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1. Introduction

Over the past few years, neural networks (NNs) and their generalizations have attracted
considerable attention for their ability to address the problems involving associative memory, secure
communications, signal and image processing, optimization, and others [1–4]. In 1987, Kosko created
a significant type of two-layer hetero-associative memory network named bidirectional associative
memory (BAM) NNs [5]. Then, BAM NNs have attracted significant attention due to their wide
range of applications, such as data mining, pattern recognition, automatic control, and others [6–8]. In
recent years, several theoretical studies regarding various dynamics of BAM NNs based on Lyapunov-
Krasovskii functionals (LKFs) and linear matrix inequalities (LMIs) have been published [9–17].

There is no doubt that real-, complex-valued NNs have been successfully applied to a variety of
engineering applications [18–23]. However, these two NNs have some limitations when it comes
to symmetry detection and high-dimensional data problems [24]. In order to address these issues,
some scholars have developed quaternion-valued NNs by incorporating quaternions into standard
NNs. Moreover, quaternion-valued NNs have shown superior performance than real-, complex-
valued NNs because of their general representation and high-efficiency [25–27]. Therefore, the
research on quaternion-valued NNs has become a popular topic in modern science [28–31]. Recently,
several researchers have investigated various dynamics of quaternion-valued NNs using LKFs and
LMI methods [15, 16, 29–31]. Particularly, by utilizing homeomorphism principle and the Lyapunov
stability method, the global µ-stability analysis for quaternion-valued NNs with unbounded distributed
delays has been investigated in [29], besides the quaternion-valued NNs are decomposed into two
complex-valued NNs. By applying the direct quaternion method and LMI algorithm, new stability
conditions for neutral-type quaternion-valued NNs with discrete delays were established in [30]. Some
exponential stability criteria of quaternion-valued discrete-time NNs with leakage and discrete delays
were presented in [31]. There are similar results to be found in [15, 16].

In [32], Takagi-Sugeno (T-S) proposed the fuzzy systems, which have been effectively utilized for
modeling and analyzing complex nonlinear systems [32, 33]. The T-S fuzzy system has the advantage
of being able to approximate a nonlinear system with a set of linear models. It should be noted that,
unlike typical NN structures, T-S fuzzy NNs have fuzzy operations, and they are able to preserve
the direct correlation between the cells. Due to their good approximation properties, T-S fuzzy NNs
have proved to be an important research topic. Many papers have proposed the idea of incorporating
fuzzy logic into the NNs in order to enhance their performance [34–37]. For example, by considering
impulsive effects and time delays, the authors of [36] have determined the exponential convergence for
T-S fuzzy complex-valued NNs.

On the other hand, time delays inherently occur in NN implementations, and they can cause
undesirable system behaviors. Therefore, it is essential to study how delays affect the system’s
dynamics. Recently, various time delays have been extensively studied in a variety of dynamic
models, especially in control theory [38–40]. Furthermore, there are two types of stability criteria that
are associated with delayed NNs: delay-dependent stability criteria and delay-independent stability
criteria. Recently, delay-dependent stability criteria have received significant attention compared to
delay-independent criteria because of their practical importance [41, 42]. On the other hand, the main
purpose of delay-dependent stability criteria is to obtain less conservatism of the obtained results.
Generally, there are two factors that contribute to less conservative stability conditions, namely the
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augmented LKFs and the tighter bound integral inequalities. Recently, a number of studies have
developed various integral inequalities in order to handle integral terms in the real domain [44–46].
However, only Jensen’s inequality has been utilized since the beginning to deal with integral terms
in the quaternion domain. To fill such gaps, a new quaternion-valued integral inequality has been
developed in this paper, which includes the famous Wirtinger-based integral inequality (WBII) [44]
and the reciprocal convex combination (RCC) lemma [43].

Following the above discussions, in this paper, we aim to investigate the global asymptotic stability
of quaternion-valued T-S fuzzy BAM NNs by applying the direct quaternion method. There are several
results discussed in the literature regarding various stability problems of quaternion-valued BAM NNs,
however, quaternion-valued T-S fuzzy BAM NNs have not been fully explored and are not receiving
much attention, which motivates us to investigate this topic. This paper has the following main merits:
1) To represent more realistic dynamical behaviors of quaternion-valued NNs, we present a general
form of the quaternion-valued T-S fuzzy BAM NNs with time delays for the first time in this paper.
2) The direct quaternion method is employed to examine the global asymptotic stability of quaternion-
valued T-S fuzzy BAM NNs for the first time in this paper. 3) By considering suitable LKFs that
contain double integral terms and by employing newly developed quaternion-valued WBII, enhanced
stability conditions for the concerned NN model are derived in the form of quaternion-valued LMIs,
which could be verified directly by MATLAB YALMIP toolbox. 4) The proofs for the quaternion-
valued WBII and quaternion-valued RCC lemma are presented for the first time in this paper.

The paper is structured as follows: Section 2 provides the problem model, definitions of global
asymptotic stability, assumptions about activation functions and time-varying delays, and some useful
lemmas. The results of this study are stated in Section 3; Theorem (3.1) presents sufficient criteria for
the existence and uniqueness of the equilibrium point; Theorem (3.2) provides sufficient criteria for
the global asymptotic stability of the considered network models. In Corollary (3.4), (3.6), the results
of stability criteria are discussed in a special case. Section 4 discusses two numerical case studies that
demonstrate the feasibility of the derived results. Section 5 shows the conclusion of this paper.

2. Mathematical formulation and problem definition

2.1. Notations

Let the set of all quaternion, complex, and real numbers are denoted by H,C and R, respectively.
The symbols Hn,Cn and Rn stand for n-dimensional quaternion, complex and real vectors, respectively.
The quaternion, complex and real matrices of size n× n are represented by the symbols Hn×n,Cn×n and
Rn×n, respectively. Let the matrix P < 0 (P > 0) means P is negative (positive) definite matrix.
The block diagonal matrix is shown in diag{·}. The conjugate transposition and matrix transposition,
respectively, are denoted by the superscripts ∗ and T . The symmetric term in a matrix is showed by ⋆.

2.2. Quaternion algebra

The quaternion was first invented by Hamilton in 1843. The skew field of a quaternion is denoted
by

z = zR + izI + jzJ + kzK ∈ H,
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where zR, zI , zJ, zK ∈ R, z is the quaternion-valued input and i, j, k are the quaternion basis which
subjects to Hamilton’s multiplication rules as follows:

k2 = j2 = i2 = −1
jk = −k j = i, ki = −ik = j, i j = − ji = k.

The conjugate of the quaternion as follows:

z̄ = zR − izI − jzJ − kzK ∈ H.

The modulus of the quaternion as follows:

|z| =
√

zz̄ =
√

(zR)2 + (zI)2 + (zJ)2 + (zK)2.

Let x = xR + ixI + jxJ + kxK ∈ H and y = yR + iyI + jyJ + kyK ∈ H. The addition and multiplication of
two quaternions can be accomplished as follows:

x + y = (xR + yR) + i(xI + yI) + j(xJ + yJ) + k(xK + yK),
xy =

(
xRyR − xIyI − xJyJ − xKyK) + i

(
xRyI + xIyR + xJyK − xKyJ)

+ j
(
xRyJ + xJyR − xIyK + xKyI) + k

(
xRyK + xKyI + xIyJ − xJyI).

