left\langle\mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}}\left(|U|^{2}\right)^{n+\frac{1}{2}}, \mathbf{1}\right\rangle=0, \tag{3.16}
\end{align*}
$$

where

$$
\left(|U|^{2}\right)^{n+\frac{1}{2}}:=\left(\left(|U|^{2}\right)_{1}^{n+\frac{1}{2}},\left(|U|^{2}\right)_{2}^{n+\frac{1}{2}}, \ldots,\left(|U|^{2}\right)_{J}^{n+\frac{1}{2}}\right),
$$

using the periodic conditions, one can have the equation

$$
\left\langle\delta_{t}\left(\mathcal{B}_{1} \mathcal{B}_{2} V^{n}\right), \mathbf{1}\right\rangle=0,
$$

i.e.,

$$
\begin{equation*}
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} V^{n+1}, \mathbf{1}\right\rangle=\left\langle\mathcal{B}_{1} \mathcal{B}_{2} V^{n}, \mathbf{1}\right\rangle \tag{3.17}
\end{equation*}
$$

With the periodic conditions, (3.2) immediately satisfies. The proof is finished.
Hereinafter we define

$$
U^{n}:=\left(U_{1}^{n}, U_{2}^{n}, \ldots, U_{J}^{n}\right)^{T}, \quad\left(U^{n}\right)^{2}:=\left(\left(U_{1}^{n}\right)^{2},\left(U_{2}^{n}\right)^{2}, \ldots,\left(U_{J}^{n}\right)^{2}\right)^{T},
$$

and

$$
U^{n} . V^{n}:=\left(U_{1}^{n} V_{1}^{n}, U_{2}^{n} V_{2}^{n}, \ldots, U_{J}^{n} V_{J}^{n}\right)^{T}, \quad \psi\left(U^{n}, V^{n}\right):=\frac{1}{m+1} \sum_{k=0}^{m}\left(U^{n}\right)^{k} \cdot\left(V^{n}\right)^{(m-k)} .
$$

The compact schemes (2.14) and (2.15) are equivalent to the following matrix equations:

$$
\begin{align*}
& i \in \mathbf{B}_{2}\left(\delta_{t} U^{n}\right)+p \mathbf{A}_{2} \delta_{x}^{2} U^{n+\frac{1}{2}}-q \mathbf{B}_{2}\left(V^{n+\frac{1}{2}} \cdot U^{n+\frac{1}{2}}\right)-s \mathbf{B}_{2}\left(\left(|U|^{2}\right)^{n+\frac{1}{2}} \cdot U^{n+\frac{1}{2}}\right)=0, \tag{3.18}\\
& \mathbf{B}_{1} \mathbf{B}_{2}\left(\delta_{t} V^{n}\right)+\alpha \mathbf{A}_{1} \mathbf{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} V^{n+\frac{1}{2}}+\beta \mathbf{B}_{2} \mathbf{A}_{1} \delta_{\hat{x}} \psi\left(V^{n}, V^{n+1}\right)+\rho \mathbf{B}_{2} \mathbf{A}_{1} \delta_{\hat{x}}\left(|U|^{2}\right)^{n+\frac{1}{2}}=0, \tag{3.19}
\end{align*}
$$

where $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{1}$ and \mathbf{B}_{2} are $J \times J$ matrices corresponding to the operators $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}$ and \mathcal{B}_{2}, respectively,

$$
\begin{aligned}
& \mathbf{A}_{1}=\frac{1}{42}\left(\begin{array}{ccccc}
32 & 5 & 0 & \cdots & 5 \\
5 & 32 & 5 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 5 & 32 & 5 \\
5 & \cdots & 0 & 5 & 32
\end{array}\right), \quad \mathbf{A}_{2}=\frac{1}{252}\left(\begin{array}{ccccc}
190 & 31 & 0 & \cdots & 31 \\
31 & 190 & 31 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 31 & 190 & 31 \\
31 & \cdots & 0 & 31 & 190
\end{array}\right), \\
& \mathbf{B}_{1}=\frac{1}{70}\left(\begin{array}{ccccccc}
36 & 16 & 1 & 0 & \cdots & 1 & 16 \\
16 & 36 & 16 & 1 & \ddots & 0 & 1 \\
1 & 16 & 36 & 16 & \ddots & 0 & 0 \\
0 & 1 & \ddots & \ddots & \ddots & 1 & 0 \\
0 & 0 & \ddots & 16 & 36 & 16 & 1 \\
1 & 0 & \ddots & 1 & 16 & 36 & 16 \\
16 & 1 & \cdots & 0 & 1 & 16 & 36
\end{array}\right), \\
& \mathbf{B}_{2}=\frac{1}{3780}\left(\begin{array}{ccccccc}
2358 & 688 & 23 & 0 & \cdots & 23 & 688 \\
688 & 2358 & 688 & 23 & \ddots & 0 & 23 \\
23 & 688 & 2358 & 688 & \ddots & 0 & 0 \\
0 & 23 & \ddots & \ddots & \ddots & 23 & 0 \\
0 & 0 & \ddots & 688 & 2358 & 688 & 23 \\
23 & 0 & \ddots & 23 & 688 & 2358 & 688 \\
688 & 23 & \cdots & 0 & 23 & 688 & 2358
\end{array}\right) .
\end{aligned}
$$

By the properties of circulant matrices, we can see that matrices $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{1}$ and \mathbf{B}_{2} are circulant symmetric positive definite [10]. Let $\mathcal{A}_{1}^{-1}, \mathcal{A}_{2}^{-1}, \mathcal{B}_{1}^{-1}$ and \mathcal{B}_{2}^{-1} denote inverse operators of $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}$ and \mathcal{B}_{2}, respectively. The matrices corresponding to the operators $\delta_{x}^{2}, \delta_{\hat{x}}, \mathcal{A}_{1}^{-1}, \mathcal{A}_{2}^{-1}, \mathcal{B}_{1}^{-1}$ and \mathcal{B}_{2}^{-1} are also circulant, therefore, they commute under multiplication.

The compact schemes (2.14) and (2.15) can be equivalently written as

$$
\begin{gather*}
i \epsilon\left(\delta_{t} U_{j}^{n}\right)+p \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{x}^{2} U_{j}^{n+\frac{1}{2}}=q V_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}}+s\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}} U_{j}^{n+\frac{1}{2}} \tag{3.20}\\
\delta_{t} V_{j}^{n}+\delta_{\hat{x}}\left(\alpha \mathcal{B}_{1}^{-1} \mathcal{B}_{2}^{-1} \mathcal{A}_{1} \mathcal{A}_{2} \delta_{x}^{2} V_{j}^{n+\frac{1}{2}}+\beta \mathcal{B}_{1}^{-1} \mathcal{A}_{1} \psi\left(V_{j}^{n}, V_{j}^{n+1}\right)+\rho \mathcal{B}_{1}^{-1} \mathcal{A}_{1}\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}}\right)=0 . \tag{3.21}
\end{gather*}
$$

which can be obtained by multiplying \mathcal{B}_{2}^{-1} and $\mathcal{B}_{1}^{-1} \mathcal{B}_{2}^{-1}$ in both side of (2.14) and (2.15), respectively.
By applying Lemma 7, we can obtain the following result:
Lemma 8. [14] For any grid function $u \in H_{p}\left(\Omega_{h}\right)$, we have the inequalities

$$
\begin{gathered}
\frac{32}{63}\|u\|^{2} \leq\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} u, u\right\rangle \leq \frac{105}{26}\|u\|^{2}, \\
\frac{1}{35}\|u\|^{2} \leq\left\langle\mathcal{A}_{1}^{-1} \mathcal{B}_{1} u, u\right\rangle \leq \frac{21}{11}\|u\|^{2} .
\end{gathered}
$$

Define

$$
\|u\|_{Q}^{2}=\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} u, u\right\rangle, \quad\|u\|_{P}^{2}=\left\langle\mathcal{A}_{1}^{-1} \mathcal{B}_{1} u, u\right\rangle
$$

Lemma 8 shows that $\||\cdot|\|_{Q}$ and $\||\cdot|\|_{P}$ are norms on $H_{p}\left(\Omega_{h}\right)$ equivalent to the discrete L^{2}-norm $\|\cdot\|$. For the proof of the following theorem, we want the relations (3.20) and (3.21).

