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Abstract: The existence and uniqueness theorem for the generalized boundary value problem of the
Thomas-Fermi equation: y′′ + f (x, y) = 0, 0 < x < ∞,

y(0) = 1, y(∞) = 0,

where

f (x, y) = −y
(y

x

) p
p+1
, p > 0, 0 < x < ∞,

is proved. Also, highly accurate approximate solutions are obtained explicitly for this new boundary
value problem which arises in particular studies of many-electron systems (atoms, ions, molecules,
metals, crystals). To the best of our knowledge, the results obtained here are new and provide the
lower and upper bounds approximate solutions for the generalized Thomas-Fermi problem.
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1. Introduction

The classical Thomas-Fermi problem for the neutral atom is a second-order non-linear ordinary
differential equation, named after Llewellyn Thomas and Enrico Fermi [1–5] which can be derived by
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applying the Thomas-Fermi model to atoms. The Thomas-Fermi model assumes that all electrons are
subject to the same conditions and energy conservation law, and has potential energy eΦ [6] so when
assuming that the potential is spherically symmetric, then the charge density ρ and the potential energy
are related through the Poisson’s equation

1
r

d2

dr2
(rΦ(r)) + 4πρ(r) = 0, (1.1)

where ℏ is the Planck’s constant, r is the distance from the nucleus, and ρ is given by

ρ =
−1

3π2ℏ3 (2m)3/2[eΦ(r)]3/2, (1.2)

where e is the electronic charge and m is the mass. Substituting in the above equation yields

1
r

d2

dr2
(rΦ(r)) −

4e
3π

(
2m
ℏ

)3/2[eΦ(r)]3/2 = 0, (1.3)

with the corresponding boundary conditions:

lim
r→0

rΦ(r) = eZ, (1.4)

where Z is the atomic number, and
lim
r→∞
Φ(r) = 0. (1.5)

By introducing the following transformation r = µx for some appropriate parameter µ and y =
rΦ(r)

eZ
,

we arrive at the so-called differential equation of the Thomas-Fermi equation

y′′ = x−
1
2 y

3
2 , 0 < x < ∞, (1.6)

y(0) = 1, y(∞) = 0. (1.7)

This equation models the charge distribution of a neutral atom as a function of the radius x. It should
be noted here that the basic Thomas-Fermi (TF) model for ions is subject to the boundary conditions
y(0) = 1 and y(x0) = 0, where x0 > 0 is the dimensionless ion size which measures the boundary radius
and satisfies the relation −x0y′(x0) = q for some ionization factor q. When the nuclear charge equals
the number of (bound) electrons, then q = 0 which occurs when x0 −→ ∞, and the the problem, in
this case, describes the neutral atom model case [7]. The TF equation (1.6) has connections to other
important partial differential equations, for example, it is considered a special case of the well-known
Poisson equation, and can also be viewed as an Euler-Lagrange equation associated with the Fermi
energy [8]. The Thomas-Fermi model has deep connections to the quantum gravity theory where it is
reformulated at the Planck scale [9–11].

The equation has a particular solution yp(x), which satisfies the boundary condition y → 0 as
x→ ∞, but not the initial condition y(0) = 1. This particular solution is yp(x) = 144

x3 .
Arnold Sommerfeld used this particular solution and provided an approximate solution that can

satisfy the other boundary condition [4]:

ys(x) = yp(x)
(
1 + yp(x)λ1/3)λ2/2, (1.8)
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where λ1 = 0.772 and λ2 = −7.772. This solution predicts the correct solution accurately for large x
but still fails near the origin. A considerable amount of literature is devoted to the numerical solutions
for the classical version of this problem [12–16]. In [12], numerical solution was obtained using the
variational principle. J. Boyd [13] obtained a numerical solution using rational Chebyshev functions.
The authors in [14, 15] obtained numerical solutions using a spectral method based on the fractional
order of rational Bessel functions. Pikulin [16] used a semi-analytical numerical method to compute
the solution. Furthermore, different methods such as homotopy analysis and iterative methods are used
to investigate the approximate solutions to this problem, see, e.g., [17–21].