2.3. Problem formulation

In this paper, we consider the quaternion-valued BAM NNs with time-varying delays as follows:

ṗr(t) = −d1r pr(t) +
m∑

s=1

a1rs f1s(qs(t − ℓ(t))) + J1r, r = 1, 2, ..., n,

pr(t) = φ1r(t), t ∈ [−ℓ, 0],

q̇s(t) = −d2sqs(t) +
n∑

r=1

a2sr f2r(pr(t − ℓ(t))) + J2s, s = 1, 2, ...,m,

qs(t) = φ2s(t), t ∈ [−ℓ, 0],

(2.1)

or equivalently 
ṗ(t) = −D1 p(t) +A1 f1(q(t − ℓ(t))) +J1,

p(t) = φ1(t), t ∈ [−ℓ, 0],
q̇(t) = −D2q(t) +A2 f2(p(t − ℓ(t))) +J2,

q(t) = φ2(t), t ∈ [−ℓ, 0],

(2.2)

where p(t) = [p1(t), ...., pn(t)]T ∈ Hn, q(t) = [q1(t), ..., qm(t)]T ∈ Hm are the state vectors; f1(q(·)) =
[ f11(q1(·)), ..., f1m(qm(·))]T ∈ Hm, f2(p(·)) = [ f21(p1(·)), ..., f2n(pn(·))]T ∈ Hn are the vector valued
activation functions; J1 = [J11, ..., J1n]T ∈ Hn, J2 = [J21, ..., J2m]T ∈ Hm are the input vectors.
D1 = diag{d11, ..., d1n} ∈ Rn×n, D2 = diag{d21, ..., d2m} ∈ Rm×m are the self-feedback connection
weight matrices with each d1r > 0, d2s > 0, r = 1, ..., n, s = 1, ...,m. A1 ∈ Hn×m,A2 ∈ Hm×n are the

AIMS Mathematics Volume 8, Issue 5, 10486–10512.



10490

delayed interconnection weight matrices. φ1 ∈ C ([−ℓ, 0],Hn) and φ2 ∈ C ([−ℓ, 0],Hm) are the initial
conditions.

This paper assumes that the activation functions f1(q(t−ℓ(t))), f2(p(t−ℓ(t))) and transmission delays
ℓ(t) satisfy the following conditions:

Assumption 1: The activation functions f1s and f2r are Lipschitz continuous; that is, there exist
positive constants l f1

s > 0, l f2
r > 0, such that for all r = 1, 2, ..., n, s = 1, 2, ...,m

| f1s(x) − f1s(y)| ≤ l f1
s |x − y|, ∀x, y ∈ H,

| f2r(x) − f2r(y)| ≤ l f2
r |x − y|, ∀x, y ∈ H.

Furthermore, we define L f1 = diag{l f1
1 , l

f1
2 , ..., l

f1
m }, L f2 = diag{l f2

1 , l
f2
2 , ..., l

f2
n }.

Assumption 2: The delay ℓ(t) : R→ R is differentiable and bounded, which satisfy the conditions
0 ≤ ℓ(t) ≤ ℓ, ℓ̇(t) ≤ µ < 1, where ℓ and µ are real numbers.

2.4. Preliminaries

In order to derive our main results, we present some definition and lemmas.

Definition 2.1. For the NN model (2.2) with any initial conditions φ1 ∈ C ([−ℓ, 0],Hn) and
φ2 ∈ C ([−ℓ, 0],Hm), the trivial solution is called globally asymptotically stable (GAS) if
lim

t→+∞

{
∥p(t, φ1)∥2 + ∥q(t, φ2)∥2

}
= 0, where p(t, φ1) and q(t, φ2) are the solutions of NN (2.2) at time t

under the initial conditions φ1 and φ2, respectively.

Lemma 2.2. [47] For any vectors p, q ∈ Hn and a scalar ϵ > 0, then the following inequality holds:
p∗q + q∗p ≤ ϵp∗p + ϵ−1q∗q.

Lemma 2.3. [47] LetH(p, q) : Hn+m → Hn+m is a continuous map that fulfills the following criteria:
(i)H(p, q) is injective on Hn+m,
(ii) ∥H(p, q)∥ → ∞ as ∥(p, q)∥ → ∞, thenH is homeomorphism of Hn+m onto itself.

Lemma 2.4. [48] Let α, β ∈ H; X,Y ∈ Hn×n and Hermitian matrix 0 < P ∈ Hn×n, then

(1) |α + β| ≤ |α| + |β| and |αβ| = |βα| = |α||β|,
(2) (X)T =

(
XT ),

(3) (XY)∗ = Y∗X∗,
(4) (XY)−1 = Y−1X−1, if X and Y are invertible,
(5) (A∗)−1 =

(
A−1)∗, ifA is invertible,

(6) Any quaternion α can be formulated uniquely as α = γ1 + γ2 j, where γ1, γ2 ∈ C,
(7) jγ = γ j or jγ j∗ = γ, for all γ ∈ C,
(8) There exist an invertible matrixZ ∈ Hn×n, i.e. P = Z∗Z.

Lemma 2.5. [49] Let X,Y ∈ Hn×n; X1,X2,Y1,Y2 ∈ Cn×n and X = X1 + X2 j, Y = Y1 +Y2 j. Then

(1) X∗ = X∗1 − X
T
2 j,

(2) XY = (X1Y1 − X2Y2) + (X1Y2 + X2Y1) j.
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Lemma 2.6. [50] A Hermitian matrix W = WR + iWI + jWJ + kWK ∈ Hn×n, then W < 0 is
equivalent to 

WR −WJ −WI WK

WJ WR WK WI

WI −WK WR −WJ

−WK −WI WJ WR

 < 0.

whereWR = Re(W),WI = Im(W),WJ = Im(W) andWK = Im(W).

Remark 2.7. As indicated in Lemma (3.3), the n × n Hermitian matrix equals the 4n × 4n real matrix.
With the aid of this lemma, it is possible to transform the quaternion-valued LMIs into the real-valued
LMIs and vice versa.

Lemma 2.8. (Quaternion-valued WBII) For every differentiable function w : [a, b] → Hn and
Hermitian matrix 0 <W =WR + iWI + jWJ + kWK ∈ Hn×n, the following criteria holds:∫ b

a
w∗(s)Ww(s)ds ≥

1
b − a

[
ζ1

ζ2

]∗ [
W 0
0 3W

] [
ζ1

ζ2

]
,

where

ζ1 =

∫ b

a
w(s)ds,

ζ2 =

∫ b

a
w(s)ds −

2
b − a

∫ b

a

∫ b

u
w(s)dsdu.