Theorem 2. The compact schemes (2.14) and (2.15) preserve the energy of oscillations in discrete sense, i.e.,

$$
\begin{align*}
& \frac{q \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{n+1}\right)^{m+1} h+p \rho\| \| \delta_{\bar{x}} U^{n+1}\left\|_{Q}^{2}+q \rho \sum_{j=1}^{J} V_{j}^{n+1}\left|U_{j}^{n+1}\right|^{2} h+\frac{s \rho}{2}\right\| U^{n+1}\left\|_{L^{4}}^{4}-\frac{q \alpha}{2}\right\|\left\|\delta_{\bar{x}} V^{n+1}\right\|_{Q}^{2} \tag{3.22}\\
= & \frac{q \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{0}\right)^{m+1} h+p \rho\| \| \delta_{\bar{x}} U^{0}\| \|_{Q}^{2}+q \rho \sum_{j=1}^{J} V_{j}^{0}\left|U_{j}^{0}\right|^{2} h+\frac{s \rho}{2}\left\|U^{0}\right\|_{L^{4}}^{4}-\frac{q \alpha}{2}\| \| \delta_{\bar{x}} V^{0}\| \|_{Q}^{2}
\end{align*}
$$

where

$$
\|U\|_{L^{4}}^{4}=\sum_{j=1}^{J}\left|U_{j}\right|^{4} h
$$

Proof. Computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of Eq (3.20) with $\delta_{t} U^{n}$, we can obtain the following equation with the commutativity under multiplication of circulant matrices:

$$
\begin{align*}
& i \epsilon\left\langle\delta_{t} U^{n}, \delta_{t} U^{n}\right\rangle-p\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\bar{x}} U^{n+\frac{1}{2}}, \delta_{t} \delta_{\bar{x}} U^{n}\right\rangle \tag{3.23}\\
= & q\left\langle V^{n+\frac{1}{2}} \cdot U^{n+\frac{1}{2}}, \delta_{t} U^{n}\right\rangle+s\left\langle\left(|U|^{2}\right)^{n+\frac{1}{2}} \cdot U^{n+\frac{1}{2}}, \delta_{t} U^{n}\right\rangle .
\end{align*}
$$

Then taking the real part of Eq (3.23), we obtain

$$
\begin{align*}
& -\frac{p}{2 \tau}\left(\| \| \delta_{\bar{x}} U^{n+1}\| \|_{Q}^{2}-\| \| \delta_{\bar{x}} U^{n} \|_{Q}^{2}\right) \\
= & \frac{q}{2 \tau}\left(\left\langle V^{n+\frac{1}{2}} \cdot U^{n+1}, U^{n+1}\right\rangle-\left\langle V^{n+\frac{1}{2}} \cdot U^{n}, U^{n}\right\rangle\right) \tag{3.24}\\
& +\frac{s}{2 \tau}\left(\left\langle\left(|U|^{2}\right)^{n+\frac{1}{2}} \cdot U^{n+1}, U^{n+1}\right\rangle-\left\langle\left(|U|^{2}\right)^{n+\frac{1}{2}} \cdot U^{n}, U^{n}\right\rangle\right) .
\end{align*}
$$

Multiplying Eq (3.24) with 2τ and summing from 0 to n, we obtain

$$
\begin{align*}
& \left.\left.p\left\|\left\|\delta_{\bar{x}} U^{n+1}\right\|\right\|_{Q}^{2}+\frac{s}{2}\left\|U^{n+1}\right\|_{L^{4}}^{4}+\left.q\left\langle V^{n+\frac{1}{2}},\right| U^{n+1}\right|^{2}\right\rangle-\left.\frac{q}{2} \sum_{k=1}^{n}\left\langle V^{k+1}-V^{k-1},\right| U^{k}\right|^{2}\right\rangle \tag{3.25}\\
= & \left.p\left\|\left\|\delta_{\bar{x}} U^{0}\right\|\right\|_{Q}^{2}+\frac{s}{2}\left\|U^{0}\right\|_{L^{4}}^{4}+\left.q\left\langle V^{\frac{1}{2}},\right| U^{0}\right|^{2}\right\rangle .
\end{align*}
$$

Setting W^{n} is a vector with the component

$$
W_{j}^{n}=\alpha \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{x}^{2} V_{j}^{n+\frac{1}{2}}+\beta \psi\left(V_{j}^{n}, V_{j}^{n+1}\right)+\rho\left(|U|^{2}\right)_{j}^{n+\frac{1}{2}},
$$

then Eq (3.21) can be written as

$$
\begin{equation*}
\delta_{t} V_{j}^{n}+\delta_{\hat{x}} \mathcal{B}_{1}^{-1} \mathcal{A}_{1} W_{j}^{n}=0 \tag{3.26}
\end{equation*}
$$

Computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of Eq (3.26) with W^{n} and applying Lemma 5, we can obtain

$$
\begin{equation*}
\alpha\left\langle\delta_{t} V^{n}, \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{x}^{2} V^{n+\frac{1}{2}}\right\rangle+\beta\left\langle\delta_{t} V^{n}, \psi\left(V^{n}, V^{n+1}\right)\right\rangle+\rho\left\langle\delta_{t} V^{n},\left(|U|^{2}\right)^{n+\frac{1}{2}}\right\rangle=0 . \tag{3.27}
\end{equation*}
$$

It follows from definition (2.8) that

$$
\left\langle\delta_{t} V^{n}, \psi\left(V^{n}, V^{n+1}\right)\right\rangle=\frac{1}{(m+1) \tau}\left(\sum_{j=1}^{J}\left(V_{j}^{n+1}\right)^{m+1} h-\sum_{j=1}^{J}\left(V_{j}^{n}\right)^{m+1} h\right) .
$$

It is easy to see that

$$
\left\langle\delta_{t} V^{n}, \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{x}^{2} V^{n+\frac{1}{2}}\right\rangle=-\frac{1}{2 \tau}\left(\| \| \delta_{\bar{x}} V^{n+1}\left\|_{Q}^{2}-\right\|\left\|\delta_{\bar{x}} V^{n}\right\|_{Q}^{2}\right) .
$$

Multiplying Eq (3.27) with 2τ and summing from 0 to n, we have

$$
\begin{align*}
& \alpha\left\|\left\|\delta_{\bar{x}} V^{n+1}\right\|_{Q}^{2}-\frac{2 \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{n+1}\right)^{m+1} h\right. \\
- & \left.\left.\rho \sum_{k=0}^{n}\left\langle V^{k+1}-V^{k},\right| U^{k+1}\right|^{2}+\left|U^{k}\right|^{2}\right\rangle \tag{3.28}\\
= & \alpha\|\mid\| \delta_{\bar{x}} V^{0} \|_{Q}^{2}-\frac{2 \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{0}\right)^{m+1} h .
\end{align*}
$$

Since

$$
\begin{aligned}
& \left.\left.\sum_{k=0}^{n}\left\langle V^{k+1}-V^{k},\right| U^{k+1}\right|^{2}+\left|U^{k}\right|^{2}\right\rangle \\
= & \left.\left.\left.\left.\sum_{k=1}^{n}\left\langle V^{k+1}-V^{k-1},\right| U^{k}\right|^{2}\right\rangle+\left.\left\langle V^{n+1}-V^{n},\right| U^{n+1}\right|^{2}\right\rangle+\left.\left\langle V^{1}-V^{0},\right| U^{0}\right|^{2}\right\rangle,
\end{aligned}
$$

the Eq (3.28) becomes

$$
\begin{align*}
& \left.\left.\alpha\left\|\left\|\delta_{\bar{x}} V^{n+1}\right\|\right\|_{Q}^{2}-\frac{2 \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{n+1}\right)^{m+1} h-\left.\rho \sum_{k=1}^{n}\left\langle V^{k+1}-V^{k-1},\right| U^{k}\right|^{2}\right\rangle-\left.\rho\left\langle V^{n+1}-V^{n},\right| U^{n+1}\right|^{2}\right\rangle \\
= & \alpha\left\|\left\|\delta_{\bar{x}} V^{0}\right\|_{Q}^{2}-\frac{2 \beta}{m+1} \sum_{j=1}^{J}\left(V_{j}^{0}\right)^{m+1} h+\left.\rho\left\langle V^{1}-V^{0},\right| U^{0}\right|^{2}\right\rangle . \tag{3.29}
\end{align*}
$$

Multiplying Eqs (3.25) and (3.29) with ρ and $\frac{q}{2}$, respectively, and subtracting the results, (3.22) follows immediately.

