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Abstract: The q-rung orthopair fuzzy atmosphere is an innovative approach for handling unclear
circumstances in a range of decision making problems. As compare to intuitionistic fuzzy sets, this one
is more appropriate and adaptable because it evaluates the significance of ring theory while retaining
the features of q-rung orthopair fuzzy sets. In this study, we characterize q-rung orthopair fuzzy subring
as a modification of the pythagorean fuzzy subring. We introduce the novel idea of q-rung orthopair
fuzzy subring and investigate the algebraic characteristics for the q-rung orthopair fuzzy subrings.
Furthermore, we establish the concept of q-rung orthopair fuzzy quotient ring and q-rung orthopair
fuzzy left and right ideals. Also, we describe the q-rung orthopair fuzzy level subring and associate
axioms. Finally, we investigate how ring homomorphism influences the q-rung orthopair fuzzy subring
and investigate there pre-images homomorphism on q-ROFSR and different aspects of images.
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1. Introduction

The typical application of fuzzy set is to providing of membership values. One area of abstract
algebra which has seen extensive use in visual media is ring theory. Unfortunately, there is not much

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023422


8366

of a connection between ring theory and picture classification. It is exceedingly important in numerous
aspects of science, such as algebraic geometry, cryptography and various applications for computer
vision [8]. Using algebra to predict desired results in a variety of fields of study, including mathematics,
chemistry, computer science, graphic design and physics. Rings and group theory carry the secrets to
patterns that are difficult to decode, even with the aid of computing power. In 1965, Zadeh [1] proposed
a novel model that explains obscurity, vagueness, and unpredictability in data and described how these
issues arise in practical situations. He explained the fundamental foundational findings of this theory,
termed as fuzzy sets theory. A function from T→ [0, 1] ⊆ R is used in crisp fuzzy set theory to express
a fuzzy subset of a classical set T. Rosenfeld [2] established the fuzzy theory notion for the first time
in group theory. Also covered fuzzy normal subgroups, fuzzy quotient and fuzzy subgroups in 1971.
Hanan et al. [37] discussed the advance algebraic structure of (α, β)-complex fuzzy subgroups. Gulzar
et al. [38, 39] introduce t-intuitionistic fuzzy subgroups and novel idea of Q-complex fuzzy sub-rings.

Fuzzy subgroup and fuzzy ideals were examined by Liu [5] in 1982. In 1992, Dixit [11] made
the initial suggestion for fuzzy subring, which results from fuzzy subset. Malik and Mordeson [12]
introduced the notion of extended fuzzy subrings and ideals. Anthony and Sherwood [3] modify
the definition of fuzzy subgroup. The idea of level subgroups was defined by Das [4] in 1981,
using the notion of fuzzy subgroups and also provided a classification of all finite cyclic fuzzy
subgroups. Atanassov [6] published intuitionistic fuzzy sets for the first time in 1986. Important
algebraic aspects of this situation were examined as it was widely embraced. Because this
idea has proven to be more effective in the scientific community, it is being investigated with
membership and non-membership degrees in [0, 1], where for membership values λ(u) : T →
[0, 1] and for non-membership values λ(u) : T → [0, 1] such that λT (u) + λT (u) ≤ 1. Supporting
and non supporting membership functions of intuitionistic fuzzy sets suggest that they may handle
ambiguous and uncertain situations in physical problems, particularly in the domain of decision-
making, in contrast to classical fuzzy sets [7, 9, 10]. In 2003, Banerjee and Basnet [31] created a
new hypothesis of a fuzzy ring theory with intuitionistic attributes. Bhakat and Das [13] explain the
principles of a ring and redefine the concept of fuzzy subrings for fuzzy prime, semi-prime, maximal
ideals and characterization of such fuzzy ideals in 1996. Hur et al. [30] examined intuitionist fuzzy
subring, intuitionist fuzzy ideals, created connection between intuitionist fuzzy completely prime ideals
and weakly prime ideals and also provide grading. A novel sort of fuzzy ring, fuzzy subring, fuzzy
ideal and discussion of fuzzy ring homomorphism were investigated by Aktas and Cagman [14] in
2007. They also looked at the fundamental properties of these new fuzzy rings, which are similar
to those of regular rings. Masarwah and Ghafur [23] established connections between doubt bipolar
fuzzy subalgebras, doubt bipolar fuzzy H-ideals, and doubt bipolar fuzzy ideals in BCK-BCI algebras.
Masarwah introduces the concepts of m-polar fuzzy subalgebras and m-polar fuzzy ideals, and related
features are examined. Additionally, they concentrated on merging the ideas of m-polar fuzzy sets
and m-polar fuzzy points to form the concept of m-polar (α, β)-fuzzy ideals in BCK/BCI algebraic
structures in [24, 25]. In [26, 27] the concepts of closed cubic intuitionistic ideals, closed cubic
intuitionistic p-ideals, and closed cubic intuitionistic a-ideals are presented. Related features are also
examined.