Proof: Let w(s) = wR(s) + iwI(s) + jwJ(s) + kwK(s) ∈ H, ζ1 = ζR
1 + iζ I

1 + jζ J
1 + kζK

1 ∈ H, ζ2 =

ζR
2 + iζ I

2 + jζ J
2 + kζK

2 ∈ H,W =WR + iWI + jWJ + kWK ∈ Hn×n, whereW∗ =W⇔ (WR)T =WR,
−(WI)T =WI , −(WJ)T =WJ, (WK)T = −WK . Using Lemma (2.6) and WBII [44], we get

∫ b

a
w∗(s)Ww(s)ds =

∫ b

a


wR(s)
wI(s)
wJ(s)
wK(s)


T 
WR −WJ −WI WK

WJ WR WK WI

WI −WK WR −WJ

−WK −WI WJ WR



wR(s)
wI(s)
wJ(s)
wK(s)

 ds,

≥
1

b − a



ζR
1
ζ I

1
ζ J

1
ζK

1
ζR

2
ζ I

2
ζ J

2
ζK

2



T 

WR −WJ −WI WK 0 0 0 0
WJ WR WK WI 0 0 0 0
WI −WK WR −WJ 0 0 0 0
−WK −WI WJ WR 0 0 0 0

0 0 0 0 3WR −3WJ −3WI 3WK

0 0 0 0 3WJ 3WR 3WK 3WI

0 0 0 0 3WI −3WK 3WR −3WJ

0 0 0 0 −3WK −3WI 3WJ 3WR





ζR
1
ζ I

1
ζ J

1
ζK

1
ζR

2
ζ I

2
ζ J

2
ζK

2


,

=
1

b − a

[
ζ1

ζ2

]∗ [
W 0
0 3W

] [
ζ1

ζ2

]
.
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Lemma 2.9. (Quaternion-valued RCC lemma) For any vectors ζ1, ζ2 ∈ Hn, Hermitian matrix 0 < E ∈

Hn×n, any matrix F ∈ Hn×n and any α ∈ (0, 1), such that
[
E F

F ∗ E

]
≥ 0, the following criteria holds

1
α
ζ∗1Eζ1 +

1
1 − α

ζ∗2Eζ2 ≥

[
ζ1

ζ2

]∗ [
E F

F ∗ E

] [
ζ1

ζ2

]
.

Proof: Let ζ1 = ζ
R
1 + iζ I

1+ jζ J
1 +kζK

1 ∈ H; ζ2 = ζ
R
2 + iζ I

2+ jζ J
2 +kζK

2 ∈ H; E = ER+ iEI+ jEJ+kEK ∈ Hn×n,
where E∗ = E ⇔ (ER)T = ER, −(EI)T = EI , −(EJ)T = EJ, (EK)T = −EK; F = F R + iF I + jF J + kF K ∈

Hn×n. Using Lemma (2.6) and RCC lemma [43], we get

1
α
ζ∗1Eζ1+

1
1 − α

ζ∗2Eζ2 =
1
α


ζR

1
ζ I

1
ζ J

1
ζK

1


T 
ER −EJ −EI EK

EJ ER EK EI

EI −EK ER −EJ

−EK −EI EJ ER



ζR

1
ζ I

1
ζ J

1
ζK

1


+

1
1 − α


ζR

2
ζ I

2
ζ J

2
ζK

2


T 
ER −EJ −EI EK

EJ ER EK EI

EI −EK ER −EJ

−EK −EI EJ ER



ζR

2
ζ I

2
ζ J

2
ζK

2

 ,

≥



ζR
1

ζ I
1

ζ J
1

ζK
1

ζR
2

ζ I
2

ζ J
2

ζK
2



T 

ER −EJ −EI EK F R −F J −F I F K

EJ ER EK EI F J F R F K F I

EI −EK ER −EJ F I −F K F R −F J

−EK −EI EJ ER −F K −F I F J F R

(F R)T (F J)T (F I)T −(F K)T ER −EJ −EI EK

−(F J)T (F R)T −(F K)T −(F I)T EJ ER EK EI

−(F I)T (F K)T (F R)T (F J)T EI −EK ER −EJ

(F K)T (F I)T −(F J)T (F R)T −EK −EI EJ ER





ζR
1

ζ I
1

ζ J
1

ζK
1

ζR
2

ζ I
2

ζ J
2

ζK
2


,

=

[
ζ1

ζ2

]∗ [
E F

F ∗ E

] [
ζ1

ζ2

]
.

3. Main results

This section presents new sufficient criteria to ensure the global asymptotic stability of the
considered NN model based on the LKFs and LMI method, as well as quaternion-valued WBII.

3.1. Existence and uniqueness of the equilibrium point

In this subsection, we discuss sufficient criteria that guarantee the existence and uniqueness of the
equilibrium point for NNs (2.2).

Theorem 3.1. Under Assumptions 1 and 2, the NN model (2.2) has a unique equilibrium point if there
exist positive definite Hermitian matrices 0 < P1, 0 < P2, and diagonal matrix 0 < G1, 0 < G2, such
that the following LMIs hold: [

−P1D1 −D1P1 +L
∗
f2
G2L f2 P1A1

⋆ −G1

]
<0, (3.1)
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−P2D2 −D2P2 +L

∗
f1
G1L f1 P2A2

⋆ −G2

]
<0, (3.2)

Proof: Define the functionH(p, q) : Hn+m → Hn+m by

H(p, q) = −
[
D1 0
0 D2

] [
p
q

]
+

[
A1 0
0 A2

] [
f1(q)
f2(p)

]
+

[
J1

J2

]
. (3.3)

We start by demonstrating that H(p, q) is injective. Assume by contradiction that there exist
[
p
q

]
,[

p′

q′

]
∈ Hn+m,

[
p
q

]
,

[
p′

q′

]
, such thatH(p, q) = H(p′, q′), or equivalently

H(p, q) −H(p′, q′) = −
[
D1 0
0 D2

] [
p − p′

q − q′

]
+

[
A1 0
0 A2

] [
f1(q) − f1(q′)
f2(p) − f2(p′)

]
= 0. (3.4)

Pre multiplication on both sides of (3.4) with
[
p − p′

q − q′

]∗ [
P1 0
0 P2

]
, we get

[
p − p′

q − q′

]∗ [
P1 0
0 P2

]
×

(
−

[
D1 0
0 D2

] [
p − p′

q − q′

]
+

[
A1 0
0 A2

] [
f1(q) − f1(q′)
f2(p) − f2(p′)

] )
= 0, (3.5)

that is

− (p − p′)∗P1D1(p − p′) − (q − q′)∗P2D2(q − q′) + (p − p′)∗P1A1( f1(q) − f1(q′))
+ (q − q′)∗P2A2( f2(p) − f2(p′)) = 0. (3.6)

Applying the complex conjugate, we get

− (p − p′)∗D1P1(p − p′) − (q − q′)∗D2P2(q − q′) + ( f1(q) − f1(q′))∗A∗1P1(p − p′)
+ ( f2(p) − f2(p′))∗A∗2P2(q − q′) = 0. (3.7)

By combining (3.6) and (3.7), one has

− (p − p′)∗(P1D1 +D1P1)(p − p′) − (q − q′)∗(P2D2 +D2P2)(q − q′)
+ 2(p − p′)∗P1A1( f1(q) − f1(q′)) + 2(q − q′)∗P2A2( f2(p) − f2(p′)) = 0. (3.8)

From Lemma (2.2), there exist diagonal matrices 0 < G1, 0 < G2, yields

2(p − p′)∗P1A1( f1(q) − f1(q′)) ≤ (p − p′)∗P1A1G
−1
1 A

∗
1P1(p − p′)

+ ( f1(q) − f1(q′))∗G1( f1(q) − f1(q′)), (3.9)
2(q − q′)∗P2A2( f2(p) − f2(p′)) ≤ (q − q′)∗P2A2G

−1
2 A

∗
2P2(q − q′)