In the following convergence analysis, we will take the symbol C as a general positive constant independent of h and τ, not necessarily the same at different occurrences. We assume that there is a positive constant Y^{*} such that the exact solutions u and v of the coupled system satisfy

$$
\begin{equation*}
\max \left\{\left\|u^{n}\right\|_{\infty},\left\|u_{t}^{n}\right\|_{\infty},\left\|v^{n}\right\|_{\infty},\left\|v_{t}^{n}\right\|_{\infty}\right\} \leq Y^{*}, \quad 0 \leq n \leq N . \tag{3.30}
\end{equation*}
$$

Let $Y_{0}=2\left(Y^{*}+1\right)^{2}$ and define a smooth function $\Psi(r, s) \in C^{\infty}\left(R^{2}\right)$ as

$$
\Psi(r, s)= \begin{cases}\psi(r, s), & r^{2}+s^{2} \leq Y_{0} \tag{3.31}\\ 0, & r^{2}+s^{2} \geq Y_{0}+1 .\end{cases}
$$

Since schemes (2.14) and (2.15) are nonlinear, we change it into the following linearized compact scheme to reduce computational cost:

$$
\begin{align*}
& i \epsilon \mathcal{B}_{2}\left(\frac{U_{j}^{0 *}-U_{j}^{0}}{\tau}\right)+\frac{p}{2} \mathcal{A}_{2} \delta_{x}^{2}\left(U_{j}^{0 *}+U_{j}^{0}\right)-q \mathcal{B}_{2}\left(V_{j}^{0} U_{j}^{0}\right)=s \mathcal{B}_{2}\left(\left|U_{j}^{0}\right|^{2} U_{j}^{0}\right), \tag{3.32}\\
& \mathcal{B}_{1} \mathcal{B}_{2}\left(\frac{V_{j}^{0 *}-V_{j}^{0}}{\tau}\right)+\frac{\alpha}{2} \mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2}\left(V_{j}^{0 *}+V_{j}^{0}\right)+\beta \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} \psi\left(V_{j}^{0}, V_{j}^{0}\right)=-\rho \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}}\left|U_{j}^{0}\right|^{2}, \tag{3.33}\\
& i \epsilon \mathcal{B}_{2}\left(\delta_{t} U_{j}^{n}\right)+p \mathcal{A}_{2} \delta_{x}^{2} U_{j}^{n+\frac{1}{2}}-q \mathcal{B}_{2}\left(\hat{V}_{j}^{n} \hat{U}_{j}^{n}\right)=s \mathcal{B}_{2}\left(\mid\left(|U|^{2}\right)_{j}^{n} \hat{U}_{j}^{n}\right), \tag{3.34}\\
& \mathcal{B}_{1} \mathcal{B}_{2}\left(\delta_{t} V_{j}^{n}\right)+\alpha \mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} V_{j}^{n+\frac{1}{2}}+\beta \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} \Psi\left(V_{j}^{n}, V_{j}^{n *}\right)=-\rho \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}}\left(\left.| | U\right|^{2}\right)_{j}^{n}, \tag{3.35}
\end{align*}
$$

where $\hat{U}^{0}=\left(U^{0 *}+U^{0}\right) / 2, \hat{U}^{n}=3 U^{n} / 2-U^{n-1} / 2$, and $U^{n *}=2 U^{n}-U^{n-1}$ for $n \geq 1$.
We can prove that the temporal and spatial convergence rates of the linearized compact schemes (3.34) and (3.35) are second- and eighth-order, respectively.

Lemma 9. Let $\left\{y_{n}\right\}$ be a nonnegative real sequence, c a nonnegative constant, d and τ are positive constants. If

$$
y_{n+1} \leq c+d \tau \sum_{i=0}^{n} y_{i} \quad \text { for } \quad n \geq 0
$$

then

$$
y_{n+1} \leq\left(c+d \tau y_{0}\right) e^{d \tau(n+1)} \quad \text { for } \quad n \geq 0 .
$$

Theorem 3. Suppose that $u, v \in C^{4}\left(0, T ; C^{11}(R)\right)$ are the exact solutions to Eqs (1.1) and (1.2), $h^{8} \tau^{-1}=$ $o(1)$, and that assumption (3.30) holds. Let U and V be the solutions of (3.34) and (3.35). Then there exists a constant $C=C\left(Y^{*}, T\right)$ such that

$$
\max _{0<n \leq N}\left\{\left\|u^{n}-U^{n}\right\|_{1}+\left\|v^{n}-V^{n}\right\|_{1}\right\} \leq C\left(\tau^{2}+h^{8}\right),
$$

for h and τ sufficiently small.
Proof. Let $E_{u}^{n}=u^{n}-U^{n}$ and $E_{v}^{n}=v^{n}-V^{n}$. By Eqs (1.1), (1.2), (3.34) and (3.35), and ignoring the subindex j, we obtain

$$
\begin{align*}
& i \epsilon \mathcal{B}_{2}\left(\delta_{t} E_{u}^{n}\right)+p \mathcal{A}_{2} \delta_{x}^{2} E_{u}^{n+\frac{1}{2}}=q \mathcal{B}_{2} T_{1}^{n}+s \mathcal{B}_{2} T_{2}^{n}+r_{u}^{n}, \tag{3.36}\\
& \mathcal{B}_{1} \mathcal{B}_{2}\left(\delta_{t} E_{v}^{n}\right)+\alpha \mathcal{A}_{1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} E_{v}^{n+\frac{1}{2}}=-\beta \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} T_{3}^{n}-\rho \mathcal{B}_{2} \mathcal{A}_{1} \delta_{\hat{x}} T_{4}^{n}+r_{v}^{n}, \tag{3.37}
\end{align*}
$$

where

$$
\left.\begin{array}{c}
T_{1}^{n}=\hat{v}^{n} \cdot \hat{u}^{n}-\hat{V}^{n} \cdot \hat{U}^{n}, \quad T_{2}^{n}=\left(\widehat{\left(|u|^{2}\right.}\right)^{n} \cdot \hat{u}^{n}-\left(\widehat{\left(\mid U^{2}\right.}\right)^{n} \cdot \hat{U}^{n}, \\
T_{3}^{n}=\Psi\left(v^{n}, v^{n *}\right)-\Psi\left(V^{n}, V^{n *}\right), \quad T_{4}^{n}=\left(\left|\left|| |^{2}\right.\right.\right.
\end{array}\right)^{n}-\left(\widehat{\left(|U|^{2}\right.}\right)^{n} .
$$

By the assumption (3.30) and definition (3.31), one can see that $\Psi\left(\left(v^{n}, v^{n+1}\right)\right)=\psi\left(\left(v^{n}, v^{n+1}\right)\right)$, and hence, the truncation errors r_{u}^{n} and r_{v}^{n} are such that $r_{u}^{n}=O\left(\tau^{2}+h^{8}\right)$ and $r_{v}^{n}=O\left(\tau^{2}+h^{8}\right)$. Under the smoothness assumption of u and v, we have

$$
\delta_{t} r_{u}^{n}=O\left(\tau^{2}+h^{8}\right) \quad \text { and } \quad \delta_{t} r_{v}^{n}=O\left(\tau^{2}+h^{8}\right)
$$

From (3.36) and (3.37), we can obtain the following equations:

$$
\begin{align*}
& i \epsilon \delta_{t} E_{u}^{n}+p \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{x}^{2} E_{u}^{n+\frac{1}{2}}=q T_{1}^{n}+s T_{2}^{n}+R_{u}^{n} \tag{3.38}\\
& \mathcal{A}_{1}^{-1} \mathcal{B}_{1}\left(\delta_{t} E_{v}^{n}\right)+\alpha \mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{x}^{2} E_{v}^{n+\frac{1}{2}}=-\beta \delta_{\hat{x}} T_{3}^{n}-\rho \delta_{\hat{x}} T_{4}^{n}+R_{v}^{n} \tag{3.39}
\end{align*}
$$

where $R_{u}^{n}=\mathcal{B}_{2}^{-1} r_{u}^{n}$ and $R_{v}^{n}=\mathcal{B}_{2}^{-1} \mathcal{A}_{1}^{-1} r_{u}^{n}$.
We use the induction argument as in [15-17] to estimate the error bounds. To obtain our error estimate, we assume that there exists a constant $h_{0}>0$ such that, for $0<h \leq h_{0}$,

$$
\begin{equation*}
\max \left\{\left\|E_{u}^{n}\right\|_{\infty},\left\|E_{v}^{n}\right\|_{\infty},\left\|\delta_{t} E_{u}^{n-1}\right\|_{\infty},\left\|\delta_{t} E_{v}^{n-1}\right\|_{\infty}\right\} \leq 1, \quad 1 \leq n \leq k . \tag{3.40}
\end{equation*}
$$

