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1. Introduction

In this paper, we consider the following wave equation with nonlinear distributed delay:

= A+ o) + [ (gt = $)ds = hw) in QX (0,0),
u=0 in 0Q X (0, o),
(1.1)
u(x,0) = ug(x) and u,(x,0) = u;(x) in Q,
u,(x,—t) = fo(x,—1) in Qx(0,1,),

where Q ¢ R", n > 1 is a bounded domain with smooth boundary dQ, u(s) € L*([7y,72];R,) with
7, > 11 > 0, and g is for some positive constant that will be specified later.

Time delay effect occurs in many various phenomena depending on past states as well as on present
situations, so time delay problem is widely applied in many engineering and biology fields [1, 21].
Hence the partial differential equations with such circumstance have been studied by many researchers
(see [3,4,10-16,22,23] and a list on references therein). For example, Nicaise and Pignotti [13]
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considered the wave equation with a delay concentrated at a time
' — Au+ pou’ + pu'(x,t —5) = 0.

They proved that this equation is either exponentially stable under condition y > u; or unstable under
condition yy < u;. Benaissa et al. [4] studied the global existence and energy decay of solutions to a
viscoelastic wave equation with delay term in the nonlinear internal feedback. They proved the global
existence result using Galerkin’s method and the asymptotic behavior of solutions using a perturbed
energy method. While there are many results dealing with a delay concentrated at a time, there are
relatively few researches dealing with a distributed delay. The distributed delay is important and has
been studied in many problems (see [6—8, 14, 19]). For instance, Nicaise and Pignotti [14] has studied
the wave equation with linear distributed delay

T2
u’ — Au+ pou’ + f a(x)u(s)u'(x,t — s)ds = 0.
T
They proved the global well-posedness by the semigroup theory and the exponential stability under the
assumption
T2
Ho > IIalloof u(s)ds.
1

Raposo et al. [19] proved the well-posedness using the semigroup theory and the exponential stability
exploiting the dissipative properties of the linear operator associated to damped model using the
Gearhart-Huang-Pruss theorem for the wave equation with frictional damping and nonlocal time-
delayed condition. Recently, Choucha et al. [7] studied a coupled Lame system with distributed delay,
viscoelastic, and logarithmic source terms. They proved an exponential decay of solutions by using
Lyapunov functional method. But, the above mentioned references were considered a linear distributed
delay. There is none, as far as we know, well-posedness result dealing with a nonlinear distributed
delay.

Motivated by previous works, the goal of the paper is to study the existence and energy decay of
the solutions for the wave equation with a nonlinear distributed delay. We prove the local existence
of the solutions by using the semigroup theory, where the source term is globally Lipschitz and then
establish the global existence of solutions and the energy decay result under the local Lipschitz source
and suitable conditions on the initial data.

Throughout this paper, we use standard functional spaces and L”(Q)-norm is denoted by || - ||,
and (u,v) = fQ u(x)v(x)dx. The following assumptions are made on the nonlinear functions f and g.

(Al) f : R — R s a continuous monotone increasing function with f(0) = 0.

(A2) There exist positive constants v, M, M, and a convex increasing function H : R, — R, of the
class H € C'(R,) N C?((0, o)) satisfying H(0) = 0, and H is linear in [0,v] or H'(0) = 0 and H” > 0
on (0, v] such that

M, s* < sf(s) < M,s* for |s|>v,
s*+ f2(s) < H '(sf(s)) for |s|<v.

(A3) g is an odd nondecreasing Lipschitz function.
(A4) a1sg(s) < G(s) < apsf(s), where ay, @, are some positive constants, and G(s) = fos g(rydr.
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2. Well-posedness

2.1. Globally Lipschitz source

We first deal with the case where the source A is globally Lipschitz from H(Q) into L*(Q). We will
prove the problem (1.1) are well-posed using the semigroup theory.