+ ( f2(p) − f2(p′))∗G2( f2(p) − f2(p′)). (3.10)

Substituting (3.9) and (3.10) in (3.8), we get

− (p − p′)∗(P1D1 +D1P1)(p − p′) − (q − q′)∗(P2D2 +D2P2)(q − q′)
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+ (p − p′)∗P1A1G
−1
1 A

∗
1P1(p − p′) + ( f1(q) − f1(q′))∗G1( f1(q) − f1(q′))

+ (q − q′)∗P2A2G
−1
2 A

∗
2P2(q − q′) + ( f2(p) − f2(p′))∗G2( f2(p) − f2(p′)) ≤ 0. (3.11)

Based on Assumption 1, we get

( f1(q) − f1(q′))∗G1( f1(q) − f1(q′)) ≤ (q − q′)∗L∗f1G1L f1(q − q′), (3.12)

( f2(p) − f2(p′))∗G2( f2(p) − f2(p′)) ≤ (p − p′)∗L∗f2G2L f2(p − p′). (3.13)

Incorporating (3.11)–(3.13), we get

(p − p′)∗(−P1D1 −D1P1)(p − p′) + (q − q′)∗(−P2D2 −D2P2)(q − q′)
+ (p − p′)∗P1A1G

−1
1 A

∗
1P1(p − p′) + (q − q′)∗L∗f1G1L f1(q − q′)

+ (q − q′)∗P2A2G
−1
2 A

∗
2P2(q − q′) + (p − p′)∗L∗f2G2L f2(p − p′) ≤ 0,

(p − p′)∗(−P1D1 −D1P1 + P1A1G
−1
1 A

∗
1P1 +L

∗
f2G2L f2)(p − p′)

+ (q − q′)∗(−P2D2 −D2P2 + P2A2G
−1
2 A

∗
2P2 +L

∗
f1G1L f1)(q − q′) ≤ 0, (3.14)

which implies that

−P1D1−D1P1 + P1A1G
−1
1 A

∗
1P1 +L

∗
f2G2L f2 < 0, (3.15)

−P2D2−D2P2 + P2A2G
−1
2 A

∗
2P2 +L

∗
f1G1L f1 < 0. (3.16)

Using Schur’s complement can be directly inferred from the criteria which can be immediately deduced
from (3.1) and (3.2). This contradicts that H(p, q) −H(p′, q′) < 0 with initial conditions. Hence the
functionH(p, q) is injective.

Now, we shall show that ∥H(p, q)∥ → ∞ as ∥(p, q)∥ → ∞. We infer that from (3.15), (3.16) and
small constant, ϵ > 0 exist, such that

−P1D1 −D1P1 + P1A1G
−1
1 A

∗
1P1 +L

∗
f2G2L f2 < −ϵIn,

−P2D2 −D2P2 + P2A2G
−1
2 A

∗
2P2 +L

∗
f1G1L f1 < −ϵIm.

Taking (p′, q′) = (0, 0), and using (3.14) and the above relations, we have[
p
q

]∗ [
P1 0
0 P2

]
(H(p, q) −H(0, 0))

≤ p∗(−P1D1 −D1P1 + P1A1G
−1
1 A

∗
1P1 +L

∗
f2G2L f2)p

+ q∗(−P2D2 −D2P2P2A2G
−1
2 A

∗
2P2 +L

∗
f1G1L f1)q

≤ − ϵ(∥p∥2 + ∥q∥2). (3.17)

Using the Cauchy-Schwarz inequality, then (3.17) becomes:

ϵ(∥p∥2 + ∥q∥2) ≤ 2∥(p, q)∥ ∥P1∥ ∥P2∥ (∥H(p, q)∥ + ∥H(0, 0)∥), (3.18)

which gives result that ∥H(p, q)∥ → ∞ as ∥(p, q)∥ → ∞. Hence, the map H(p, q) satisfies all
conditions in Lemma (2.3) and is homeomorphism of Hn+m onto itself. Then, there exist (p∗, q∗) such
thatH(p∗, q∗) = 0, that is, NN (2.2) has a unique equilibrium point (p∗, q∗).
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Let u(t) = p(t) − p∗, v(t) = q(t) − q∗, we can get


u̇(t) = −D1u(t) +A1g1(v(t − ℓ(t))),
u(t) = ϕ1(t), t ∈ [−ℓ, 0],
v̇(t) = −D2v(t) +A2g2(u(t − ℓ(t))),
v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.19)

where g1(v(t− ℓ(t))) = f1(q(t− ℓ(t))+q∗+ J1)− f1(q∗+ J1) and g2(u(t− ℓ(t))) = f2(p(t− ℓ(t))+ p∗+ J2)−
f2(p∗ + J2), ϕ1 = φ1 − p∗, ϕ2 = φ2 − q∗, ϕ1 ∈ C ([−ℓ, 0],Hn) and ϕ2 ∈ C ([−ℓ, 0],Hm) are continuous
functions.

Assumption 3: The activation functions g1s and g2r are Lipschitz continuous; that is, there exist
positive constants lg1

s > 0, lg2
r > 0, such that for all r = 1, 2, ..., n, s = 1, 2, ...,m

|g1s(x) − g1s(y)| ≤ lg1
s |x − y|, ∀x, y ∈ H,

|g2r(x) − g2r(y)| ≤ lg2
r |x − y|, ∀x, y ∈ H.

Furthermore, we define Lg1 = diag{lg1
1 , l

g1
2 , ..., l

g1
m }, Lg2 = diag{lg2

1 , l
g2
2 , ..., l

g2
n }.

3.2. Global asymptotic stability of quaternion-valued T-S fuzzy BAM neural networks

Based on the works [32, 33, 36], the T-S fuzzy delayed quaternion-valued NNs can be described as
bellow.
Plant Rule h:
If {ϑ1(t) is ηh1}, {ϑ2(t) is ηh2}, ..., {ϑg(t) is ηhg}.
Then


u̇(t) = −Dh

1u(t) +Ah
1g1(v(t − ℓ(t))),

u(t) = ϕ1(t), t ∈ [−ℓ, 0],
v̇(t) = −Dh

2v(t) +Ah
2g2(u(t − ℓ(t))),

v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.20)

where the premise variables are ϑc(t), c = 1, ..., g, the fuzzy sets are ηhc, h = 1, ...,m and m is the total
number of If-Then rules.

Hence, the T-S fuzzy quaternion-valued NN can be achieved by inferring from the fuzzy NN model
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(3.20), as follows 

u̇(t) =

m∑
h=1

wh(ϑ(t))
{
−Dh

1u(t) +Ah
1g1(v(t − ℓ(t)))

}
m∑

h=1

wh(ϑ(t))
,

u(t) = ϕ1(t), t ∈ [−ℓ, 0],

v̇(t) =

m∑
h=1

wh(ϑ(t))
{
−Dh

2v(t) +Ah
2g2(u(t − ℓ(t)))

}
m∑

h=1

wh(ϑ(t))
,

v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.21)

or equivalently 

u̇(t) =
m∑

h=1

ψh(ϑ(t))
{
−Dh

1u(t) +Ah
1g1(v(t − ℓ(t)))

}
,

u(t) = ϕ1(t), t ∈ [−ℓ, 0],

v̇(t) =
m∑

h=1

ψh(ϑ(t))
{
−Dh

2v(t) +Ah
2g2(u(t − ℓ(t)))

}
,

v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.22)

where ϑ(t) = (ϑ1(t), ..., ϑg(t))T , ψh(ϑ(t)) = wh(ϑ(t))
m∑

h=1

wh(ϑ(t))
and wh(ϑ(t)) =

g∏
c=1

ηhc(ϑ(t)). The term ηhc(ϑ(t))

is the grade membership of ϑc(t) in ηhc. It is stated that wh(ϑ(t)) ≥ 0, h = 1, ...,m and
m∑

h=1

wh(ϑ(t)) > 0

for all t ≥ 0. By fuzzy set theory, we have ψh(ϑ(t)) ≥ 0, h = 1, ...,m and
m∑

h=1

ψh(ϑ(t)) = 1 for all t ≥ 0.