However, a free boundary value issue is also implemented to approach the initial Thomas-Fermi
equation. As a result, the free boundary value issue is changed into a nonlinear boundary value problem
that is defined on a closed interval. An adaptive approach is used to tackle the issue utilizing the moving
mesh finite element method [22].

The present paper investigates the generalized boundary value problem of the Thomas-Fermi
equation y′′ + f (x, y) = 0, 0 < x < ∞,

y(0) = 1, y(∞) = 0,
(1.9)

where

f (x, y) = −y
(y

x

) p
p+1
, p > 0, 0 < x < ∞, (1.10)

and we assume that 0 ≤ y(x) ≤ 1.
The Thomas-Fermi equation is a special case of this equation when p = 1. As pointed out in [23],

this generalized TF equation is related to non-integrable Abel equations, and therefore no closed
solutions are possible for any case of this type of equation.

In this paper, we aim to provide an analytic approximate solution in explicit form for problem (1.9)
with (1.10). In Section 2, we establish a theorem that provides the lower and upper bounds of
the solution y and guarantees the existence of the solution to this problem as well as a theorem
on the uniqueness of the solution. In Section 3, we present analytic approximate solutions in
different explicit forms to this problem. Also, an interesting variation of the Adomian decomposition
method (ADM) [24–33] is presented, which allows the determination of the solution in an easily-
computed series. In Section 4, we carry out an analysis of the solution and compare it with other
numerical solutions.

2. An existence and uniqueness theorem

2.1. Existence theorem

We first prove a result on the double inequalities for the lower and upper bounds of the solution y,
which is an important tool in the proof of the existence of the solution to problem (1.9) with (1.10).

Theorem 2.1. The generalized boundary value problem of TF equation (1.9) with (1.10) has at least
one solution y ∈ C2[0,∞) such that

y1 ≤ y ≤ y2 on [0,∞), (2.1)
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where y1(x) = 1

(x+1)
1+
√

5
2

, y2(x) = −x
((

K(0, x) − K(1, x)
))

, and K is the modified Bessel function of the

second kind.

Proof. Using the following inequality:(
1
x

)r

<

(
1 +

1
x

)r

, r =
p

p + 1
< 1, x > 0, (2.2)

we obtain (
1
x

)r

< 1 +
1
x
, r =

p
p + 1

< 1, x > 0, (2.3)

which will be helpful later.
In view of 0 ≤ y(x) ≤ 1, it follows that(y

x

) p
p+1
≤

(
1 +

1
x

)
y

p
p+1 , for 0 ≤ y ≤ 1, (2.4)

and with y
p

p+1 ≤ 1, we have (y
x

) p
p+1
≤ 1 +

1
x
, for 0 ≤ y ≤ 1. (2.5)

Consequently,

y
(y

x

) p
p+1
≤

(
1 +

1
x

)
y, for 0 ≤ y ≤ 1. (2.6)

Hence,

f (x, y) = −y
(y

x

) p
p+1
≥ −

(
1 +

1
x

)
y, for 0 ≤ y ≤ 1. (2.7)

On the other hand, in view of the solution y remains in the interval [0, 1] and since p
p+1 < 1, we have

y
p

p+1 ≥ y. (2.8)

Using now x < x + 1 to obtain 1
x >

1
x+1 . Hence,

(
1
x

) p
p+1
> 1

(x+1)
p

p+1
. Thus,

(y
x

) p
p+1
≥

1

(x + 1)
p

p+1
(2.9)

or (y
x

) p
p+1
≥

y
x + 1

. (2.10)

It can be checked easily that

y
(y

x

) p
p+1
≥

y
(x + 1)2 , for 0 ≤ y ≤ 1. (2.11)