Yager [15, 16] introduced the idea of a Pythagorean fuzzy subset in 2013, where the sum of
square of true value and square of falls degrees corresponds to the range [0,1]. Therefore, λ(u) :
T → [0, 1], λ(u) : T → [0, 1], u ∈ T, (λT(u))2 + (λT(u))2 ≤ 1. Pythagorean fuzzy subset has greatly

AIMS Mathematics Volume 8, Issue 4, 8365–8385.



8367

contributed to the understanding of decision-making problems. Peng and Yang [17] used Pythagorean
fuzzy aggregation operators to define division and subtraction and examined their features such as
boundedness, idempotency, monotonicity. To demonstrate the created methodology, an example of
analyzing internet stock performance is provided. In 2018, Zeng [18] examined four different existing
ranked techniques and compared them with Pythagorean fuzzy set. They suggested the Pythagorean
fuzzy group decision-making technique with numerous criteria, including a numerical illustration,
and concluded that Pythagorean fuzzy set is more effective. The Pythagorean fuzzy set has different
varieties of applications in our daily life, In order to deal with imprecision. Ejegwa [19] adopted
Pythagorean fuzzy sets because they generalized intuitionistic fuzzy sets with a broad variety of
applications, it is important to examined how inventive these sets are in tackling the problem of career
placements. Furthermore, he discussed the method for choosing careers based on academic ability
and demonstrated it by utilizing the suggested Pythagorean fuzzy set. Li and Lu [20] introduced
Pythagorean fuzzy mechanism for sorting priorities by similarity to an ideal solution to implement.
The study investigated multi-criteria decision-making and gave a real world example of how to handle
a pressing social sector issue. Ejegwa [21] established the method of the max-min-max composite
relation for Pythagorean fuzzy sets and used it to solve the problem of medical diagnostics.The
application of the enhanced composite relation for Pythagorean fuzzy sets in medical diagnostics is
studied using a fictitious medical database. Zhou et al. [22] established a novel divergence measure
for Pythagorean fuzzy sets that is predicated on the Dempster-Shafer evidence theory’s belief function
and has a stronger response than other techniques currently in use to identify medical diagnoses. This
measure can help prevent results that are counterintuitive, particularly when there is a data dispute.
Tchier et al. [40] described the group decision-making technique under picture fuzzy soft perimeters.
Shit [41] establish harmonic aggregation operator with trapezoidal picture fuzzy numbers. and Its
Application in a Multiple Attribute Decision-Making Problem.