Theorem 3.2. Let the activation function and time delay satisfy Assumptions 1–3. Suppose that there
exist Hermitian matrices 0 < P1, 0 < P2, 0 < Q1, 0 < Q2, 0 < R1, 0 < R2, 0 < S1, 0 < S2, and
diagonal matrix 0 < G1, 0 < G2, such that the following conditions holds for all h = 1, 2, ...,m

Ωh = (Ωh
i, j)12×12 < 0, (3.23)

where Ωh
1,1 = −P1D

h
1 − D

h
1P1 + Q1 + R1 + ℓ

2S1, Ωh
1,10 = P1A

h
1, Ωh

2,2 = −(1 − µ)R1 + L
∗
g2
G1Lg2 ,

Ωh
3,3 = −Q1, Ωh

4,4 = −G1, Ωh
4,7 = A

∗
2

hP2, Ωh
5,5 = −4S1, Ωh

5,6 = 6S1, Ωh
6,6 = −12S1, Ωh

7,7 = −P2D
h
2 −

Dh
2P2 + Q2 + R2 + ℓ

2S2, Ωh
8,8 = −(1 − µ)R2 + L

∗
g1
G2Lg1 , Ω

h
9,9 = −Q2, Ωh

10,10 = −G2, Ωh
11,11 = −4S2,

Ωh
11,12 = 6S2, Ωh

12,12 = −12S2, then the equilibrium point of NN model (3.22) is GAS.

Proof: Consider the LKF (3.24) for NNs (3.22) described by

V(t, u(t), v(t), h) =
[
u(t)
v(t)

]∗ [
P1 0
0 P2

] [
u(t)
v(t)

]
+

∫ t

t−ℓ

[
u(s)
v(s)

]∗ [
Q1 0
0 Q2

] [
u(s)
v(s)

]
ds
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+

∫ t

t−ℓ(t)

[
u(s)
v(s)

]∗ [
R1 0
0 R2

] [
u(s)
v(s)

]
ds

+ ℓ

∫ 0

−ℓ

∫ t

t+r

[
u(s)
v(s)

]∗ [
S1 0
0 S2

] [
u(s)
v(s)

]
dsdr. (3.24)

The time-derivative ofV(t, u(t), v(t), h) can be obtained as

V̇(t, u(t), v(t), h) = 2
[
u(t)
v(t)

]∗ [
P1 0
0 P2

] [
u̇(t)
v̇(t)

]
+

[
u(t)
v(t)

]∗ [
Q1 0
0 Q2

] [
u(t)
v(t)

]
−

[
u(t − ℓ)
v(t − ℓ)

]∗ [
Q1 0
0 Q2

] [
u(t − ℓ)
v(t − ℓ)

]
+

[
u(t)
v(t)

]∗ [
R1 0
0 R2

] [
u(t)
v(t)

]
− (1 − ℓ̇(t))

[
u(t − ℓ(t))
v(t − ℓ(t))

]∗ [
R1 0
0 R2

] [
u(t − ℓ(t))
v(t − ℓ(t))

]
+ ℓ2
[
u(t)
v(t)

]∗ [
S1 0
0 S2

] [
u(t)
v(t)

]
− ℓ

∫ t

t−ℓ

[
u(s)
v(s)

]∗ [
S1 0
0 S2

] [
u(s)
v(s)

]
ds,

≤ 2
[
u(t)
v(t)

]∗ [
P1 0
0 P2

] 
m∑

h=1
ψh(ϑ(t))

{
−Dh

1u(t) +Ah
1g1(v(t − ℓ(t)))

}
m∑

h=1
ψh(ϑ(t))

{
−Dh

2v(t) +Ah
2g2(u(t − ℓ(t)))

}


+

[
u(t)
v(t)

]∗ [
Q1 0
0 Q2

] [
u(t)
v(t)

]
−

[
u(t − ℓ)
v(t − ℓ)

]∗ [
Q1 0
0 Q2

] [
u(t − ℓ)
v(t − ℓ)

]
+

[
u(t)
v(t)

]∗ [
R1 0
0 R2

] [
u(t)
v(t)

]
− (1 − µ)

[
u(t − ℓ(t))
v(t − ℓ(t))

]∗ [
R1 0
0 R2

]
×

[
u(t − ℓ(t))
v(t − ℓ(t))

]
+ ℓ2
[
u(t)
v(t)

]∗ [
S1 0
0 S2

] [
u(t)
v(t)

]
− ℓ

∫ t

t−ℓ

[
u(s)
v(s)

]∗ [
S1 0
0 S2

] [
u(s)
v(s)

]
ds,

=

m∑
h=1

ψh(ϑ(t))
{
u∗(t)(−P1D

h
1 −D

h
1P1 + Q1 + R1 + ℓ

2S1)u(t)

+ u∗(t)(P1A
h
1)g1(v(t − ℓ(t))) + v∗(t)(−P2D

h
2 −D

h
2P2 + Q2 + R2

+ ℓ2S2)v(t) + v∗(t)(P2A
h
2)g2(u(t − ℓ(t)))) − u∗(t − ℓ)(Q1)

× u(t − ℓ) − v∗(t − ℓ)(Q2)v(t − ℓ) − u∗(t − ℓ(t))((1 − µ)R1)
× u(t − ℓ(t)) − v∗(t − ℓ(t))((1 − µ)R2)v(t − ℓ(t))

− ℓ

∫ t

t−ℓ
u∗(s)S1u(s)ds − ℓ

∫ t

t−ℓ
v∗(s)S2v(s)ds

}
. (3.25)

To obtain tighter bounds for the integral terms −ℓ
∫ t

t−ℓ
u∗(s)S1u(s)ds, −ℓ

∫ t

t−ℓ
v∗(s)S2v(s)ds in (3.25),
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the proposed Lemma (2.8) were applied as follow:

−ℓ

∫ t

t−ℓ
u∗(s)S1u(s)ds ≤ −


∫ t

t−ℓ
u(s)ds∫ t

t−ℓ
u(s)ds −

2
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr


∗

×

[
S1 0
0 3S1

] 
∫ t

t−ℓ
u(s)ds∫ t

t−ℓ
u(s)ds −

2
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr


= −

[ ∫ t

t−ℓ
u(s)ds

]∗
S1

[ ∫ t

t−ℓ
u(s)ds

]
−

[ ∫ t

t−ℓ
u(s)ds

]∗
3S1

×

[ ∫ t

t−ℓ
u(s)ds

]
+

[ ∫ t

t−ℓ
u(s)ds

]∗
6S1

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]
−

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]∗
12S1

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]
, (3.26)