Hence,

f (x, y) = −y
(y

x

) p
p+1
≤ −

y
(x + 1)2 , for 0 ≤ y ≤ 1. (2.12)
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Thus, from (2.7) and (2.12), we obtain

G2(x, y) ≤ f (x, y) = −y
(y

x

) p
p+1
≤ G1(x, y), for 0 ≤ y ≤ 1, (2.13)

where

G1(x, y) = −
1

(x + 1)2 y and G2(x, y) = −
(
1 +

1
x

)
y, for 0 ≤ y ≤ 1. (2.14)

For comparison purposes, we have the following linear boundary value problems:y′′1 +G1(x, y1) ≤ 0, 0 < x < ∞,

y1(0) = 1, y1(∞) = 0,
(2.15)

and y′′2 +G2(x, y2) ≥ 0, 0 < x < ∞,

y2(0) = 1, y2(∞) = 0.
(2.16)

Then, suitable comparison problems are
y′′1 −

1
(1 + x)2 y1 = 0, 0 < x < ∞,

y1(0) = 1, y1(∞) = 0,
(2.17)

and y′′2 −
(
1 +

1
x

)
y2 = 0, 0 < x < ∞,

y2(0) = 1, y2(∞) = 0.
(2.18)

To find the solution y1 of problem (2.17), we write

(1 + x)2 y′′1 − y1 = 0. (2.19)

Let ξ = x + 1. Thus this equation becomes

ξ2y′′1 (ξ) − y1(ξ) = 0. (2.20)

The substitution ξ = e−t leads to a constant coefficient linear equation

y′′1 (t) − y′1(t) − y1(t) = 0. (2.21)

Thus,

y1(x) =
C1

(x + 1)
1+
√

5
2

+
C2

(x + 1)
1−
√

5
2

, (2.22)
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where C1 and C2 are two constants. Using the boundary conditions y1(0) = 1, y1(∞) = 0 to find C1 = 1
and C2 = 0. This gives

y1(x) =
1

(x + 1)
1+
√

5
2

. (2.23)

To find the solution y2 of problem (2.18), we bring back the form of the confluent hypergeometric
equation with parameters a and b [34–36]:

xy′′ + (b − x)y′ − ay = 0, (2.24)

which has a regular singularity at 0 and an irregular one at infinity; and whose solution is 1F1(a; c; x).
The equation of problem (2.18) can be simply written as

y′′2 −
(
1 +

2
2x

)
y2 = 0. (2.25)

We introduce the change of variables ξ = 2x and y2(x) = v(ξ). Then

4ξv′′(ξ) − (ξ + 2) v(ξ) = 0. (2.26)

The transformation v(ξ) = ξe−
ξ
2 w(ξ) leads to

ξw′′(ξ) + (2 − ξ) w′(ξ) −
3
2

w(ξ) = 0, (2.27)

which is the confluent hypergeometric equation with parameters a = 3/2 and b = 2.
Thus the general solution of problem (2.18) is given in terms of the modified Bessel functions as

y2(x) = x
(
c1

(
I(0, x) + I(1, x)

)
+ c2

(
K(0, x) − K(1, x)

))
, (2.28)

where I and K are the modified Bessel functions of the first and second kind, respectively. c1 and c2 are
arbitrary constants, which can be determined from the boundary conditions. Indeed, to satisfy these
conditions y2(0) = 1 and y2(∞) = 0, we get c1 = 0 and c2 = −1, and so the required solution is given by

y2(x) = −x
((

K(0, x) − K(1, x)
))
. (2.29)

For small x, we have

y2(x) ≈ 1 + x
(

ln(
x
2

) + γ
)
+ O(x2) as x→ 0+. (2.30)

Hence, the condition y2(0) = 1 is satisfied.
We are now able to apply the method of upper and lower solutions. For more details about this

technique, we refer the reader to (Chapter 7, [37]), which is applicable when f (x, y) has a singularity
at x = 0 and the Lipschitz constants L1(x) = − 1