Let us set u,(x,t — ps) := y(x,p,t,5), p € (0,1), s € (11, 72). Then the problem (1.1) is transformed
into

ty = A+ pof () + [ p(9)g(yv(x, 1,8, 9))ds = h(w) — in - Qx (0, 00),
sy((x, p, 1, 8) + yp(x, 0,8, 5) =0 in Qx(0,1)x(0,00) X (11,72),
u=0 in 90Q % (0, ),
(2.1
y(x,0,1,5) = u,(x, 1) in QX (0,00) X (71,72),
u(x,0) = up(x) and u;(x,0) = u;(x) in Q,
y(x’p7 07 S) = fb(x’ _ps) in QX (07 1) X (T]7 TZ)'
If we set u, := v. and U := (u,v,y)?, then (2.1) can be rewritten as
U +AU =0,
(2.2)
U(0) = (uo, vo, fo)"
where the operator A is defined by
u -V
AV = |~Bu+ pof ) + [T (L0 1, 9))ds = i)
y sy,

with D(A) = {(u, v, y)! € (Hz(.Q)ﬂHé)XHé(Q)XLZ(QX(T],Tz);Hl(o, 1) :v(x) = y(x,0,5) in Q}.
So we see that in order to obtain the existence of the solutions to the problem (1.1), it is sufficient to
show that the problem (2.2) admits a solution.

We define the Hilbert space H

H = Hy(Q) x LX(Q) x LX(Q % (0,1) X (11, 72))

with inner product

il
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Theorem 2.1. Assume that (Al) and (A3) hold. In addition, h is globally Lipschitz from Hé(Q) into
L*(Q). Then (2.2) has a unique solution

u € C(0, 00; Hy(Q)) N C'(0, 00; LA(Q))

for (ug, vo, fo)F € H.

Proof. First, we will show that the operator A is w-accretive on H. Let U = (£,1,y)",V = (€, 7,7)! €
D(A). Then we get

(A+wDU —(A+whHV,U — Vg = — f V(n—7)V(E - &E)dx + wf V(€ - &)*dx
Q Q
- fg AE - B07 — dx + o fg FG) — F@)n - Pdx
- fg (h(&) = h(©)(n — Mdx + wllp — 7|’

+ fg f p(s)(g(y(x, 1, 5)) — g(3(x, 1, $))ds(n — 7)dx

Ty 1
+ fg f fo H($)Op = Ip)(y = Y)dpdsdx
T) 1
+ wff f su(s)(y — 3)*dpd sdx.
QJn 0

Using Holder’s and Young’s inequalities, we obtain for sufficiently large w and small &,
2112 L; 212 1 ~112
(A+wDHU = (A+whHV, U = Vg 2 well§ - €l - Ellf — &l — Elln —1ll;
.o C _ g
+ wiln = ill; = S lleC)lool = 7l = Ce)lln = 7l
2 - 5 2
- L, fg f u(s)(y(x, 1, 5) — $(x, 1, 5))"dsdx
T1
+ 3 u(y(x, 1,8) — y(x, 1, 5))°dsdx
Q Jr1
AT
> (WC - 7) llg = &ll,
1 2 = ~ 2
5 L u()(x, 1, 5) = y(x, 1, 5))"dsdx
Q Jr1

C 1
+ (w = Sl = 5 - C(s)) Il = ll3

>0,

where L, and L, are Lipschitz constants for & and g, respectively. Thus A is w-accretive.
Next, we will show that A +wl is a maximal monotone operator. To this end, it is sufficient to show
that R(AI + A) = H for sufficiently large constant A.
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Given (k,I,m) € H, We seek U = (£,n,y)! € D(A) satisfying

M-n=k 2.3)
7 A& + o fn) + f ()0, 1, $)ds — h(E) = 1, (2.4)
Ay + s_lyp =m. (2.5

From (2.3) and (2.5) with y(x, 0, s) = n(x), we have y(x, 1, 5) = n(x)e™" + X, , where

1
X, := se™¥ f m(x, 7)™ dr.
0

Hence, by (2.4) we obtain

Ty == o s pofm+ [ ugn00e " + Xoyds — Ky = 14 Taw,
We will show that T : Hy(Q) — H™'(Q) is surjective. Let 7 := ne™* + X, and let
B =pof(m),
cn=-om+ [ " uCwrginds + an - )

It easy to see that B is maximal monotone. From the fact that g and % are global Lipschitz, and Al — %A
is continuous and coercive, we infer that, for large constant 4 > 0,

1 +k +k
(€1 = Citauy = 12), = Ay = mally + ==y + Arpo, 1 = 1)1z = (h("‘ ) — h('” )1 — )
L2

+ ( f u($)(g(iy) — g(ia))ds, my — 772)
LZ

T1

T2
> Al = mally = Lellu(s)lleo f e dslim = mll

T1
2

1 c
2 2 2
2/12||771 i — 5”771 -l + /—l||771 — Ml

>0,

where c is positive constant. Therefore C is maximal monotone operator and coercive. Thus B + C is
maximal monotone, which implies that T is surjective. So we obtain

+k
f—n € Hy,

y(x, p, 5) = n(x)e™ ¥ + se‘ﬂpsf me'dr e [* (Q x (11,72) ; H' (0, 1)) ,
0

y(x,0,s) =nx),
—A§=1—An—pof(n) - f u($)g (g 0(x, 1,1, 5) ds + h (§) € L* (Q).