−ℓ

∫ t

t−ℓ
v∗(s)S2v(s)ds ≤ −


∫ t

t−ℓ
v(s)ds∫ t

t−ℓ
v(s)ds −

2
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr


∗

×

[
S2 0
0 3S2

] 
∫ t

t−ℓ
v(s)ds∫ t

t−ℓ
v(s)ds −

2
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr


= −

[ ∫ t

t−ℓ
v(s)ds

]∗
S2

[ ∫ t

t−ℓ
v(s)ds

]
−

[ ∫ t

t−ℓ
v(s)ds

]∗
3S2

×

[ ∫ t

t−ℓ
v(s)ds

]
+

[ ∫ t

t−ℓ
v(s)ds

]∗
6S2

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]
−

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]∗
12S2

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]
. (3.27)

Combining (3.25)–(3.27), we get

V̇(t, u(t), v(t), h) ≤
m∑

h=1

ψh(ϑ(t))
{
u∗(t)(−P1D

h
1 −D

h
1P1 + Q1 + R1 + ℓ

2S1)u(t) + u∗(t)

× (P1A
h
1)g1(v(t − ℓ(t))) + v∗(t)(−P2D

h
2 −D

h
2P2 + Q2 + R2 + ℓ

2S2)v(t) + v∗(t)(P2A
h
2)

× g2(u(t − ℓ(t))) − u∗(t − ℓ)(Q1)u(t − ℓ) − v∗(t − ℓ)(Q2)v(t − ℓ) − u∗(t − ℓ(t))
× ((1 − µ)R1)u(t − ℓ(t)) − v∗(t − ℓ(t))((1 − µ)R2)v(t − ℓ(t))

−

[ ∫ t

t−ℓ
u(s)ds

]∗
(4S1)

[ ∫ t

t−ℓ
u(s)ds

]
+

[ ∫ t

t−ℓ
u(s)ds

]∗
(6S1)

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]
−

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]∗
(12S1)

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
u(s)dsdr

]
AIMS Mathematics Volume 8, Issue 5, 10486–10512.
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−

[ ∫ t

t−ℓ
v(s)ds

]∗
(4S2)

[ ∫ t

t−ℓ
v(s)ds

]
+

[ ∫ t

t−ℓ
v(s)ds

]∗
(6S2)

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]
−

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]∗
(12S2)

[1
ℓ

∫ 0

−ℓ

∫ t

t+r
v(s)dsdr

]}
. (3.28)

From Assumption 3, there exist two diagonal matrices 0 < G1, 0 < G2 such that

0 ≤ u∗(t − ℓ(t))L∗g2
G1Lg2u(t − ℓ(t)) − g∗2(u(t − ℓ(t)))G1g2(u(t − ℓ(t))), (3.29)

0 ≤ v∗(t − ℓ(t))L∗g1
G2Lg1v(t − ℓ(t)) − g∗1(v(t − ℓ(t)))G2g1(v(t − ℓ(t))). (3.30)

By combining (3.28)–(3.30), we obtain

V̇(t, u(t), v(t), h) ≤
m∑

h=1

ψh(ϑ(t))
{
ξ∗(t)Ωhξ(t)

}
. (3.31)

where

ξ(t) =
[
u∗(t) u∗(t − ℓ(t)) u∗(t − ℓ) g∗2(u(t − ℓ(t)))

∫ t

t−ℓ
u∗(s)ds

1
ℓ

∫ 0

−ℓ

∫ t

t+r
u∗(s)dsdr

v∗(t) v∗(t − ℓ(t)) v∗(t − ℓ) g∗1(v(t − ℓ(t)))
∫ t

t−ℓ
v∗(s)ds

1
ℓ

∫ 0

−ℓ

∫ t

t+r
v∗(s)dsdr

]∗
.

It is obvious that for Ωh < 0, h = 1, 2, ...,m, it shows that the NN (3.22) is GAS according to the
Lyapunov stability theory. This completes the proof.

The following shows how our results can be specialized to different cases.

Remark 3.3. When ℓ(t) = ℓ, the NN model (3.22) becomes:

u̇(t) =
m∑

h=1

ψh(ϑ(t))
{
−Dh

1u(t) +Ah
1g1(v(t − ℓ))

}
,

u(t) = ϕ1(t), t ∈ [−ℓ, 0],

v̇(t) =
m∑

h=1

ψh(ϑ(t))
{
−Dh

2v(t) +Ah
2g2(u(t − ℓ))

}
,

v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.32)

Corollary 3.4. Let the activation function satisfy Assumptions 3 and time delay ℓ > 0. Suppose that
there exist Hermitian matrices 0 < P1, 0 < P2, 0 < Q1, 0 < Q2, 0 < S1, 0 < S2, and diagonal matrix
0 < G1, 0 < G2, such that the following conditions holds for all h = 1, 2, ...,m

Ω̄h = (Ω̄h
i, j)10×10 < 0, (3.33)

where Ω̄h
1,1 = −P1D

h
1 − D

h
1P1 + Q1 + ℓ

2S1, Ω̄h
1,8 = P1A

h
1, Ω̄h

2,2 = −Q1 + L
∗
g2
G1Lg2 , Ω̄

h
3,3 = −G1,

Ω̄h
3,6 = A

∗
2

hP2, Ω̄h
4,4 = −4S1, Ω̄h

4,5 = 6S1, Ω̄h
5,5 = −12S1, Ω̄h

6,6 = −P2D
h
2 − D

h
2P2 + Q2 + ℓ

2S2,
Ω̄h

7,7 = −Q2 + L
∗
g1
G2Lg1 , Ω̄

h
8,8 = −G2, Ω̄h

9,9 = −4S2, Ω̄h
9,10 = 6S2, Ω̄h

10,10 = −12S2, then the equilibrium
point of NN model (3.32) is GAS.
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Proof: Replacing R1 = R2 = 0 in LKF (3.24). The remaining proof is similar to that in Theorem
(3.2), and so it is omitted.

Remark 3.5. When m = 1 it is a special form of NN model (3.22). For simplicity, we deleted the
superscript “1”.


u̇(t) = −D1u(t) +A1g1(v(t − ℓ(t))),
u(t) = ϕ1(t), t ∈ [−ℓ, 0],
v̇(t) = −D2v(t) +A2g2(u(t − ℓ(t))),
v(t) = ϕ2(t), t ∈ [−ℓ, 0],

(3.34)

Corollary 3.6. Let the activation function and time delay satisfy Assumptions 1-3. Suppose that there
exist Hermitian matrices 0 < P1, 0 < P2, 0 < Q1, 0 < Q2, 0 < R1, 0 < R2, 0 < S1, 0 < S2, and
diagonal matrix 0 < G1, 0 < G2, such that the following conditions holds

Ω̃ = (Ω̃i, j)12×12 < 0, (3.35)

where Ω̃1,1 = −P1D1 − D1P1 + Q1 + R1 + ℓ
2S1, Ω̃1,10 = P1A1, Ω̃2,2 = −(1 − µ)R1 + L

∗
g2
G1Lg2 ,

Ω̃3,3 = −Q1, Ω̃4,4 = −G1, Ω̃4,7 = A
∗
2P2, Ω̃5,5 = −4S1, Ω̃5,6 = 6S1, Ω̃6,6 = −12S1, Ω̃7,7 = −P2D2 −

D2P2 + Q2 + R2 + ℓ
2S2, Ω̃8,8 = −(1 − µ)R2 + L

∗
g1
G2Lg1 , Ω̃9,9 = −Q2, Ω̃10,10 = −G2, Ω̃11,11 = −4S2,

Ω̃11,12 = 6S2, Ω̃12,12 = −12S2, then the equilibrium point of NN model (3.34) is GAS.