(x+1)2 and L2(x) = −
(
1 + 1

x

)
are functions of the

independent variable x and continuous everywhere except for L2(x) at x = 0.
It should be noted here that y1 and y2 are both twice continuously differentiable and satisfy the above

differential inequalities functions (2.15) and (2.16) on (0,∞) with y1 < y2. Furthermore, the function
f (x, y) is continuous and bounded in

S = {(x, y) : 0 ≤ x < ∞, y1 ≤ y ≤ y2} . (2.31)

This completes the proof. □
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To show the variation of these two extremum functions, we present in Figure 1 the variation of
the upper and lower functions in terms of the independent variable x. In addition, the extremum
functions are independent of the parameters p, which makes them the optimum functions for all kinds
of Thomas-Fermi equations.

Figure 1. The variation of the extremum functions y1(x) and y2(x) versus the independent
variable x. Lower function: red dashed line; Upper function: blue solid line.

2.2. Uniqueness theorem

Theorem 2.2. The generalized boundary value problem of TF equation (1.9) with (1.10) has at most
one solution y ∈ C2[0,∞).

Proof. To obtain an important result on the uniqueness, we assume that ȳ1 and ȳ2 are two different
solutions to problem (1.9) with (1.10). Then,ȳ′′1 = g(x, ȳ1), 0 < x < ∞,

ȳ1(0) = 1, ȳ1(∞) = 0,
(2.32)

and ȳ′′2 = g(x, ȳ2), 0 < x < ∞,

ȳ2(0) = 1, ȳ2(∞) = 0,
(2.33)

where g(x, y) = y
(

y
x

) p
p+1 .

Consider the positive function h(x) = 1
2 (ȳ1 − ȳ2)2. Thus h vanishes at zero and infinity. Therefore,

if is not identically zero it must have a positive maximum at a point x̄, where x̄ > 0. Thus, its graph is
concave down at x̄ > 0, and we have

h′′(x̄) =
[
1
2

(ȳ1 − ȳ2)2
]′′
|x=x̄≤ 0. (2.34)
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Since [
1
2

(ȳ1 − ȳ2)2
]′′
|x=x̄=

(
ȳ′′1 (x̄) − ȳ′′2 (x̄)

)
(ȳ1(x̄) − ȳ2(x̄)) +

(
ȳ′1(x̄) − ȳ′2(x̄)

)2 , (2.35)

or [
1
2

(ȳ1 − ȳ2)2
]′′
|x=x̄=

(
ȳ′′1 (x̄) − ȳ′′2 (x̄)

)
(ȳ1(x̄) − ȳ2(x̄)) . (2.36)

Hence, (
ȳ′′1 (x̄) − ȳ′′2 (x̄)

)
(ȳ1(x̄) − ȳ2(x̄)) ≤ 0. (2.37)

From (2.32) and (2.33), we have

ȳ′′1 (x) − ȳ′′2 (x) = g(x, ȳ1) − g(x, ȳ2). (2.38)

Applying the mean value theorem to the function g with respect to ȳ, we obtain

ȳ′′1 (x) − ȳ′′2 (x) =
∂g
∂y

(x, ȳ∗) (ȳ1(x) − ȳ2(x)) , (2.39)

where 0 ≤ ȳ1 < ȳ∗ < ȳ2 ≤ 1.
On the other hand, differentiating the function g(x, y) with respect to y, we obtain

∂g
∂y

(x, y) =
(
2p + 1
p + 1

) (y
x

) p
p+1
. (2.40)

Hence,

∂g
∂y

(x̄, ȳ∗) =
(
2p + 1
p + 1

) (
ȳ∗(x̄)

x̄

) p
p+1

, x̄ > 0. (2.41)