Since $E_{u}^{0}=E_{v}^{0}=0$, it is easy to see that

$$
\left\|E_{u}^{1}\right\|_{1} \leq C\left(\tau^{2}+h^{8}\right) \quad \text { and } \quad\left\|E_{v}^{1}\right\|_{1} \leq C\left(\tau^{2}+h^{8}\right) .
$$

For $n \geq 1$, by computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of (3.38) with $E_{u}^{n+\frac{1}{2}}$. we can obtain following equation by Lemma 4 :

$$
\begin{equation*}
i \epsilon\left\langle\delta_{t} E_{u}^{n}, E_{u}^{n+\frac{1}{2}}\right\rangle-p\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\bar{x}} E_{u}^{n+\frac{1}{2}}, \delta_{\bar{x}} E_{u}^{n+\frac{1}{2}}\right\rangle=q\left\langle T_{1}^{n}, E_{u}^{n+\frac{1}{2}}\right\rangle+s\left\langle T_{2}^{n}, E_{u}^{n+\frac{1}{2}}\right\rangle+\left\langle R_{u}^{n}, E_{u}^{n+\frac{1}{2}}\right\rangle . \tag{3.41}
\end{equation*}
$$

Taking the imaginary part of (3.41), we can obtain the inequality

$$
\begin{equation*}
\frac{\epsilon}{2 \tau}\left\{\left\|E_{u}^{n+1}\right\|^{2}-\left\|E_{u}^{n}\right\|^{2}\right\} \leq \frac{q^{2}}{2}\left\|T_{1}^{n}\right\|^{2}+\frac{s^{2}}{2}\left\|T_{2}^{n}\right\|^{2}+\frac{1}{2}\left\|R_{u}^{n}\right\|^{2}+\frac{3}{2}\left\|E_{u}^{n+\frac{1}{2}}\right\|^{2} \tag{3.42}
\end{equation*}
$$

By computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of (3.39) with $E_{v}^{n+\frac{1}{2}}$. we can obtain following equation by Lemma 4:

$$
\begin{align*}
& \left\langle\mathcal{A}_{1}^{-1} \mathcal{B}_{1}\left(\delta_{t} E_{v}^{n}\right), E_{v}^{n+\frac{1}{2}}\right\rangle-\alpha\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\hat{x}} \delta_{\bar{x}} E_{v}^{n+\frac{1}{2}}, \delta_{\bar{x}} E_{v}^{n+\frac{1}{2}}\right\rangle \\
= & \beta\left\langle T_{3}^{n}, \delta_{\hat{x}} E_{v}^{n+\frac{1}{2}}\right\rangle+\rho\left\langle T_{4}^{n}, \delta_{\hat{x}} E_{v}^{n+\frac{1}{2}}\right\rangle+\left\langle R_{v}^{n}, E_{v}^{n+\frac{1}{2}}\right\rangle . \tag{3.43}
\end{align*}
$$

Since

$$
\begin{aligned}
& T_{1}^{n}=\hat{E}_{v}^{n} \cdot \hat{u}^{n}+\hat{E}_{u}^{n} \cdot \hat{v}^{n}-\hat{E}_{u}^{n} \cdot \hat{E}_{v}^{n}, \\
& T_{2}^{n}=\left(\widehat{|u|^{2}}\right)^{n} \cdot \hat{E}_{u}^{n}+\left[2 \operatorname{Re}\left(\widehat{\bar{u} \cdot E_{u}}\right)^{n}-\left(\mid \widehat{\left.E_{u}\right|^{2}}\right)^{n}\right] \cdot \hat{u}^{n}-\left[2 \operatorname{Re}\left(\widehat{\bar{u} \cdot E_{u}}\right)^{n}-\left(\mid \widehat{\left.E_{u}\right|^{2}}\right)^{n}\right] \cdot \hat{E}_{u}^{n}, \\
& T_{4}^{n}=\left(\widehat{\bar{u} \cdot E_{u}}\right)^{n}+\left(u \cdot \widehat{\overline{E_{u}}}\right)^{n}-\left(\left|\widehat{E_{u}}\right|^{2}\right)^{n},
\end{aligned}
$$

we can have the inequality

$$
\begin{equation*}
\left\|T_{1}^{n}\right\|^{2}+\left\|T_{2}^{n}\right\|^{2}+\left\|T_{3}^{n}\right\|^{2}+\left\|T_{4}^{n}\right\|^{2} \leq C\left(\left\|E_{u}^{n-1}\right\|^{2}+\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n-1}\right\|^{2}+\left\|E_{v}^{n}\right\|^{2}\right) . \tag{3.44}
\end{equation*}
$$

By Lemma 5, Eq (3.43) and inequality (3.44), we have

$$
\begin{align*}
& \frac{1}{2 \tau}\left\{\left\|\left\|E_{v}^{n+1}\right\|_{P}^{2}-\right\| E_{v}^{n} \|_{P}^{2}\right\} \leq C\left\{\left\|E_{u}^{n-1}\right\|^{2}+\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n-1}\right\|^{2}\right\} \tag{3.45}\\
& +C\left\{\left\|E_{v}^{n}\right\|^{2}+\left\|E_{v}^{n+1}\right\|^{2}+\left\|\delta_{\bar{x}} E_{v}^{n}\right\|^{2}+\left\|\delta_{\bar{x}} E_{v}^{n+1}\right\|^{2}+\left\|R_{v}^{n}\right\|^{2}\right\} .
\end{align*}
$$

Summing inequalities (3.42) and (3.45) side by side, and using inequality (3.44), we can have following inequality with $E_{u}^{0}=E_{v}^{0}=0$:

$$
\begin{equation*}
\epsilon\left\|E_{u}^{k+1}\right\|^{2}+\left\|E_{v}^{k+1}\right\|_{P}^{2} \leq C \tau \sum_{n=1}^{k+1}\left\{\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n}\right\|^{2}+\left\|\delta_{\bar{x}} E_{v}^{n}\right\|^{2}+\left\|R_{u}^{n-1}\right\|^{2}+\left\|R_{v}^{n-1}\right\|^{2}\right\} \tag{3.46}
\end{equation*}
$$

By Computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of (3.38) with $\delta_{t} E_{u}^{n}$. we can obtain following equation by Lemma 4:

$$
\begin{equation*}
i \epsilon\left\langle\delta_{t} E_{u}^{n}, \delta_{t} E_{u}^{n}\right\rangle-p\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\bar{x}} E_{u}^{n+\frac{1}{2}}, \delta_{\bar{x}} \delta_{t} E_{u}^{n}\right\rangle=q\left\langle T_{1}^{n}, \delta_{t} E_{u}^{n}\right\rangle+s\left\langle T_{2}^{n}, \delta_{t} E_{u}^{n}\right\rangle+\left\langle R_{u}^{n}, \delta_{t} E_{u}^{n}\right\rangle \tag{3.47}
\end{equation*}
$$

Taking the real part of (3.47) and summing from 0 to k, we can obtain

$$
\begin{align*}
\frac{p}{2 \tau}\left\|\left\|\delta_{\bar{x}} E_{u}^{k+1}\right\|_{Q}^{2}\right. & =-q \operatorname{Re}\left(\sum_{n=0}^{k}\left\langle T_{1}^{n}, \delta_{t} E_{u}^{n}\right\rangle\right)-s \operatorname{Re}\left(\sum_{n=0}^{k}\left\langle T_{2}^{n}, \delta_{t} E_{u}^{n}\right\rangle\right)-\operatorname{Re}\left(\sum_{n=0}^{k}\left\langle R_{u}^{n}, \delta_{t} E_{u}^{n}\right\rangle\right) \tag{3.48}\\
& :=M_{1}^{k}+M_{2}^{k}+M_{3}^{k} .
\end{align*}
$$