Proof: Consider the same LKF (3.24). The remaining proof is similar to that in Theorem (3.2), and
so it is omitted.

Remark 3.7. Recently, several methods have been proposed to investigate the stability of delayed
quaternion-valued NNs [28]- [31]. As an example, (i) The real-valued decomposition method [28]; (ii)
The complex-valued decomposition method [29]; (iii) The direct quaternion method [30]. In general,
real-valued and complex-valued decomposition methods have two problems; i.e. they increase the size
of the systems, which makes mathematical challenges. In addition, due to the non-commutative nature
of quaternion multiplication, some data regarding quaternions may be loss in decomposition. As a
result, rather than employing the real or complex decomposition methods, this paper explored the GAS
criteria for quaternion-valued T-S fuzzy BAM NNs directly.

Remark 3.8. The authors of [41] used WBII to investigate the Mittag-Leffler synchronization criteria
of complex-valued memristive NNs by real-valued decomposition method. The authors of [42] used
complex-valued WBII to analyze the global µ-stability criteria of complex-valued BAM NNs by direct
method. In comparison to [41,42], we extended the WBII into the quaternion domain and its proof has
been presented for the first time. Furthermore, the GAS criteria for quaternion-valued T-S fuzzy BAM
NNs are established by using new quaternion-valued WBII and direct quaternion method.
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4. Numerical evaluations

This section includes two numerical evaluations to emphasize the applicability of this analysis.
Example 1: Determine the two neuron quaternion-valued BAM NNs as given below.

ṗr(t) = −d1r pr(t) +
2∑

s=1

a1rs f1s(qs(t − ℓ(t))) + J1r, r = 1, 2,

pr(t) = φ1r(t), t ∈ [−ℓ, 0],

q̇s(t) = −d2sqs(t) +
2∑

r=1

a2sr f2r(pr(t − ℓ(t))) + J2s, s = 1, 2,

qs(t) = φ2s(t), t ∈ [−ℓ, 0],

(4.1)

where d11 = d12 = 3, d21 = d22 = 2, a111 = 1.2 + i − 1.5 j − 0.8k, a112 = 1 + 1.2i + 1.3 j − 1.5k,
a121 = 1.4 − 2.7i − 2 j − 1.3k, a122 = 0.5 + 0.8i − 1.4 j − 1.7k, a211 = 1.2 + i − 1.5 j − 0.8k, a212 =

1+1.2i+1.3 j−1.5k, a221 = 1.4−2.7i−2 j−1.3k, a222 = 0.5+0.8i−1.4 j−1.7k, J11 = 0.2+0.1i−0.2 j−0.1k,
J12 = 0.1 + 0.2i − 0.1 j − 0.1k, J21 = 0.2 + 0.2i − 0.1 j − 0.2k, J22 = 0.3 + 0.1i − 0.1 j − 0.2k.

The activation functions are regarded as f1s(qs(·)) = 0.5 tanh(qs(·)) + 0.5 tanh(qs(·))i +
0.5 tanh(qs(·)) j + 0.5 tanh(qs(·))k, s = 1, 2, f2r(pr(·)) = 0.5 tanh(pr(·)) + 0.5 tanh(pr(·))i +
0.5 tanh(pr(·)) j + 0.5 tanh(pr(·))k, r = 1, 2. Then Assumption 1 holds with l f1

1 = l f1
2 = l f2

1 = l f2
2 = 0.25.

The delay ℓ(t) is regarded as ℓ(t) = 0.4 + 0.3 sin(t) implying that the maximum permissible upper
bound is ℓ = 0.7. It is observable that 0 ≤ ℓ̇(t) ≤ µ = 0 ≤ 0.3 cos(t) ≤ 0.3. By employing MATLAB
YALMIP toolbox, the LMI conditions (3.1) and (3.2) in Theorem (3.1) are verified, and the feasibility
are

P1 =

[
0.6718 −0.0034 − 0.0270i + 0.0052 j − 0.0277k

−0.0034 + 0.0270i − 0.0052 + 0.0277k 0.6384

]
,

P2 =

[
0.4972 0.0066 + 0.0196i + 0.0040 j + 0.0226k

0.0066 − 0.0196i − 0.0040 j − 0.0226k 0.5029

]
,

G1 =

[
8.6913 0

0 8.6976

]
, G2 =

[
8.7196 0

0 8.6904

]
.

Based on example 1, we conclude that all the conditions associated with Theorem (3.1) are fulfilled;
this means that the NN model (2.2) has a unique equilibrium point.
Example 2: Determine the two neuron quaternion-valued T-S fuzzy BAM NNs with h = 1, 2 as given
below: 

u̇r(t) =
2∑

h=1

ψh(ϑ(t))
{
−d1

h
r ur(t) +

2∑
s=1

a1
h
rsg1s(vs(t − ℓ(t)))

}
,

ur(t) = ϕ1r(t), t ∈ [−ℓ, 0], r, s = 1, 2,

v̇s(t) =
2∑

h=1

ψh(ϑ(t))
{
− d2

h
svs(t) +

2∑
r=1

a2
h
srg2r(ur(t − ℓ(t)))

}
,

vs(t) = ϕ2s(t), t ∈ [−ℓ, 0], r, s = 1, 2.

(4.2)
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Plant Rule 1: IF {ϑ1(t) is η11}, THEN

u̇r(t) = −d1
1
r ur(t) +

2∑
s=1

a1
1
rsg1s(vs(t − ℓ(t))),

ur(t) = ϕ1r(t), t ∈ [−ℓ, 0], r, s = 1, 2,

v̇s(t) = −d2
1
svs(t) +

2∑
r=1

a2
1
srg2r(ur(t − ℓ(t))),

vs(t) = ϕ2s(t), t ∈ [−ℓ, 0], r, s = 1, 2.