Consequently,

ȳ′′1 (x̄) − ȳ′′2 (x̄) =
(
2p + 1
p + 1

) (
ȳ∗(x̄)

x̄

) p
p+1

(ȳ1(x̄) − ȳ2(x̄)) . (2.42)

Substituting this into (2.37), we obtain(
2p + 1
p + 1

) (
ȳ∗(x̄)

x̄

) p
p+1

(ȳ1(x̄) − ȳ2(x̄))2
≤ 0, (2.43)

which contradicts the assumption that 2p+1
p+1 > 0, ȳ∗(x̄)

x̄ > 0, x̄ > 0 and (ȳ1(x̄) − ȳ2(x̄))2 > 0. So h(x) =
1
2 (ȳ1 − ȳ2)2

≡ 0. This shows the uniqueness of the solution and completes the proof of the theorem. □

3. Explicit approximate solutions

We conclude here based on Theorem 2.1, which may offer advantages in finding out lower and
upper solutions of our problem (1.9) with (1.10) in explicit forms such that y1 ≤ y ≤ y2 on [0,∞),
and consequently we should expect y to take similar explicit forms in the whole region with the
corresponding boundary conditions.
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3.1. The first approximation

To obtain an approximate solution y to problem (1.9) with (1.10), we first make the following
approximation.

A possible linear approximation of a function f (x) at x = x0 may be obtained using the equation of
the tangent line

f (x) ≈ f (x0) + f ′(x0)(x − x0). (3.1)

If we choose f (x) =
√
βx, β > 0 and x0 =

1
β
, then

√
βx ≈

1 + βx
2
, (3.2)

when x is close enough to x0 =
1
β
. Hence,

βx ≈
(1 + βx)2

4
. (3.3)

Substituting (3.3) into the nonlinear term of the ODE of problem (1.9), we obtain

y′′ −
2

2p
p+1β

p
p+1

(1 + βx)
2p
p+1

y
p

p+1+1 = 0. (3.4)

For the solution y of the approximate equation (3.4), by Theorem 2.1, we expect that the solution y can
be obtained in the form

y = (1 + βx)m , (3.5)

where β > 0 and m < 0 are two parameters to be determined. Inserting the ansatz given by (3.5)
into Eq (3.4), we obtain

m(m − 1)β2 (1 + βx)m−2 = 2
2p
p+1β

p
p+1 (1 + βx)

mp
p+1+m− 2p

p+1 . (3.6)

If we assume that m−2 = mp
p+1 +m− 2p

p+1 , that is m = − 2
p , then, we derive the following relation between

the parameters

2
p

p + 2
p
= 2

2p
p+1β−

p+2
p+1 , (3.7)

that is

β =
2

2p
p+2(

2
p

p+2
p

) p+1
p+2

. (3.8)

Thus the first analytic approximate solution to the generalized TF equation is given by

y1(x; p) =
1

(1 + βx)
2
p

, where β =
2

2p
p+2(

2
p

p+2
p

) p+1
p+2

. (3.9)
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3.2. The second approximation

The term (βx)
p

p+1 can be approximated by (1 + βx)
p

p+1 for sufficiently large values of βx; that is,

(βx)
p

p+1 ≈ (1 + βx)
p

p+1 . (3.10)

Substituting (3.10) into the nonlinear term of the ODE of problem (1.9), we obtain

(m2 + m)β2 (1 + βx)−2 = β
p

p+1 (1 + βx)−
(m+1)p

p+1 . (3.11)

It follows that m = 1 + 2
p and β =

[(
p+2

p

)2
+

p+2
p

]− p+1
p+2

.
Thus, the second analytic approximate solution to the generalized TF equation for x large is given as

y2(x; p) =
1

(1 + βx)1+ 2
p

, where β =
( p + 2

p

)2

+
p + 2

p

−
p+1
p+2

. (3.12)

3.3. The third approximation

For x near 1, we can substitute x ≈ 1 in the denominator of the nonlinear term of the ODE of
problem (1.9) to find

(m2 + m)β2 (1 + βx)−2 = (1 + βx)−
(m+1)p

p+1 . (3.13)

It follows that m = 2 + 2
p and β =

[(
2p+2

p

)2
+

2p+2
p

]− 1
2
.