In 2017, Yager [32] introduced the novel concept of q-rung orthopair fuzzy set (q-ROFS) . These
are more generalized versions of the Pythagorean fuzzy set and the intuitionistic fuzzy set. The
total sum of the qth powers of belonging and not belonging is bounded by one in the q-ROFS. A
wider variety of eligible orthopairs becomes available as q increases, providing the user a more broad
conceptual framework to express their view on the belonging score. To improve the ability of 2-
tuple linguistic terms to describe complex information, Sumera et al. develop a multiple attribute
group decision-making strategy based on q-rung orthopair fuzzy 2-tuple linguistic set [28]. M.
Akram et al. [29] extend the range of applications of the Einstein operators to the q-rung picture
fuzzy environment and construct unique notions of q-rung picture fuzzy aggregate operators under the
Einstein operators and describe their use in multi-attribute decision-making. The q-ROFS is redefined
by Ali [33] by using different important tools, discussed the basic algebraic operation under action
and fetchers of q-ROFS, presented the orbit based q-ROFS with help of graphically explanation and
examples. If belonging score λ(u) and not belonging score λ(u) to the range [0,1]. Therefore, λ(u):
T → [0, 1], λ(u) : T → [0, 1], u ∈ T (λT(u))q + (λT(u))q ≤ 1. Wang et al. [34] introduced the
ten similarity measures by examining the function of supporting degree, non-supporting degree, and
indeterminacy supporting degree among the rung orthopair fuzzy sets relying on cotangent and the
conventional cosine similarity measurements and also q-rung orthopair fuzzy sets were used to handle
multiple criteria decision. Peng and Liu [35] demonstrated the accuracy of the similarity measure
under investigation by using it for pattern classification, clustering, and medical problems. To validate

AIMS Mathematics Volume 8, Issue 4, 8365–8385.



8368

the conclusions and show the applicability and availability of similarity measures between q-ROFS,
a few illustrative cases were discussed. Asima and Razaq [36] introduced the novel concept of the
q-rung orthopair fuzzy subgroup and established some basic findings . Moreover, examined the q-rung
orthopair fuzzy left and right cosets, q-rung orthopair fuzzy level subgroups, and also discussed the
basic definitions and homorphism under q-rung orthopair fuzzy. The significance of the observations
utilized throughout the article is described in the following table. Also included the page where each
one is introduced or used for the first time.

q-ROFS q-rung orthopair fuzzy set
q-ROFSR q-rung orthopair fuzzy subring
q-ROFQR q-rung orthopair fuzzy quotient ring
q-ROFLI q-rung orthopair fuzzy left ideal
q-ROFRI q-rung orthopair fuzzy right ideal

This article describes the study of q-rung orthopair fuzzy subring (q-ROFSR). The key objective
of this study is to investigate a number of fundamental mathematical characteristics of q-ROFSRs.
In Section 2 we establish the novel concepts of q-ROFSR, the criteria of q-ROFSR and describe
their fundamental attributes. In Section 3 we introduce left ideals, right ideals, q-rung orthopair fuzzy
quotient ring (q-ROFQR) and discuss some important basic theorems. The idea of q-ROFSR and also
discuss some fundamental findings in Section 4. In Section 5 we prove that the image and inverse
image of q-ROFSR are q-rung orthopair fuzzy subring under ring homomorphism.

2. The q-rung orthopair fuzzy subring

In this section, we define the q-rung orthopair fuzzy subring (q-ROFSR) and investigate some of
its basic algebraic characteristics. We further explore various examples and demonstrate the sufficient
and necessary conditions of the q-ROFSR.

Definition 2.1. Let Q and S be any two sets. Then the mapping A : S×Q −→ [0, 1] is called a Q-fuzzy
set in S.

Definition 2.2. Assume that Γ be a subring, then a q-rung orthopair fuzzy set (q-ROFS)
M = { j, δM( j),ΨM( j) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} of Γ is known as q-ROFSR of Γ if the given
axioms are hold:

(1) (δM( j − r))q ≥ {(δM( j))q ∧ (δM(r))q},

(2) (ΨM( j − r))q ≤ {(ΨM( j))q ∨ (ΨM(r))q},

(3) (δM( jr))q ≥ {(δM( j))q ∧ (δM(r))q},

(4) (ΨM( jr))q ≤ {(ΨM( j))q ∨ (ΨM(r))q} for all j, r ∈ Γ.

Theorem 2.3. Suppose M = {(r, δM(r), ΨM(r)) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a q-ROFSR of Γ

then the following axioms are hold:

(1) (δM(0))q ≥ (δM(r))q and (ΨM(0))q ≤ (ΨM(r))q for all r ∈ Γ.