T1
Thus we have (¢, 7, y)T € D(A), consequently, the operator A + wl is maximal monotone.
From the fact the density of D(A) in H and the nonlinear semigroup theory [2, 20], the proof of
Theorem 2.1 is completed. O
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2.2. Locally Lipschitz source

In this subsection, we loosen the globally Lipschitz condition on the source by allowing 4 to be
locally Lipschitz continuous. We first introduce the Legendre transformation. Let G* be conjugate of
convex function G . It is defined by G*(s) = sup,p, (st — G(?)). G* is called Legendre transform of G .

By definition, we have
G'(s) = 5(G) ' (5)-G|(G) " (9], V¥s=20,

and
st <G*(s)+G(@), Vs,t>0.

By the assumption (A4) and (2.6), we obtain

G (g ((x, 1,1,5)) = y(x, 1,1, 9)g (¥(x, 1,1, 5)) — G (y(x, 1,1, 5))
< (1 —apylx, 1,t8)g (v(x, 1,t,5)).

Let us define functional

1 T) 1
f0 = f 2 + |Vuldx + & f f f GO, 1, $))dpdsdx,
Q Q JT 0

1l -«
L8] oo-
a

where

&o >

To estimate this subsection, we need the following additional assumption:

T2
o — Eoaa(ta —11) — a/gf u(s)ds > 0.

Tl

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Theorem 2.2. Assume that (Al), (A3), (A4), (2.10) and (2.11) hold, and let h - Hé(Q) — L*(Q) be
local Lipschitz continuous function. Then (1.1) has unique local solution for (uo, vy, fy) € H such that

u € C0, Tra; Hy(Q)) N CH(O, T L ().

Proof. Define
h(u), if  lullm <k,

h( fu ) it > k.

Tl 1

where k is a positive constant. With this truncated function /;, we consider the following problem:

Uy = Au+ pro f(uy) + j: u(s)g (v(x, 1,1, ) ds = hp(u) ~ in - Qx(0,00),

u=0 in 0Q x(0,0),

u(0) =uy € Hé(Q) and  u,(0) = u; € L*(Q) in Q.

(2.12)

Since hy : Hy (Q) — L*(Q) is global Lipschitz with Lipschitz constant L, for each k (see [9]), by
Theorem 2.1, the problem (2.12) has a unique solution u; € C(0, 00; Hj(2)) N C'(0, co; L*(Q2)). To
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simplify the notation in the rest of the proof, we shall express u; as u. We will use the following
. T
notation: fQ = fo fg, dQ = dQud:t.

Multiplying (2.12) by u,, we obtain

1d 2
5= (19l + ) + f Fluuidx + f f u(s)u(x, g (v, 1,1, ) dsdx = f hi(uidx.
t Q Q Q

71
Since

d 10) 1 - 1 d
S0 f f f sG (y(x, p, 1, 5)) dpdsdx = =& f f f —G (y(x,p, 1, 8)) dpdsdx
dt QJ1 0 Q Jr 0 dp

==& f sz (G ((x, 1,1, 5) —G((x,0,t,5))]dsdx,
Q J1

we have

1d
5 7 (190l + ) + 60— f f f 5G O(x. .1, 5)) dpdsdx

:—,uoff(u,)utdx—ff u(su,(x, g (y(x, 1,1, s))dsdx+fhk(u)utdx (2.13)
Q Q Jr Q

—& f frz[G(y(x,l,t, ) — G 5(x. 0.1, s))]dsdx.
QJr

Integrating (2.13) over (0,T) and using (2.9), we get

&(T) = £0) = —uo f S (u)udQ — f f p($)uy(x, 1)g (y(x, 1,1, 5)) dsdQ + f hi(W)u,dQ
Q Q