Thus, the third analytic approximate solution to the generalized TF equation for x near 1 is given as

y3(x; p) =
1

(1 + βx)2+ 2
p

, where β =
(2p + 2

p

)2

+
2p + 2

p

− 1
2

. (3.14)

Thus, our approximate solutions can be obtained by direct approaches.

3.4. The fourth approximation using ADM

In this section, we consider an interesting variation of the modified Adomian decomposition
method (ADM) [24–34], which permits the determination of the solution of nonlinear initial-boundary
value problem (1.9) with (1.10).

Rewrite the ODE of problem (1.9) with (1.10) in Adomian’s operator-theoretic form

Ly = x−
p

p+1 N(y), 0 < x < ∞, (3.15)

where L = d2

dx2 and N(y) = y
2p+1
p+1 .

Applying L−1 to both sides of Eq (3.15) and using the initial condition y(0) = 1, we obtain

y = 1 + Bx +
∫ x

0

∫ x

0

[
x−

p
p+1 N(y)

]
dxdx, (3.16)
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where B = y′(0) is an unknown constant to be determined by using the boundary condition y(∞) = 0.
According to the Adomian decomposition method [24–33], assuming the decomposition

y =
∞∑

n=0

yn and N(y) = y
2p+1
p+1 =

∞∑
n=0

An, (3.17)

where An are the Adomian polynomials [24, 25, 33]. Thus, Eq (3.16) becomes

∞∑
n=0

yn = 1 + Bx +
∫ x

0

∫ x

0

x−
p

p+1

∞∑
n=0

An

 dxdx. (3.18)

We identify

y0 = 1, y1 = Bx and
∞∑

n=2

yn =

∫ x

0

∫ x

0

x−
p

p+1

∞∑
n=0

An

 dxdx. (3.19)

Hence, a new recurrence relation for yn, n ≥ 0, is established as
y0 = 1,
y1 = Bx,

yn+2 =
∫ x

0

∫ x

0

[
x−

p
p+1 An

]
dxdx,

(3.20)

where the Adomian polynomials An [24, 25, 33] for the N(y) = y
2p+1
p+1 term are

A0(y0) = y
2p+1
p+1

0 ,

A1(y0, y1) = 2p+1
p+1 y1y

p
p+1

0 ,

A2(y0, y1, y2) = 2p+1
p+1 y2y

p
p+1

0 + 1
2!

2p+1
p+1

p
p+1y2

1y
−

p+2
p+1

0 ,

...

(3.21)

The first few components of the solution yn, n ≥ 0 are given by

y0 = 1,
y1 = Bx,
y2 =

(p+1)2

p+2 x
p+2
p+1 ,

y3 = B (p+1)(2p+1)
(p+2)(2p+3) x

2p+3
p+1 ,

y4 =
(p+1)3(2p+1)
2(p+2)2(p+3) x

2p+4
p+1 + B2 p(2p+1)

2(3p+4)(2p+3) x
3p+4
p+1 ,

...

(3.22)

Hence,

y = 1 + Bx +
(p + 1)2

p + 2
x

p+2
p+1 + B

(p + 1)(2p + 1)
(p + 2)(2p + 3)

x
2p+3
p+1 + .... (3.23)
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3.4.1. Computation of B

It remains now to apply the second boundary condition y → 0 as x → ∞ to the function y(x).
This boundary condition cannot be applied directly to the series (3.23). Recall that it is customary
to combine the series solutions obtained by the decomposition method with the Padé approximants to
provide an effective tool to treat boundary value problems on an infinite or semi-infinite interval [33].
To illustrate this, we choose p = 1. For convenience, we list below, by using (3.21), few terms of the
Adomian polynomials An 

A0(y0) = 1,

A1(y0, y1) =
3
2

y1,

A2(y0, y1, y2) =
3
2

y2 +
3
8

y2
1,

A3(y0, y1, y2) =
3
2

y3 +
3
4

y1y2 −
1

16
y2

1,

...