(2) (δM(−r))q = (δM(r))q and (ΨM(r))q = (ΨM(r))q for all r ∈ Γ.
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Proof. (1) Suppose that r ∈ Γ, then

(δM(r − r))q ≥ {(δM(r))q ∧ (δM(−r))q}

(δM(0))q ≥ {(δM(−r))q ∧ (δM(r))q}

= (δM(r))q

⇒ (δM(0))q ≥ {(δM(r))q}.

In same way, (ΨM(r − r))q ≤ {(ΨM(r))q ∧ (ΨM(−r))q}

⇒ (ΨM(0))q ≤ {(ΨM(−r))q ∧ (ΨM(r))q}

= (ΨM(r))q

⇒ (ΨM(0))q ≤ {(ΨM(r))q}.

(2) (δM(−r))q ≤ ((δM(r))q and (ΨM(−r))q ≤ (ΨM(r))q for all r ∈ Γ. So (δM(−(−r)))q ≥ ((δM(−r))q and
(ΨM(−(−r)))q ≤ (ΨM(−r))q. In other words (δM(−r))q ≥ ((δM(r))q and (ΨM(−r))q ≤ ((ΨM(r))q.
Thus, (δM(−r))q = ((δM(r))q and (ΨM(−r))q = ((ΨM(r))q for all r ∈ Γ.

This theorem demonstrates that every pythagorean fuzzy subring of Γ is q-ROFSR of Γ. �

Theorem 2.4. Suppose that Γ be a ring and L = {( j, δL( j), ΨL( j)) : j ∈ Γ, {δL( j)}2 + {ΨL( j)}2 ≤ 1} be
a pythagorean fuzzy subring of Γ then L is q-ROFSR of Γ.

Proof. Assume that j, r ∈ Γ, then

(δL( j − r))2 ≥ {(δL( j))2 ∧ (δL(r))2}

(ΨL( j − r))2 ≤ {(ΨL( j))2 ∨ (ΨL(r))2}

(δL( jr))2 ≥ {(δL( j))2 ∧ (δL(r))2}

and (ΨL( jr))2 ≤ {(ΨL( j))2 ∨ (ΨL(r))2} f or all j, r ∈ Γ.

This implies that

(δL( j − r))q ≥ {(δL( j))q ∧ (δL(r))q}

(ΨL( j − r))q ≤ {(ΨL( j))q ∨ (ΨL(r))q}

(δL( jr))q ≥ {(δL( j))q ∧ (δL(r))q}

and (ΨL( jr))q ≤ {(ΨL( j))q ∨ (ΨL(r))q} f or all j, r ∈ Γ.

Since (δL( j))2, (δL(r))2, (δL(r))2, (ΨL( j))2, (ΨL(r))2, (ΨL(r))2 ∈ [0, 1]. So for all q > 1 by using
(δL( j))q ≤ (δL( j))2, (δL(r))q ≤ (δL(r))2, (δL(r))q ≤ (δL(r))2, (ΨL( j))q ≥ (ΨL( j))2, (ΨL(r))q ≥ (ΨL(r))2

and (ΨL(r))q ≥ (ΨL(r))2. Thus,

{(δM( j))2 + (ΨM( j))2 ≤ 1} (2.1)
{(δM(r))2 + (ΨM(r))2 ≤ 1} (2.2)
{(δM(r))q + (ΨM(r))q ≤ 1} (2.3)
{(δM( j))q + (ΨM( j))q ≤ 1}. (2.4)

These inequalities show that L is a q-ROFSR of Γ. �
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The negation of the above theorem is shown to be invalid in the following example.

Example 2.5. Let (Z4,+, .) be ring, where Z4 = {0, 1, 2, 3} and L = {< j, δ(l), Ψ(l) > j ∈ Z4} be
q-ROFS over Z4 for q ≥ 3 define as

δL(j) =


0 if j ∈ {1, 3}
0.75 if j ∈ Z4\{0, 1, 3}
1 if j ∈ Z4\{1, 2, 3}

and

ΨL(j) =


1 if j ∈ Z4\{0, 2}
0.75 if j ∈ Z4\{0, 1, 3}
0 if j ∈ Z4\{1, 2, 3}.