By using a method of summation by parts together with assumptions (3.30) and (3.40), we have the inequalities

$$
\begin{aligned}
\left|M_{1}^{k}\right|+\left|M_{2}^{k}\right| & \leq C \sum_{n=1}^{k}\left\{\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n}\right\|^{2}\right\}+\frac{C}{\tau}\left\|E_{u}^{k+1}\right\|^{2}, \\
\left|M_{3}^{k}\right| & \leq C \sum_{n=1}^{k}\left\{\left\|E_{u}^{n}\right\|^{2}+\left\|\delta_{t} R_{u}^{n-1}\right\|^{2}\right\}+\frac{C}{\tau}\left\|E_{u}^{k+1}\right\|^{2}+\frac{C}{\tau}\left\|R_{u}^{k}\right\|^{2} .
\end{aligned}
$$

By (3.48) and the above estimates, we can obtain

$$
\begin{equation*}
\left\|\delta_{\bar{x}} E_{u}^{k+1}\right\|_{Q}^{2} \leq C\left\{\left\|E_{u}^{k+1}\right\|^{2}+\left\|R_{u}^{k}\right\|^{2}\right\}+C \tau \sum_{n=1}^{k}\left\{\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n}\right\|^{2}+\left\|\delta_{t} R_{u}^{n-1}\right\|^{2}\right\} . \tag{3.49}
\end{equation*}
$$

For any real-valued grid function f, an operator Θ is defined by

$$
\begin{equation*}
\Theta f_{j}=\sum_{k=1}^{j-1} f_{k} h+\frac{h}{2} f_{j}, \quad j=1,2, \ldots, J, \quad \Theta f_{0}=\sum_{k=1}^{J-1} f_{k} h+\frac{h}{2} f_{J}, \tag{3.50}
\end{equation*}
$$

with $\Theta f_{j}=\Theta f_{j+J}$. The following results can be easily proved:

$$
\begin{gather*}
\delta_{x}^{2} \Theta f_{j}=\delta_{\hat{x}} f_{j}, \quad \delta_{\hat{x}} \Theta f_{j}=\frac{1}{4}\left(f_{j-1}+2 f_{j}+f_{j+1}\right)=\mathcal{J} f_{j}, \tag{3.51}\\
\langle f, \Theta f\rangle=\sum_{j=1}^{J} f_{j} \cdot \Theta f_{j} h=\frac{1}{2}\left(\sum_{j=1}^{J} f_{j} h\right)^{2} \geq 0 \tag{3.52}\\
\|\Theta f\|^{2} \leq \frac{l^{2}}{2}\|f\|^{2} . \tag{3.53}
\end{gather*}
$$

Then define a matrix \mathbf{J} corresponding to the operator \mathcal{J}, i.e.,

$$
\mathbf{J}=\frac{1}{4}\left(\begin{array}{ccccc}
2 & 1 & 0 & \cdots & 1 \\
1 & 2 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 & 2 & 1 \\
1 & \cdots & 0 & 1 & 2
\end{array}\right)_{J \times J}
$$

It's obvious that \mathbf{J} is invertible and \mathbf{J}^{-1} is circulant symmetric positive definite as the scale J of matrix is an odd integer. By computing the inner product $\langle\cdot, \cdot\rangle$ on both sides of (3.39) with $\delta_{t}\left(\mathcal{J}^{-1} \Theta E_{v}\right)^{n}$ and
applying Lemma 4, (3.51) and (3.52), we can obtain

$$
\begin{align*}
& \left\langle\mathcal{J}^{-1} \mathcal{A}_{1}^{-1} \mathcal{B}_{1}\left(\delta_{t} E_{v}^{n}\right), \delta_{t}\left(\Theta E_{v}\right)^{n}\right\rangle+\alpha\left\langle\mathcal{B}_{2}^{-1} \mathcal{A}_{2} \delta_{\bar{x}} E_{v}^{n+\frac{1}{2}}, \delta_{t} \delta_{\bar{x}} E_{v}^{n}\right\rangle \tag{3.54}\\
= & \beta\left\langle T_{3}^{n}, \delta_{t} E_{v}^{n}\right\rangle+\rho\left\langle T_{4}^{n}, \delta_{t} E_{v}^{n}\right\rangle+\left\langle R_{v}^{n}, \delta_{t}\left(\mathcal{J}^{-1} \Theta E_{v}\right)^{n}\right\rangle .
\end{align*}
$$

Since $\mathbf{J}, \mathbf{A}_{1}, \mathbf{B}_{1}$ are circulant symmetric positive definite, so there exists \mathbf{G} such that $\mathbf{J}^{-1} \mathbf{A}_{1}^{-1} \mathbf{B}_{1}=\mathbf{G} \mathbf{G}^{T}$. By (3.51) and (3.52), we can have

$$
\begin{align*}
& \left\langle\mathcal{J}^{-1} \mathcal{A}_{1}^{-1} \mathcal{B}_{1}\left(\delta_{t} E_{v}^{n}\right), \delta_{t}\left(\Theta E_{v}\right)^{n}\right\rangle=\left\langle\delta_{t}\left(G E_{v}\right)^{n}, \delta_{t}\left(\Theta\left(G E_{v}\right)\right)^{n}\right\rangle \\
= & \frac{1}{2}\left(h \sum_{j=1}^{J} \delta_{t}\left(G E_{v}\right)_{j}^{n}\right)^{2}:=C^{n} \geq 0 . \tag{3.55}
\end{align*}
$$

Summing Eq (3.54) from 0 to k together with (3.55), we can obtain

$$
\begin{align*}
\sum_{n=0}^{k} C^{n}+\frac{\alpha}{2 \tau}\| \| \delta_{\bar{x}} E_{v}^{k+1}\| \|_{Q}^{2} & =\beta \sum_{n=0}^{k}\left\langle T_{3}^{n}, \delta_{t} E_{v}^{n}\right\rangle+\rho \sum_{n=0}^{k}\left\langle T_{4}^{n}, \delta_{t} E_{v}^{n}\right\rangle+\sum_{n=0}^{k}\left\langle R_{v}^{n}, \delta_{t}\left(\mathcal{J}^{-1} \Theta E_{v}\right)^{n}\right\rangle \tag{3.56}\\
& :=M_{4}^{k}+M_{5}^{k}+M_{6}^{k}
\end{align*}
$$

By using a method of summation by parts together with assumptions (3.30) and (3.40), we have the inequalities

$$
\begin{aligned}
& \left|M_{4}^{k}\right|+\left|M_{5}^{k}\right| \leq C \sum_{n=1}^{k}\left\{\left\|E_{v}^{n}\right\|^{2}+\left\|E_{u}^{n}\right\|^{2}\right\}+\frac{C}{\tau}\left\|E_{v}^{k+1}\right\|^{2}, \\
& \left|M_{6}^{k}\right| \leq C \sum_{n=1}^{k}\left\{\left\|\mathcal{J}^{-1} \Theta E_{v}^{n}\right\|^{2}+\left\|\delta_{t} R_{v}^{n-1}\right\|^{2}\right\}+\frac{C}{\tau}\left\|\mathcal{J}^{-1} \Theta E_{v}^{k+1}\right\|^{2}+\frac{C}{\tau}\left\|R_{v}^{k}\right\|^{2} .
\end{aligned}
$$

Noticing that $\mathcal{J}\left(\mathbf{I}-\frac{h^{2}}{4} \delta_{x}^{2}+\frac{h^{4}}{16} \delta_{x}^{2} \delta_{x}^{2}-\frac{h^{6}}{64} \delta_{x}^{2} \delta_{x}^{2} \delta_{x}^{2}\right)=\mathbf{I}-\frac{h^{8}}{256} \delta_{x}^{2} \delta_{x}^{2} \delta_{x}^{2} \delta_{x}^{2}$, we have

$$
\mathcal{J}^{-1}=\mathbf{I}-\frac{h^{2}}{4} \delta_{x}^{2}+\frac{h^{4}}{16} \delta_{x}^{2} \delta_{x}^{2}-\frac{h^{6}}{64} \delta_{x}^{2} \delta_{x}^{2} \delta_{x}^{2}+O\left(h^{8}\right) .
$$

By using Lemma 6 and (3.53), the above inequality can be written as

$$
\left|M_{6}^{k}\right| \leq C \sum_{n=1}^{k}\left\{\left\|E_{v}^{n}\right\|^{2}+\left\|\delta_{t} R_{v}^{n-1}\right\|^{2}\right\}+\frac{C}{\tau}\left\|E_{v}^{k+1}\right\|^{2}+\frac{C}{\tau}\left\|R_{v}^{k}\right\|^{2},
$$