(3.24)

The first few components of the solution yn, n ≥ 0, are given by

y0 = 1,
y1 = Bx,

y2 =
4
3

x
3
2 ,

y3 =
2
5

Bx
5
2 ,

y4 =
1
3

x3 +
3

70
B2x

7
2 ,

...

(3.25)

Hence,

y = 1 + Bx +
4
3

x
3
2 +

2
5

Bx
5
2 +

1
3

x3 +
3
70

B2x
7
2 +

2
15

Bx4 + .... (3.26)

Setting x
1
2 = ξ into (3.26), we obtain

y = 1 + Bξ2 +
4
3
ξ3 +

2
5

Bξ5 +
1
3
ξ6 +

3
70

B2ξ7 +
2

15
Bξ8 + ..., (3.27)

which is indeed the same approximation of y that obtained by Baker in 1930 [5] and Wazwaz [33].
In applying the boundary condition y(∞) = 0 to the diagonal Padé approximants P10,10 = [10/10],
we obtain the approximation for the initial slope B = y′(0) = −1.588077, which is a very good
approximation to accuracy 10−5 comparing to the value obtained by Parand et al. as −1.588071 [14].
These values are also in good agreement with the obtained numerical value y′n(0) = −1.564036 for
p = 1.

AIMS Mathematics Volume 8, Issue 5, 10529–10546.



10541

4. Analysis of solutions

We are now in the position to explore some mathematical results and investigate the numerical
treatment of the boundary value problem (1.9) with (1.10). In Figure 2, we present the different
solutions of problem (1.9) with (1.10) with the particular case p = 1. The first approximation (solid
blue line) is in good agreement with the numerical solution and Sommerfeld’s approximation. On the
other hand, the third approximation (black dash-dotted line) is in good agreement with the numerical
solution for small values of the independent variable x. While the second approximation diverges
slightly from the other solutions for small and intermediate values of the independent variable x.
All solutions coincide together for large values of x. Due to the potential limits of the numerical
volume [38–40], we chose the maximum value of the independent variable as x = 14. The numerical
solution is obtained, using the Maple software, and the available mid-rich sub-method, which is a
midpoint method with the same enhancement schemes. So, the midpoint sub-methods are capable of
handling harmless end-point singularities that the trapezoid sub-methods cannot. For the enhancement
schemes, Richardson extrapolation is generally faster, but deferred corrections use less memory on
difficult problems [41, 42].

Figure 2. The variation of the different solutions y(x) of (1.9) with (1.10) versus the
independent variable x. Numerical solution: black long dashed line; Sommerfeld’s solution:
green dotted line; first approximation: blue solid line; second approximation: red dashed
line; third approximation: black dash-dotted line. All solutions are obtained for p = 1.

In addition, we present in Tables 1 and 2 a comparison between the numerical solution and different
proposed approximations for the case p = 1, for small and large values of the independent variables x.
These numerical values show clearly that the first and third approximations agree very well with the
numerical solution in all ranges of the independent value x.

Now, we can explore other interesting cases with p , 1, to show the efficiency of the suggested
approximations and their validity ranges. In Figure 3, we present the different solutions of (1.9)
with (1.10) with the particular cases p = 2, 3. The first and third approximations (solid blue line,
black dash-dotted line) are in good agreement with the numerical solution for small values of the
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independent variable x. On the other hand, the third approximation remains in good agreement with the
numerical solutions, while the first approximation diverges from the numerical solution by increasing
the parameter p. The second approximation is still larger than all approximations over the small and
intermediate domains of x.