Plant Rule 2: IF {ϑ2(t) is η22}, THEN

u̇r(t) = −d1
2
r ur(t) +

2∑
s=1

a1
2
rsg1s(vs(t − ℓ(t))),

ur(t) = ϕ1r(t), t ∈ [−ℓ, 0], r, s = 1, 2,

v̇s(t) = −d2
2
svs(t) +

2∑
r=1

a2
2
srg2r(ur(t − ℓ(t))),

vs(t) = ϕ2s(t), t ∈ [−ℓ, 0], r, s = 1, 2,

where d1
1
1 = d1

1
2 = 7, d2

1
1 = d2

1
2 = 9, d1

2
1 = d1

2
2 = 8, d2

2
1 = d2

2
2 = 9, a1

1
11 = 1.2 + i − 1.5 j − 0.8k, a1

1
12 =

1+1.2i+1.3 j−1.5k, a1
1
21 = 1.4−2.7i−2 j−1.3k, a1

1
22 = 0.5+0.8i−1.4 j−1.7k, a2

1
11 = 1.1−1.4i−1.3 j−1.2k,

a2
1
12 = 2.1 + 1.3i − 0.9 j − 1.1k, a2

1
21 = 1.3 + 1.2i − 1.2 j + 1.1k, a2

1
22 = −1.5 + i + 1.2 j + 1.4k, a1

2
11 =

1.2+i−1.5 j−0.8k, a1
2
12 = 1+1.2i+1.3 j−1.5k, a1

2
21 = 1.4−2.7i−2 j−1.3k, a1

2
22 = 0.5+0.8i−1.4 j−1.7k,

a2
2
11 = 1.1 − 1.4i − 1.3 j − 1.2k, a2

2
12 = 2.1 + 1.3i − 0.9 j − 1.1k, a2

2
21 = 1.3 + 1.2i − 1.2 j + 1.1k,

a2
2
22 = −1.5 + i + 1.2 j + 1.4k.
The activation functions are chosen as g1s(vs(·)) = 0.5 tanh(vs(·))+0.5 tanh(vs(·))i+0.5 tanh(vs(·)) j+

0.5 tanh(vs(·))k, s = 1, 2, g2r(ur(·)) = 0.5 tanh(ur(·))+0.5 tanh(ur(·))i+0.5 tanh(ur(·)) j+0.5 tanh(ur(·))k,
s, r = 1, 2. Then Assumption 3 hold with lg1

s = lg2
r = 0.25, s, r = 1, 2. The delay ℓ(t) is regarded as

ℓ(t) = 0.4+ 0.3 sin(t), implying that the maximum permissible upper bound is ℓ = 0.7. It is observable
that 0 ≤ ℓ̇(t) ≤ µ = 0 ≤ 0.3 cos(t) ≤ 0.3. Furthermore, the membership functions are considered as
ψ1(ϑ(t)) = 1

1+e−2t , ψ2(ϑ(t)) = 1 − 1
1+e−2t . The LMI condition (3.23) in Theorem (3.2) are verified by

applying MATLAB YALMIP toolbox, and the feasibility are

P1 =

[
0.6965 −0.0028 − 0.0287i − 0.0118 j − 0.0094k

−0.0028 + 0.0287i + 0.0118 j + 0.0094k 0.6708

]
,

P2 =

[
0.5718 −0.0104 + 0.0184i − 0.0024 j + 0.0245k

−0.0104 − 0.0184i + 0.0024 j − 0.0245k 0.5231

]
,

Q1 =

[
3.2612 −0.0105 − 0.1072i − 0.0439 j − 0.0351k

−0.0105 + 0.1072i + 0.0439 j + 0.0351k 3.1652

]
,

Q2 =

[
3.2225 −0.0466 + 0.0824i − 0.0108 j + 0.1098k

−0.0466 − 0.0824i + 0.0108 j − 0.1098k 3.0044

]
,

R1 =

[
4.0153 −0.0160 − 0.1624i − 0.0666 j − 0.0531k

−0.0160 + 0.1624i + 0.0666 j + 0.0531k 3.8695

]
,
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R2 =

[
3.9566 −0.0706 + 0.1248i − 0.0164 j + 0.1664k

−0.0706 − 0.1248i + 0.0164 j − 0.1664k 3.6254

]
,

S1 =

[
0.2526 −0.0000 − 0.0002i − 0.7085 j − 0.5655k

−0.0000 + 0.0002i + 0.7085 j + 0.5655k 0.2525

]
,

S2 =

[
0.2526 −0.0001 + 0.0001i − 0.0174 j + 0.1772k

−0.0001 − 0.0001i + 0.0174 j − 0.1772k 0.2522

]
,

G1 =

[
3.5058 0

0 3.4995

]
, G2 =

[
3.5033 0

0 3.4888

]
.

Under randomly selected 10 initial values of ϕ11(t), ϕ12(t), ϕ21(t) and ϕ22(t), the time responses
of states of the NNs (4.2) uR

1 (t), uI
1(t), uJ

1(t), uK
1 (t), uR

2 (t), uI
2(t), uJ

2(t), uK
2 (t), vR

1 (t), vI
1(t), vJ

1(t), vK
1 (t),

vR
2 (t), vI

2(t), vJ
2(t), vK

2 (t) are illustrated in Figures (1)–(8). According to example 2, we can see that the
equilibrium point of the NN model (3.22) is GAS since all the conditions in Theorem (3.2) have been
fulfilled, which is in accordance with Theorem (3.2).
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Figure 1. Time representation of the states u(t)R, v(t)R of NNs (4.2).
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Figure 2. Phase representation of NNs (4.2) between the real subspace u(t)R, v(t)R.
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Figure 3. Time representation of the states u(t)I , v(t)I of NNs (4.2).
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Figure 4. Phase representation of NNs (4.2) between the imaginary subspace u(t)I , v(t)I .
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Figure 5. Time representation of the states u(t)J, v(t)J of NNs (4.2).
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Figure 6. Phase representation of NNs (4.2) between the imaginary subspace u(t)J, v(t)J.
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Figure 7. Time representation of the states u(t)K , v(t)K of NNs (4.2).
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Figure 8. Phase representation of NNs (4.2) between the imaginary subspace u(t)K , v(t)K .

5. Conclusions

This paper investigated the GAS problem for a class of quaternion-valued T-S fuzzy BAM NNs
with time-varying delays. By applying T-S fuzzy models, we first considered a general form of
quaternion-valued T-S fuzzy BAM NNs with time-varying delays. Then, we applied the Cauchy-
Schwarz algorithm and homeomorphism principle to obtain sufficient conditions for the existence and
uniqueness of the equilibrium point. By utilizing suitable LKFs and newly developed quaternion-
valued WBII, some sufficient criteria are obtained to guarantee the GAS of the considered networks.
Further, the results of this paper are presented in terms of quaternion-valued LMIs, which can be solved
using the MATLAB YALMIP toolbox. Two numerical examples are presented with their simulations
to demonstrate the validity of the theoretical analysis.

The proposed results of this paper can be used to analyze various dynamics of quaternion-valued T-S
fuzzy BAM NNs such as finite-time stability, dissipativity, state estimation, synchronization and so on.
Thus, we will soon examine the finite-time stability of the following quaternion-valued fractional-order
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T-S fuzzy BAM NNs with impulses.

C
0 Dα

t pr(t) =
m∑

h=1

ψh(ϑ(t))
{
− d1

h
r pr(t) +

m∑
s=1

a1
h
rs f1s(qs(t)) +

m∑
s=1

b1
h
rs f1s(qs(t − ℓ(t)))

+J1r

}
, t , tk, r = 1, 2..., n,

△pr(tk) = αk(pr(tk)), t = tk, k = 1, 2, ...,
pr(t) = φ1r(t), t ∈ [−ℓ, 0],

C
0 Dα

t qs(t) =
m∑

h=1

ψh(ϑ(t))
{
− d2

h
sqs(t) +

n∑
r=1

a2
h
sr f2r(pr(t)) +

n∑
r=1

b2
h
sr f2r(pr(t − ℓ(t)))

+J2s

}
, t , tk, s = 1, 2, ...,m,

△qs(tk) = βk(qs(tk)), t = tk, k = 1, 2, ...,
qs(t) = φ2s(t), t ∈ [−ℓ, 0].
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