QJr

& f f (G O(x, 1, 8)) - G (5(x, 0, $)]dsdQ.
QJr

By using (2.7) and (2.8), we deduce that

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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£(T) - £0) <~y fQ FuudQ - fQ f " (s 0g O, 1,1, 8)) dsdQ + fQ (), dQ
+ &0 fQ f " e )dsdQ — oo fQ f " 1, 9860k 1,1, 5)) dsdQ
< 1o fQ FudQ + & fQ f " fu)dsdQ
+ fQ f " UG + G (18 0(x, 1,1, ) DIdsdQ + fQ hy(uu,dQ

] f sz y(x, 1,1, 5)g (y(x, 1,¢,5))dsdQ
QJm

< o fQ FuudQ + £ns fQ f e f(0)dsdQ + fQ f (s fu)dsdQ  (2.14)

+ff72u(S)(1 —a)y(x, 1,1,5)g (y(x, 1,1, 5)) dsdQ
QJr
- éoa; f f N y(x, 1,8, 8)g (v(x, 1,1, 5) dsdQ + f hi(u)u,dQ
QJm Q
= - [Mo — &t — 1) — a/zf ,U(S)ds] f Sfu)u,dQ
T Q

+ f f (lu(s)(l - al) - goal)y(x’ 1’t’ S)g ()/(X, 1, z, S)) deQ
QJm

+ f h(w)u,dQ.
Q

From the assumptions (2.10), (2.11), and using the Young inequality, (2.14) is rewritten as
1 2 2
5 (B + DI ) < f Iy, dQ + £(0)
QT
< f @l luacll2dr + £(0)
° T T
< Lh(k)fo lletll g1 1ot |2t + fo 17 (O) |2l l2d + £(0)

T
< (Li(k) + 1)f lull2, + ludlzdt + Cy, T + £(0).
0
Hence, by Gronwall’s inequality, we obtain
(Il + @I, ) < (2£0) +2C, T) & O,

If we choose T such that 2£(0) + 2C;,, T < k?, there exists

1 K2
T; = min{ T, 1
‘ mm{ 2(L2k) +1) n(2§(0)+2ChkT)}

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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such that ||u(?)||;n < k for all # < T. Hence the original problem same as problem (2.12) for ¢t < Ty. By
repeating the same process with initial data u(7}) and for large k, we have maximal time 7,,,,. Thus
the proof of Theorem 2.2 is completed. O

3. Asymptotic behavior

In this section, we prove the global existence and energy decay of the solutions to the problem (1.1)
when

h(u) = ulul’™ 2 <p< if n>3, 2<p<oo if n=1,2.

Since A : Hé (Q) — L*(Q) is locally Lipschitz, Theorem 2.2 allows of this polynomial growth source.
In the following section, the symbol C is a generic positive constant, which may be different in various
occurrences. The energy associated to the problem (1.1) is defined by

1 1 A 1
E(®) = =llull5 + <[IVull5 + & f f f sG(y(x, p, 1, s))dpdsdx — —|lull}.
2 2 aJdr Jo P

Then from (2.13) and (2.14), we have

E0) = 1o f Fluundx - f f " i 0g 0, 1,1, ) dsdx
Q Q

1

_ é:() f fTZ[G (Y(X, l,t, S)) — G(y(x’ O, f, S))]dex
aJn

T2
<- [,Uo = &oaa(T2 — 71) — Clzf ﬂ(S)dS] f S (uudx (3.1)
T Q
T2
+ f f (u(s)(1 — 1) = Soar) y(x, 1,1, )g (v(x, 1,1, 5)) disdx
Q Jr1
<0,
which implies that E(7) is a nonincreasing function.
We now set
— 1 > 1 P
J(w) = S|IVull, I—)Ilull,,,
1) = [Vull3 = ull;
and

N ={ue Hy(Q) : I(u) = 0,]|Vull, # 0}.
Then we know that [18]

2

1 . p —_ 2 1 p-2
d= inf supJ(Au) =inf J(u) = ( ) ’
ueH}(€Q)/10} AZ(I)) ueN 2p Cf
where "y
u
C, = P
IVull

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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From the relationship J(u) = %I(u) + ”z—jllullﬁ, the energy E(t) is rewritten as

Ty 1
E(t) = %llutu2 + ) + & f f f sG(y)dpdsdx
Q T 0

) (3.2)
1 , 1 p—-2 » ™2
= illuzll + El(u) + 2 lluell + &o 0l s sG(y)dpdsdx.
Lemma 3.1. If E(0) < d and I(ug) > 0, then I(u(t)) > 0 for all t € [0, T x).
Proof. The proof is same as that of [17, Lemma 4.1], so we omit it here. m]

Theorem 3.1. Under the assumptions on Theorem 2.2 and Lemma 3.1, (1.1) has a unique global
solution for (uy, vo, o) € H.