Clearly, L is 3-ROFSR of Z4 but it is not pythagorean fuzzy subring of Z4 as (0.75)2 + (0.75)2 > 1.

Theorem 2.6. The q-ROFS M = {r, δM(r),ΨM(r) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} of Γ is a q-ROFSR
of Γ if and only if (δM(l − r))q ≥ {(δM(l))q ∧ (δM(r))q} and (ΨM(l − r))q ≤ {(ΨM(l))q ∨ (ΨM(r))q} for all
l, r ∈ Γ.

Proof. Let M = {(r, δM(r), ΨM(r)) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a q-ROFSR of Γ. Then
for all l, r ∈ Γ, (δM(l − r))q ≥ {(δM(l))q ∧ (δM(−r))q} = {(δM(l))q ∧ (δM(r))q} and (ΨM(l − r))q ≤

{(ΨM(l))q ∨ (ΨM(−r))q} = {(ΨM(l))q ∨ (ΨM(r))q}. Obviously, (δM(lr))q ≥ {(δM(l))q ∧ (δM(r))q} and
(ΨM(lr))q ≤ {(ΨM(l))q ∨ (ΨM(r))q} are also hold.
Conversly, assume that (δM(l − r))q ≥ {(δM(l))q ∧ (δM(r))q} and (ΨM(l − r))q ≤ {(ΨM(l))q ∨ (ΨM(r))q}

for all l, r ∈ Γ. Then (δM(l − r))q = (δM(l − (−(−r))))q ≥ {(δM(l))q ∧ (δM(−r))q} = {(δM(l))q ∧ (δM(r))q}.
So, (δM(l − r))q ≥ {(δM(l))q ∧ (δM(r))q}. Similarly, (ΨM(l − r))q = (ΨM(l − (−(−r))))q ≤

{(ΨM(l))q ∨ (ΨM(−r))q} = {(ΨM(l))q ∨ (ΨM(r))q}. So, (ΨM(l − r))q ≤ {(ΨM(l))q ∨ (δM(r))q}. Next,
(δM(−r))q = (δM(0 − r))q ≥ {(δM(0))q ∧ (δM(r))q} = {(δM(r))q} which means that {(δM(−r))q} ≥

{(δM(r))q}. In similar fashion, (ΨM(−r))q = (δM(0 − r))q ≤ {(ΨM(0))q ∨ (ΨM(r))q} = {(ΨM(r))q}. This
conclude that {(ΨM(−r))q} ≤ {(ΨM(r))q}. So, all above expressions prove thatM is a q-ROFSR of Γ. �

Theorem 2.7. Let F1 = { j, δF1( j),ΨF1( j) : j ∈ Γ, (δF1( j))q + (ΨF1( j))q ≤ 1} and F2 =

{ j, δF2( j),ΨF2( j) : j ∈ Γ, (δM( j))q + (ΨM( j))q ≤ 1} be two q-ROFSR of Γ. Then F1 ∩ F2 be q-ROFSR
of Γ.

Proof. Assume that F1 and F2 be two q-ROFSR of Γ. Then for all u1, u2 ∈ Γ, we have

(δ(F1∩F2)( j − r))q = {(δF1( j − r))q ∧ (δF2( j − r))q}

≥ {(δF1( j))q ∧ (δF1(r))q} ∧ {(δF2( j))q ∧ (δF2(r))q}

= ((δF1( j))q ∧ (δF2( j))q) ∧ ((δF1(r))q ∧ (δF2(r))q)
= {(δ(F1∩F2)( j))q ∧ (δ(F1∩F2)(r))q}

(δ(F1∩F2)( j − r))q ≥ (δ(F1∩F2)( j))q ∧ (δ(F1∩F2)(r))q.

Moreover,

(Ψ(F1∩F2)( j − r))q = {(ΨF1( j − r))q ∨ (ΨF2( j − r))q}
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≤ {{(ΨF1( j))q ∨ (ΨF1(r))q} ∨ {(ΨF2( j))q ∨ (ΨF2(r))q}}

= {((ΨF1( j))q ∨ (ΨF2( j))q) ∨ ((ΨF1(r))q ∨ (ΨF2(r))q)}
= {(Ψ(F1∩F2)( j))q ∨ (Ψ(F1∩F2)(r))q}

(Ψ(F1∩F2)( j − r))q ≤ {(Ψ(F1∩F2)( j))q ∨ (Ψ(F1∩F2)(r))q}.