Multiplying Eq (3.56) with 2τ, we can obtain

$$
\begin{equation*}
\left\|\left\|\delta_{\bar{x}} E_{v}^{k+1}\right\|\right\|_{Q}^{2} \leq C \tau \sum_{n=1}^{k}\left\{\left\|E_{u}^{n}\right\|^{2}+\left\|E_{v}^{n}\right\|^{2}+\left\|\delta_{t} R_{v}^{n-1}\right\|^{2}\right\}+C\left\{\left\|E_{v}^{k+1}\right\|^{2}+\left\|R_{v}^{k}\right\|^{2}\right\} . \tag{3.57}
\end{equation*}
$$

Since the norms $\|\cdot\|,\|\mid\| \cdot\| \|_{P}$, and $\|\|\cdot\|\|_{Q}$ are equivalent, we can have the following inequality by summing (3.46), (3.49) and (3.57):

$$
\begin{align*}
\left\|E_{u}^{k+1}\right\|_{1}^{2}+\left\|E_{v}^{k+1}\right\|_{1}^{2} & \leq C\left\{\left\|R_{u}^{k}\right\|^{2}+\left\|R_{v}^{k}\right\|^{2}\right\} \\
& +C \tau \sum_{n=1}^{k+1}\left\{\left\|E_{v}^{n}\right\|_{1}^{2}+\left\|E_{u}^{n}\right\|^{2}+\left\|\delta_{t} R_{u}^{n-1}\right\|^{2}+\left\|\delta_{t} R_{v}^{n-1}\right\|^{2}+\left\|R_{u}^{n-1}\right\|^{2}+\left\|R_{v}^{n-1}\right\|^{2}\right\} . \tag{3.58}
\end{align*}
$$

Taking τ sufficiently small and applying Lemmas 8 and 9 , we can obtain

$$
\begin{equation*}
\left\|E_{u}^{k+1}\right\|_{1}^{2}+\left\|E_{v}^{k+1}\right\|_{1}^{2} \leq C\left(\tau^{4}+h^{16}\right) . \tag{3.59}
\end{equation*}
$$

Moreover, we need to confirm the inequality in (3.40) holds for $n=k+1$ to complete our proof. We can get the following inequalities by Lemma 6:

$$
\begin{aligned}
& \left\|E_{u}^{k+1}\right\|_{\infty} \leq C\left\|E_{u}^{k+1}\right\|_{1} \leq C\left(Y^{*}, h_{0}, T\right)\left(\tau^{2}+h^{8}\right) \\
& \left\|\delta_{t} E_{u}^{k}\right\|_{\infty} \leq \tau^{-1}\left\|E_{u}^{k+1}-E_{u}^{k}\right\|_{\infty} \leq C\left(Y^{*}, h_{0}, T\right)\left(\tau+h^{8} \tau^{-1}\right),
\end{aligned}
$$

and similar inequalities hold for $\left\|E_{v}^{k+1}\right\|_{\infty}$ and $\left\|\delta_{t} E_{u}^{k}\right\|_{\infty}$. Then it's easy to see that the inequalities above hold for $n=k+1$ when $h^{8} \tau^{-1}=o(1)$, i.e., $h^{8} \tau^{-1} \rightarrow 0$ as $h \rightarrow 0$, and taking h sufficiently small, which implies that assumption (3.40) is valid for $n=k+1$. The proof is finished.

Corollary 1. By applying Lemma 6, we can obtain the following optimal order convergence rate under the same conditions in Theorem 3:

$$
\max _{0<n \leq N}\left\{\left\|u^{n}-U^{n}\right\|_{\infty}+\left\|v^{n}-V^{n}\right\|_{\infty}\right\} \leq C\left(\tau^{2}+h^{8}\right) .
$$

4. Numerical experiments

In this section, some numerical examples are presented to illustrate the conservative properties and eighth-order accuracy of the proposed compact scheme. The ultimate compact schemes (3.32)-(3.35) can be written as the following linear matrix equations:

$$
\begin{aligned}
C_{1} U^{0 *} & =D_{1} U^{0}+E_{1}\left(U^{0}, V^{0}\right), \\
C_{2} V^{0 *} & =D_{2} V^{0}+E_{2}\left(U^{0}, V^{0}\right), \\
C_{1} U^{n+1} & =D_{1} U^{n}+F_{1}\left(\left(\left.| | U\right|^{2}\right)^{n}, \hat{U}^{n}, \hat{V}^{n}\right), \\
C_{2} V^{n+1} & =D_{2} V^{n}+F_{2}\left(V^{n}, V^{n *},\left(\left||U|^{2}\right)^{n}\right),\right.
\end{aligned}
$$

where E_{1}, E_{2}, F_{1} and F_{2} are nonlinear terms. Our numerical experiments are conducted using Matlab (R2019b). The invariants I_{1}, I_{2}, I_{3} and I_{4} are tested by the discrete formulations:

$$
\begin{gathered}
I_{1 h}^{n}=h \sum_{j=1}^{J}\left|U_{j}^{n}\right|^{2}, \quad I_{2 h}^{n}=h \sum_{j=1}^{J} V_{j}^{n}, \\
I_{3 h}^{n}=h \sum_{j=1}^{J}\left(\frac{q \beta}{m+1}\left(V_{j}^{n}\right)^{m+1}+p \rho\left|\mathcal{B}_{1}^{-1} \mathcal{A}_{1} \delta_{\hat{x}} U_{j}^{n}\right|^{2}+q \rho V_{j}^{n}\left|U_{j}^{n}\right|^{2}+\frac{s \rho}{2}\left|U_{j}^{n}\right|^{4}-\frac{q \alpha}{2}\left(\mathcal{B}_{1}^{-1} \mathcal{A}_{1} \delta_{\hat{x}} V_{j}^{n}\right)^{2}\right), \\
I_{4 h}^{n}=h \sum_{j=1}^{J}\left(q\left(V_{j}^{n}\right)^{2}-2 \rho \epsilon \operatorname{Im}\left(U_{j}^{n} \mathcal{B}_{1}^{-1} \mathcal{A}_{1} \delta_{\hat{x}} \bar{U}_{j}^{n}\right)\right),
\end{gathered}
$$

and the errors of invariants are defined as

$$
E_{1}=\left|I_{1 h}^{n}-I_{1 h}^{0}\right|, \quad E_{2}=\left|I_{2 h}^{n}-I_{2 h}^{0}\right|, \quad E_{3}=\left|I_{3 h}^{n}-I_{3 h}^{0}\right|, \quad E_{4}=\left|I_{4 h}^{n}-I_{4 h}^{0}\right| .
$$

Moreover, the accuracy of the proposed scheme is tested by the discrete L^{2} - norm $(\|u-U\|+\|v-V\|)$ and L^{∞} - norm $\left(\|u-U\|_{\infty}+\|v-V\|_{\infty}\right)$.

Example 1. [8] We consider the following Cauchy problem:

$$
\begin{aligned}
& i u_{t}+u_{x x}-v u=0, \quad(x, t) \in R \times(0, T], \\
& v_{t}+v_{x x x}+\left(3 v^{2}+|u|^{2}\right)_{x}=0, \quad(x, t) \in R \times(0, T], \\
& u(x, 0)=\varphi(x), \quad v(x, 0)=\phi(x), \quad x \in R,
\end{aligned}
$$

whose exact solutions are given by $u(x, t)=\exp (i(x+t / 4))$ and $v(x, t)=3 / 4$. we then compute the equations with $h=\pi / 20$ and $\tau=0.001$ in the spatial interval $[0,2 \pi]$. The errors of the numerical invariants at different time are listed in Table 1, which indicates that the proposed compact scheme preserves the conservation properties. Table 2 shows that the convergence rate of the proposed compact scheme is eighth-order in space.