Proof. It suffices to show that ||u,||§ + ||Vu||§ is bounded independent of ¢. By Lemma 3.1 and (3.2), we
get
llul? < 2E(r) < 2E(0) < 2d

and
-2 -2 -2
P2\ vl < 2221wy + 222 qll? < 2E(r) < 2E(0) < 2d.
2p 2p 2p 7
O
Under the assumption Lemma 3.1 and by definition of energy, we easily obtain
) -1
lul? < (2= + €] E@), fort 20, (3.3)
p 2p

where € is a for some sufficiently small positive constant. Now we recall the technical lemma which
will play an essential role when establishing the energy decay.

Lemma 3.2. (see [5]) Let E : R, — R, be a non-increasing differentiable function and ¥ : R, — R,
be a convex and increasing function s.t ¥(0) = 0. Assume that

T
f Y(E(t))dt < CE(S), VY0<S <T, forsome positive constant C.
s

Then E satisfies the following estimate:
E(t) <y ' (h(t) + y(E0))), Vt>0,

where (1) = [ ghsds for 1> 0,h(t) = 0for 0 < 1 < 559 and

Yt + Y(E(0))

h () = ,
=1 G G+ wEO))

Yt > 0.

Thanks to [3] idea, we obtain following theorem.

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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Theorem 3.2. Under the assumptions on Theorem 3.1, we obtain the following energy decay property:
E@®) <y~ (h(t) + y(E0))), Vt>0,

1 _ E(0)
W(S)dsfor t>0,h(t) =0for0<t< o EO) and

where Y(t) = ft]

Yt + Y(E(0))

@) =1+ , Vt>0
we (Y1t + Y(E(0))))
for some positive constant w, and
K if H islinearon [0,v],
@(s) =
sH'(gps) if H'(0)=0 and H’">0 on (0,v]

for some positive constant €.

Proof. We multiply the first equation of (2.1) by A@u where A = 72, and then integrate the
obtained result over (S, T) x Q. Then we have

T E T E 4 E
0-4 [Mm g] 4 f Al -4 [ (%) ()t + A f X \ulRr
S S S

+,u0Af Mfuf(u,)dxdt+Af @ffm,u(s)ug(y(x,l,t, s))dsdxdt
Q S E Q Jr;

E
—Af AN
S

Similarly, multiplying the second equation of (2.1) by &=
(S,T)x QX% (1r1,72) X (0,1), we obtain

T ) 1
0=¢o [ B2 [ [ [ setem+ e e0mdpdsdsa
N E QJr1 0
19 1 T
:§o[¢(E) f f f se_ZSpG(y)dpdsdx] - & f ("D(E)) f f f se *PG(y)dpd sdxdt
E Q Jr1 0 S
T 19) 1
+ & [ f @ f f e_ZSpG(y)dsdxdt] + 2&, f @ f f f se G (y)dpd sdxdt.
S E Q T1 0 S E Q T1 0

Combining the above two equations, we get the following equation:

#8) o=259g(y(x, p, 1, 5)), and integrating over

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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T

T
2Af go(E)dtSZAf PE) iR - ["D( ), ,)] +Af (‘p( )) (u, uy)dt
S S S S E
T 19)
—,uOAf @fuf(u,)dxdt—Af @ff u(Hug(y(x, 1,t, s))dsdxdt
T
L P 2)Af <p(E)|| s go[so( )ff fse zApG(y)dpdsdx]
f (SD(E)) f f f se 2P G(y)dpdsdxdt
E ,
—go( f % f f [eG((1) - GO))| dsdxdt)
S QJn

=h+L+L+Li+ 15+ 1o+ 1+ I+ 1.

(3.4)
Now we are going to estimate terms on the right hand side of (3.4).
From (3.2) and (3.3), we have
~2)A E ~DA(p-2 \' (T
J= P =2 f 5, [ (P=2) (p + e) f Q(E)dt. (3.5)
p s p 2p s

We know by assumption of ¢(s), &;) is nondecreasing and E is nonnegative and decreasing. Also
by using Young’s inequality and Poincaré inequality, we obtain

T
L:=-A [@(u, ut)]
s

E
P(ET)) (E(S))
—A BT w(T), u(T)) + 7S " w(S), ul(S)) (3.6)
(E(T)) (E(S))
<C1 ET) E(T) + B T FE(S)

< Co(E(S)).