Table 1. Comparison between different approximations and numerical solutions of
problem (1.9) with (1.10) for the case p = 1, and small values of the independent variable x.
yn = Numerical solution, ys = Sommerfeld’s approximation, y1;1 = First solution, y2;1 =

Second approximation and y3;1 = Third approximation.

x yn ys y1;1 y2;1 y3;1

.100000 .890589 .836423 .910357 .944876 .915349

.200000 .800549 .740601 .832265 .893735 .839461

.300000 .725548 .666917 .763802 .846210 .771278

.400000 .662283 .606766 .703443 .802028 .709884

.500000 .608242 .556122 .649967 .760838 .654476

.600000 .561517 .512617 .602373 .722429 .604368

.700000 .520665 .474709 .559820 .686559 .558968

.800000 .484586 .441319 .521616 .653027 .517735

.900000 .452445 .411651 .487194 .621639 .480250
1.00000 .423598 .385104 .456075 .592235 .446096

Table 2. Comparison between different approximations and numerical solutions of (1.9)
with (1.10) for the case p = 1, and large values of the independent variable x. yn =

Numerical solution, ys = Sommerfeld’s approximation, y1;1 = First solution, y2;1 = Second
approximation and y3;1 = Third approximation.

x yn ys y1;1 y2;1 y3;1

1. .423598 .385104 .456075 .592235 .446096
2. .242734 .220660 .259910 .379212 .227968
3. .156335 .142841 .167656 .257243 .128316
4. .107979 .0993388 .117042 .182448 .0776398
5. .781469e-1 .725516e-1 .863148e-1 .134052 .496894e-1
6. .584026e-1 .549358e-1 .662721e-1 .101365 .332598e-1
7. .445657e-1 .427789e-1 .524786e-1 .784985e-1 .230930e-1
8. .343581e-1 .340689e-1 .425827e-1 .620228e-1 .165308e-1
9. .264419e-1 .276399e-1 .352432e-1 .498537e-1 .121427e-1

10. .199817e-1 .227745e-1 .296497e-1 .406706e-1 .911860e-2
11. .144286e-1 .190161e-1 .252895e-1 .336111e-1 .698002e-2
12. .940720e-2 .160612e-1 .218248e-1 .280956e-1 .543328e-2
13. .465612e-2 .137020e-1 .190263e-1 .237236e-1 .429216e-2
14. 0. .117932e-1 .167334e-1 .202137e-1 .343549e-2
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Figure 3. The variation of the different solutions y(x) of (1.9) with (1.10) versus the
independent variable x. Numerical solution: black long dashed line; first approximation:
blue solid line; second approximation: red dashed line; third approximation: black dash-
dotted line. (a) for p = 2 and (b) for p = 3.

Our overall findings demonstrate that it is possible to acquire a good approximation to the
generalized TF equation. The charge distribution of a neutral atom as a function of radius x is also
well-known to be described by this equation if and only if y(x) approaches zero as x grows in size.
Solutions with y(x) = 0 at a finite x are used to mimic positive ions. For solutions where y(x) becomes
significant and positive as x increases significantly, it can be viewed as a model of a compressed atom,
where the charge is squeezed into a smaller region. These broad comments are adequately supported
by our plots. The proposed investigation might be useful in dense media where quantum gravity’s
effects could be felt strongly.

5. Conclusions

The goal of this study is to solve the generalized TF equation which governs several physical
issues, such as quantum systems, that naturally differ significantly from Fermi or Bose statistics,
as well as some astrophysical or cosmological contexts where quantum electrostatics may exhibit
more intertwined screening effects. The TF equation is modeled in this investigation as a singular
boundary value problem with an upper and lower solution theory. The existence-construction of the
aforementioned upper-lower solutions is also explored. Excellent approximations are proposed and
the obtained results are in good agreement with those obtained numerically. We anticipate that the
approximation solutions we have presented will be useful in assisting with the investigation of the TF
model-governed physics issues.
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