Table 1. Errors of invariants at different time: $h=\pi / 20, \tau=0.001$.

t	E_{1}	E_{2}	E_{3}	E_{4}
1	$3.73346 \mathrm{E}-11$	$1.11910 \mathrm{E}-13$	$9.03455 \mathrm{E}-12$	$7.48273 \mathrm{E}-11$
5	$1.86450 \mathrm{E}-10$	$5.69322 \mathrm{E}-13$	$4.50811 \mathrm{E}-11$	$3.73753 \mathrm{E}-10$
10	$3.72820 \mathrm{E}-10$	$1.32072 \mathrm{E}-12$	$8.96581 \mathrm{E}-11$	$7.47615 \mathrm{E}-10$

Table 2. Convergence rates at different time: $h=\pi / 10, \tau=0.1$.

t	h	τ	$L^{2}-$ error	Rate	$L^{\infty}-$ error	Rate
2	h	τ	$1.09158 \mathrm{E}-03$		$4.35476 \mathrm{E}-04$	
	$h / 2$	$\tau / 16$	$4.80890 \mathrm{E}-06$	7.82649	$1.91847 \mathrm{E}-06$	7.82649
	$h / 4$	$\tau / 256$	$1.89240 \mathrm{E}-08$	7.98935	$7.54999 \mathrm{E}-09$	7.98927
5	h	τ	$2.94823 \mathrm{E}-03$		$1.17617 \mathrm{E}-03$	
	$h / 2$	$\tau / 16$	$1.20760 \mathrm{E}-05$	7.93156	$4.81764 \mathrm{E}-06$	7.93156
	$h / 4$	$\tau / 256$	$4.73303 \mathrm{E}-08$	7.99517	$1.88923 \mathrm{E}-08$	7.99439
10	h	τ	$6.04262 \mathrm{E}-03$		$2.41066 \mathrm{E}-03$	
	$h / 2$	$\tau / 16$	$2.41903 \mathrm{E}-05$	7.96460	$9.65142 \mathrm{E}-06$	7.96447
	$h / 4$	$\tau / 256$	$1.02970 \mathrm{E}-07$	7.87605	$4.42506 \mathrm{E}-08$	7.76890

Example 2. [3] We consider the following coupled equations:

$$
\begin{aligned}
& i \in u_{t}+\frac{3}{2} u_{x x}-\frac{1}{2} v u=0, \quad(x, t) \in R \times(0, T], \\
& v_{t}+\frac{1}{2} v_{x x x}+\frac{1}{2}\left(v^{2}+|u|^{2}\right)_{x}=0, \quad(x, t) \in R \times(0, T],
\end{aligned}
$$

with exact solutions

$$
\begin{aligned}
& u(x, t)=-\frac{6 \sqrt{3} c}{5} \frac{\tanh (\xi)}{\cosh (\xi)} \exp \left(i c\left(\left(\frac{3}{20 \epsilon}-\frac{\epsilon c}{6}\right) t-\frac{\epsilon}{3} x\right)\right), \\
& v(x, t)=-\frac{9 c}{5} \frac{1}{\cosh ^{2}(\xi)}, \quad \xi=\sqrt{c / 10}(x+c t),
\end{aligned}
$$

where c is an arbitrary positive constant. In addition, we set the artificial boundary conditions $u(a, t)=$ $u(b, t)=0$ and $v(a, t)=v(b, t)=0$ to satisfy the physical condition that $|u|$ and v tend to zero as $|x| \rightarrow \infty$. Our simulations are conducted by taking $\epsilon=1$, the traveling wave speed $c=0.45$ and initial conditions

$$
\begin{aligned}
& u(x, 0)=-\frac{6 \sqrt{3} c}{5} \frac{\tanh (\xi)}{\cosh (\xi)} \exp \left(i c\left(-\frac{\epsilon}{3} x\right)\right) \\
& v(x, 0)=-\frac{9 c}{5} \frac{1}{\cosh ^{2}(\xi)}, \quad \xi=\sqrt{c / 10}(x+c t)
\end{aligned}
$$

Table 3 lists the numerical solutions at $t=0.001$, with $h=0.25, \tau=0.00001$ and $[a, b]=[-30,30]$, where the scheme MECS expands $[a, b]$ to $[-150,150]$ for reducing boundary truncation error. Compared with the numerical results obtained by the fourth-order compact scheme (FCS) in [9] and exponential time differencing three-layer implicit scheme with Padé approximation (ETDT-P) in [7]. We can see that the eighth-order compact scheme (ECS) and modified eighth-order compact scheme (MECS) give better approximations. In addition, MECS gives much more accurate error estimate than ECS, which is caused by boundary truncation error. The numerical solution profiles of $|U|$ and V, as well as the contours in Figure 1 show that the waves traveling with a speed $c=0.45$ keep the shape and hight, which are in good agreement with the exact solutions.

Table 3. Comparison of numerical solutions with exact solutions and other methods: $t=$ $0.001, \tau=0.00001, h=0.25$.

	x	MECS	ECS	FCS	ETDT-P	Exact solution		
$\operatorname{Im} U$	-20	$3.7904 \mathrm{E}-03$						
	-10	$2.1428 \mathrm{E}-01$						
	0	$-3.013332 \mathrm{E}-09$	$-3.013332 \mathrm{E}-09$	$-3.0140 \mathrm{E}-09$	$-2.4973 \mathrm{E}-09$	$-3.013332 \mathrm{E}-09$		
	10	$2.1424 \mathrm{E}-01$						
	20	$3.7915 \mathrm{E}-03$						
$\left\\|\mathrm{Im} E_{u}\right\\|$		$5.1605 \mathrm{E}-14$	$1.5738 \mathrm{E}-05$	$1.4412 \mathrm{E}-05$	$3.8279 \mathrm{E}-05$			
$\operatorname{Re} U$	-20	$-2.6597 \mathrm{E}-02$						
	-10	$1.5188 \mathrm{E}-02$						
	0	$-8.928390 \mathrm{E}-05$	$-8.928390 \mathrm{E}-05$	$-8.928328 \mathrm{E}-05$	$-8.9282 \mathrm{E}-05$	$-8.928390 \mathrm{E}-05$		
	10	$-1.5200 \mathrm{E}-02$						
	20	$2.6592 \mathrm{E}-02$						
$\left\\|\operatorname{Re} E_{u}\right\\|$	$3.9746 \mathrm{E}-14$	$9.7531 \mathrm{E}-05$	$8.0273 \mathrm{E}-05$	$7.5941 \mathrm{E}-06$				
V	-20	$-6.6886 \mathrm{E}-04$						
	-10	$-4.5256 \mathrm{E}-02$						
	0	$-8.1000 \mathrm{E}-01$						
	10	$-4.5239 \mathrm{E}-02$						
	20	$-6.6861 \mathrm{E}-04$						
$\left\\|E_{v}\right\\|$		$7.6034 \mathrm{E}-14$	$1.1311 \mathrm{E}-06$	$7.2736 \mathrm{E}-07$	$1.0331 \mathrm{E}-07$			

Figure 1. Numerical solution profiles of $|U|$ and $V(\mathrm{a}$ and b$)$ and the contours(c and d): $t \in[0,30],[a, b]=[-70,30], h=0.5, \tau=0.001$.

Example 3. [11] We consider the following coupled equations:

$$
\begin{aligned}
& i u_{t}+u_{x x}-\sigma v u+|u|^{2} u=0, \quad(x, t) \in R \times(0, T] \\
& v_{t}+v_{x x x}+\frac{1}{2}\left(v^{2}-\sigma|u|^{2}\right)_{x}=0, \quad(x, t) \in R \times(0, T]
\end{aligned}
$$

with exact solutions

$$
\begin{gathered}
u(x, t)=\exp (i(\omega t+c x / 2)) \frac{\sqrt{2 C^{*}(1+6 \sigma)}}{\cosh \left(\sqrt{C^{*}}(x-c t)\right)}, \quad C^{*}=c^{2} / 4+\omega^{2}, \\
v(x, t)=\frac{12 C^{*}}{\cosh ^{2}\left(\sqrt{C^{*}}(x-c t)\right)}, \quad 2 c=1+\sqrt{1+\frac{\sigma}{3}(1+6 \sigma)},
\end{gathered}
$$

where $\sigma \in(-1 / 6,0)$ and $\omega \in R$. Set the artificial boundary conditions $u(a, t)=u(b, t)=0$ and $v(a, t)=v(b, t)=0$. Our simulations are conducted by taking $\sigma=-1 / 12, \omega=0,[a, b]=[-40,70]$,
the traveling wave speed $c=(1+\sqrt{71 / 72}) / 2$ and initial conditions

$$
\begin{aligned}
& u(x, 0)=\exp (i c x / 2) \frac{\sqrt{2 C^{*}(1+6 \sigma)}}{\cosh \left(\sqrt{C^{*}} x\right)}, \quad C^{*}=c^{2} / 4+\omega^{2} \\
& v(x, 0)=\frac{12 C^{*}}{\cosh ^{2}\left(\sqrt{C^{*}} x\right)}, \quad 2 c=1+\sqrt{1+\frac{\sigma}{3}(1+6 \sigma)}
\end{aligned}
$$

The errors of the numerical invariants at different times are listed in Table 4, which indicates that the proposed compact scheme preserves the conservation properties. Table 5 shows that the convergence rate of the proposed compact scheme is eighth-order in space. The numerical solution profiles of $|U|$ and V, as well as the contours in Figure 2 show that the waves traveling with a speed $c=0.99652$ keep the shape and hight, which are in good agreement with the exact solutions.