T ’ T
L = Af (@) (u, u;)dt < Cf
s E s

T T ( )
<C f ~(E)E'dt + C f —(’D—E dt < Co(E(S)).
S S

T o(E
14 1=A'—,Uo f “0 f uf(up)dxdt
S Q

T
< [ 2 (elmal + ol flR) (3:8)
N

¢ (E)E'E — (E)E’

= Edt

3.7

T T
< Ce f ©(E)dt + C f @nf(u,)ngdz.
S S E

AIMS Mathematics Volume 8, Issue 5, 10513-10528.
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Since g is a nondecreasing odd Lipschitz function and 22(y(x, 1,1, 5) < Log(y(x, 1,2, 8))y(x, 1,1, 5), we
have

IIs| = ‘ f #(E) f f w(s)ug(y(x, 1,1, $))dsdxdt
<C f #(E) f f Vul? dsdxdt + C(s) f #(E) f f SO(x, 1,1, 5))dsdxdr
SCsfS %)fn E(t)dsdt+CfS (TE)L —E'(t)dsdt

T
< Ca‘f @(E)dt + Cp(E(S)).
s

To 1 T
I ==& [cp(EE) j; f f(; se” 2P G(y)dpdsdx]
T S

_ g ZES) [ _LeED) [,
= &o ES) LL Lse G(y(S))dpdsdx — & ET) LL £S€ *G(y(T))dpdsdx

< Co(E(S)).

(3.9)

(3.10)

Iy = & f (‘P(E>) f f f s G (y)dpdsdxd < & f (‘”( )) E(ndt < Co(ES)).  (3.11)
S

By assumption (A4) and (3.1), we obtain

T E T2
=g [ 22 [ [ 600y - ooy asaxa)
S QJ7

T o (3.12)
< C.fof @ f f f(uu,dsdxdt < Cfof M( E’())dt < Co(E(S)).
S QJr
Replacing (3.5)—(3.12) in (3.4) and taking € sufficiently small, we arrive at
T
fs @(E)dt < Ce(E(S)) +C fs X e + € fs X e, (3.13)

We are now going to estimate the last two terms of right-hand side of (3.13). We consider the two
cases with respect to the conditions on H.
Case 1. H is linear on [0, v].

From the assumption (A2) and the definition of the energy E(¢), we have

f ) gizar < f AL f e fu)dxd < C f O Bt < ColES))
N

Put
Qi ={xeQ:lu|>v}, Qo={xeQ:|ul| <v}.
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By assumption (A1), (A2) and using (3.1), we have

T
E
fs ENfiRdr

T T
- [ 82 [ veraxd+ [FE2 [ iR dsa
S Q S (93

T T
< max{M,, M) f ) [ cwydxdt + €, f @ f Fayd dxdt
Q

N E Q N

T
<C2f @ff(u')u'dxdt
s E Ja
T
e(E) .,
<C2fs T(_E)dt
< Cp(E(S)).

Case 2. H'(0) = 0,H” > 0 on (0, v]. By the assumption (A2), we obtain

T r T
[ 22 [ s wrasasc [FE2 [ upwad < c [ B2 Ean < oo
S E Q S E Q N E

On the other hand, by applying Jensen’s inequality for concave function we deduce that
T T
(E) (E) -
f d ul? + 1 f)ldxdr < | E22 | H ', fu))dxdt
S E (953 S E Q

T
o(E) . 1
< Cf; 3 H (meas(Qg) o u,f(u,)dx) dt.

By using Legendre transform (2.6) and (2.7) for H and ¢(s) := sH’(&ys), we obtain

T T T
o(E) 1 . [P(E)
fs —H (meas( 5 )., u,f(u,)dx)dtsC fs H (T)dt+C fs fQ u, f (u,)dxdt

T
SSocf @(E)dt + CE(S).
s

Therefore, choosing &; small enough we get in both cases

’ E(S
f @(E)dt < C(E(S)+ @(E(S))) < C(l + %) E(S) < CE(S).
s
Thus, applying Lemma 3.2 with ¥ (¢) = w¢(t), the proof of Theorem 3.2 is completed. O
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