Now,

(δ(F1∩F2)( jr))q = {(δF1( jr))q ∧ (δF2( jr))q}

≥ {(δF1( j))q ∧ (δF1(r))q} ∧ {(δF2( j))q ∧ (δF2(r))q}

= ((δF1( j))q ∧ (δF2( j))q) ∧ ((δF1(r))q ∧ (δF2(r))q)
= {(δ(F1∩F2)( j))q ∧ (δ(F1∩F2)(r))q}

(δ(F1∩F2)( jr))q ≥ (δ(F1∩F2)( j))q ∧ (δ(F1∩F2)(r))q.

Similarly,

(Ψ(F1∩F2)( jr))q = {(ΨF1( jr))q ∨ (ΨF2( jr))q}

≤ {{(ΨF1( j))q ∨ (ΨF1(r))q} ∨ {(ΨF2( j))q ∨ (ΨF2(r))q}}

= {((ΨF1( j))q ∨ (ΨF2( j))q) ∨ ((ΨF1(r))q ∨ (ΨF2(r))q)}
= {(Ψ(F1∩F2)( j))q ∨ (Ψ(F1∩F2)(r))q}

(Ψ(F1∩F2)( j − r))q ≤ {(Ψ(F1∩F2)( j))q ∨ (Ψ(F1∩F2)(r))q}.

Hence, this shows that F1 ∩ F2 is q-ROFSR of Γ. �

Theorem 2.8. LetM = { j, δM( j), ΨM( j) : j ∈ Γ, (δM( j))q + (ΨM( j))q ≤ 1} be a q-ROFSR of Γ. Then
(δM( jm))q ≥ (δM( j))q and (ΨM( jm))q ≤ (ΨM( j)q) for all j ∈ Γ and m ∈ N.

Proof. To prove this theorem, we use mathematical induction technique. Consider, j ∈ Γ, then (δM( j−
r)( j− r))q = (δM( j− r)( j− r))q ≥ {(δM( j− r))q∧ (δM( j− r))q} = (δM( j− r))q. As a result, this inequality
is true for m = 2. Let assume that this inequality exist the for m = n − 1, such that (δM( j − r)n−1)q ≥

(δM( j− r))q. Then (δM( j− r)n)q = (δM( j− r)n−1( j− r))q ≥ {(δM( j− r))q∧ (δM( j− r)n−1)q} = (δM( j− r))q.
Thus by mathematical induction, we obtain (δM( j − r)m)q ≥ {(δM( j − r))q} for all m ∈ N. In same
fashion, (ΨM( j − r)2)q = (ΨM( j − r)( j − r))q ≤ {(ΨM( j − r))q ∨ (ΨM( j − r))q} = (ΨM( j − r))q. Result is
valid for m = 2 so, suppose that it is also true for m = n − 1, such that(ΨM( jn−1))q ≤ (ΨM( j))q. Then
(ΨM( jn))q = (ΨM( jn−1 j))q ≤ {(ΨM( j))q ∨ (ΨM( jn−1))q} = (ΨM( j))q. Thus by mathematical induction,
we have (ΨM( jm))q ≤ (ΨM( j))q for all m ∈ N. Moreover, (δM( jn−1))q ≥ (δM( j))q. Then (δM( jn))q =

(δM( jn−1 j))q ≥ {(δM( j))q ∧ (δM( jn−1))q} = (δM( j))q. Now, we have (δM( jm))q ≥ {(δM( j))q} for all m ∈ N.
We conclude that (ΨM( j2))q = (ΨM( j j))q ≤ {(ΨM( j))q ∨ (ΨM( j))q} = (ΨM( j))q. In same fashion,
we obtain following result (ΨM( jn−1))q ≤ (ΨM( j))q. Then (ΨM( jn))q = (ΨM( jn−1 j))q ≤ {(ΨM( j))q ∨