Figure 2. Numerical solution profiles of $|U|$ and $V(\mathrm{a}$ and b$)$ and the contours(c and d): $t \in[0,30], h=0.25, \tau=0.001$.

Table 4. Errors of invariants at different time: $h=0.1, \tau=0.001$.

t	E_{1}	E_{2}	E_{3}	E_{4}
1	$1.35891 \mathrm{E}-13$	$8.96330 \mathrm{E}-10$	$1.65457 \mathrm{E}-10$	$3.32290 \mathrm{E}-10$
5	$7.79488 \mathrm{E}-13$	$9.67230 \mathrm{E}-08$	$8.24029 \mathrm{E}-10$	$1.65427 \mathrm{E}-09$
10	$1.53033 \mathrm{E}-12$	$2.48881 \mathrm{E}-07$	$1.64719 \mathrm{E}-09$	$3.30639 \mathrm{E}-09$

Table 5. Convergence rates at different time: $h=1, \tau=0.1$.

t	h	τ	$L^{2}-$ error	Rate	$L^{\infty}-$ error	Rate
1	h	τ	$2.83547 \mathrm{E}-02$		$1.60049 \mathrm{E}-02$	
	$h / 2$	$\tau / 16$	$8.47660 \mathrm{E}-05$	8.38589	$5.63783 \mathrm{E}-05$	8.14915
	$h / 4$	$\tau / 256$	$3.28192 \mathrm{E}-07$	8.01280	$2.20134 \mathrm{E}-07$	8.00062
5	h	τ	$7.81002 \mathrm{E}-02$		$3.78102 \mathrm{E}-02$	
	$h / 2$	$\tau / 16$	$2.60905 \mathrm{E}-04$	8.22566	$1.49546 \mathrm{E}-04$	7.98205
	$h / 4$	$\tau / 256$	$1.01440 \mathrm{E}-06$	8.00675	$5.81734 \mathrm{E}-07$	8.00601
10	h	τ	$1.44349 \mathrm{E}-01$		$7.50822 \mathrm{E}-02$	
	$h / 2$	$\tau / 16$	$4.75731 \mathrm{E}-04$	8.24520	$2.60189 \mathrm{E}-04$	8.17277
	$h / 4$	$\tau / 256$	$1.84463 \mathrm{E}-06$	8.01067	$1.00971 \mathrm{E}-06$	8.00947

5. Conclusions

In this paper, we propose an eighth-order compact finite difference scheme by constructing several circulant symmetric positive definite matrices to obtain the numerical solution of coupled SchrödingerKdV equations. The performance of proposed compact scheme is evaluated by conservation properties and error estimate. Numerical examples demonstrate the better performance of the proposed compact scheme in accuracy compared with FCS and ETDT-P given in [7, 9]. Since the matrices have good properties, we can discuss the possibility that the proposed compact scheme can be applied to other equations such as nonlinear Dirac equation [21], generalized Rosenau-RLW equation [22], Klein-Gordon-Schrödinger equation [23], coupled Gross-Pitaevskii equations [24] and regularized long wave equation [25].

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11471092).

Conflict of interest

The authors declare no conflicts of interest.

References

1. S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16-42. http://dx.doi.org/10.1016/0021-9991(92)90324-R
2. A. Duràn, M. A. Lopez-Marcos, Conservative numerical methods for solitary wave interactions, J.Phys. A, 36 (2003), 7761-7770. http://dx.doi.org/10.1088/0305-4470/36/28/306
3. D. Bai, L. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237-2244. http://dx.doi.org/10.1016/j.physleta.2009.04.043
4. A. Golbabai, A. Safdari-Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242. http://dx.doi.org/10.1007/s00607-010-0138-4
5. D. Kaya, M. El-Sayed, On the solution of the coupled Schrödinger-KdV equation by the decomposition method, Modern Phys. Lett. A, 313 (2003), 82-88. http://dx.doi.org/10.1016/S0375-9601(03)00723-0
6. M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1-8. http://dx.doi.org/10.1016/j.physd.2005.08.002
7. H. Zhou, D. Han, M. Du, Y. Shi, A conservative spectral method for the coupled Schrödinger-KdV equations, Int. J. Modern Phys. C, 31 (2020), 1-16. http://dx.doi.org/10.1142/S0129183120500746
8. S. Kucukarslan, Homotopy perturbation method for coupled Schrödinger-KdV equation, Nonlinear Anal., 10 (2009), 2264-2271. http://dx.doi.org/10.1016/j.nonrwa.2008.04.008
9. S. Xie, S. C. Yi, A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations, Adv. Comput. Math., 46 (2020), 1-22. http://dx.doi.org/ 10.1007/s10444-020-09758-2
10. P. J. Davis, Circulant matrices, 2 Eds., Providence: American Mathematica Society, 2012.
11. P. Amorim, M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409-426. https://doi.org/10.1007/s13163-012-0097-8
12. T. Wang, B. Guo, Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243 (2013), 382-399. http://dx.doi.org/10.1016/j.jcp.2013.03.007
13. X. Zhang, Z. Ping, A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation, Appl. Math. Comput., 339 (2018), 535545. http://dx.doi.org/10.1016/j.amc.2018.07.017
14. Z. Gao, S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614. http://dx.doi.org/10.1016/j.apnum.2010.12.004
15. W. Bao, Y. Cai, Optimal error estmiates of finite difference methods for the GrossPitaevskii equation with angular momentum rotation, Math. Comput., 82 (2012), 99-128. http://dx.doi.org/10.1090/S0025-5718-2012-02617-2
16. S. Chippada, C. N. Dawson, M. L. Martínez, M. F. Wheeler, Finite element approximations to the system of shallow water equations, part II: discrete time a priori error estimates, SIAM J. Numer. Anal., 36 (1999), 226-250. http://dx.doi.org/10.1137/S0036142996314159
17. C. N. Dawson, M. L. Martínez, A characteristic-Galerkin approximation to a system of shallow water equations, Numer. Math., 86 (2000), 239-256. http://dx.doi.org/10.1007/pl00005405
18. K. Appert, J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845-1849. http://dx.doi.org/10.1063/1.861802
19. K. Appert, J. Vaclavik, Instability of coupled Langmuir and ion-acoustic solitons, Phys. Lett. A, 67 (1978), 39-41. http://dx.doi.org/10.1016/0375-9601(78)90561-3
20. Y. L. Zhou, Applications of discrete functional analysis of finite diffrence method, New York: International Academic Publishers, 1990.
21. J. Li, T. Wang, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Appl. Numer. Math., 162 (2021), 150-170. http://dx.doi.org/10.1016/j.apnum.2020.12.010
22. Y. I. Dimitrienko, S. Li, Y. Niu, Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme, Math. Comput. Simul., 182 (2021), 661-689. http://dx.doi.org/10.1016/j.matcom.2020.11.012
23. J. Wang, D. Liang, Y. Wang, Analysis of a conservative high-order compact finite difference scheme for the Klein-Gordon-Schrödinger equation, J. Comput. Appl. Math., 358 (2019), 84-96. http://dx.doi.org/10.1016/j.cam.2019.02.018
24. T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension, J. Sci. Comput., 59 (2014), 158-186. http://dx.doi.org/10.1007/s10915-013-9757-1
25. B. Wang, T. Sun, D. Liang, The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117. http://dx.doi.org/10.1016/j.cam.2019.01.036
26. T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Schrödinger equation, Adv. Numer. Anal., 2012 (2012), 24. http://dx.doi.org/10.1155/2012/913429
27. J. Chen, F. Chen, Convergence of a high-order compact finite difference scheme for the Klein-Gordon-Schrödinger equations, Appl. Numer. Math., 143 (2019), 133-145. http://dx.doi.org/10.1016/j.apnum.2019.03.004
28. S. Abide, W. Mansouri, S. Cherkaoui, X. Cheng, High-order compact scheme finite difference discretization for Signorini's problem, Int. J. Comput. Math., 98 (2021), 580-591. http://doi.org/10.1080/00207160.2020.1762869
29. S. Abide, Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients, J. Comput. Appl. Math., 379 (2020), 112872. http://doi.org/10.1016/j.cam.2020.112872

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