(ΨM( jn−1))q} = (ΨM( j))q. Thus by mathematical induction, we get (ΨM( jm))q ≤ (ΨM( j))q for all
m ∈ N. �

Theorem 2.9. Suppose M = { j, δM( j), ΨM( j) : j ∈ Γ, (δM( j))q + (ΨM( j))q ≤ 1} be a q-ROFSR of Γ.
If δM( j) , δM(r) and ΨM( j) , ΨM(r) for some j, r ∈ Γ, than (δM( j − r))q = (δM( j))q ∧ (δM(r))q and
(δM( j − r))q = (ΨM( j))q ∨ (ΨM(r))q.
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Proof. To prove this results we take arbitrary elements j, r ∈ Γ, therefore δM( j) > δM(r) then clearly
(δM( j))q > (δM(r))q. Consider,

(δM(r))q = δM( j − j + r)q

≥ {(δM(− j))q ∧ (δM( j + r))q}

= {(δM( j))q ∧ (δM( j + r))q}. (2.5)

Since (δM( j))q > (δM(r))q, now from expression (2.5) we get

(δM(r))q ≥ (δM( j + r))qAlso, (2.6)
(δM( j − r))q ≥ {(δM( j))q ∧ (δM(r))q} = (δ − K(r))q (2.7)

thus, (δM( j + r))q ≥ (δM(r))q (2.8)
by Eqs (2.6) and (2.8) we obtain

(δM( j − r))q = (δK(r))q = {(δM( j))q ∧ (δM(r))q}. (2.9)

Furthermore, we get the results if ΨM( j) > ΨM(r).

Suppose, (ΨM(r))q = ΨM( j − j + r)q

≤ {(ΨM(− j))q ∨ (ΨM( j + r))q}

= {(ΨM( j))q ∨ (ΨM( j + r))q}. (2.10)

Since (ΨM( j))q > (ΨM(r))q, now from expression (2.10) we get

(ΨM(r))q ≤ (ΨM( j + r))q (2.11)
Also, (ΨM( j − r))q ≤ {(ΨM( j))q ∨ (ΨM(r))q} = (Ψ − K(r))qthat is

(ΨM( j + r))q ≤ (ΨM(r))q (2.12)
by Eqs (2.11) and (2.12) we obtain

(ΨM( j − r))q = (ΨM(r))q = {(ΨM( j))q ∨ (ΨM(r))q}.

�

Theorem 2.10. Suppose 0 represent the identity element of Γ and M = { j, δM( j), ΨM( j) : j ∈
Γ, (δM( j))q + (ΨM( j))q ≤ 1} be a q-ROFSR of Γ. Therefore,

(1) If (δM( j))q = (δM(0))q for some j ∈ Γ, then (δM( j − r))q = (δM(r))q for all r ∈ Γ,

(2) If (ΨM( j))q = (ΨM(0))q for some j ∈ Γ, then (ΨM( j − r))q = (ΨM(r))q for all r ∈ Γ,

(3) If (δM( j))q = (δM(0))q for some j ∈ Γ, then (δM( jr))q = (δM(r))q, for all r ∈ Γ,

(4) If (ΨM( j))q = (ΨM(0))q for some j ∈ Γ, then (ΨM( jr))q = (ΨM(r))q for all r ∈ Γ.

Proof. Assume thatM = {u, δM(u),ΨM(u)} be a q-ROFSR of Γ. As given (δM( j))q = (δM(0))q.

(δM(r))q = δM( j − j + r)q

≥ {(δM( j))q ∧ (δM(r − j))q}
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= {(δM( j))q ∧ (δM(r − j))q}

= {(δM(0))q ∧ (δM(r − j))q}. (2.13)

As, (δM(0))q ≥ (δM(r))q by using the expression (2.13) we get

(δM(r))q ≥ δM(r − j)q. (2.14)

Thus, (δM(r − j))q ≥ {(δM( j))q ∧ (δM(r))q} = (δK(r))q. re have

(δM(r − j))q ≥ (δM(r))q. (2.15)

From Eqs (2.14)and (2.15) we obtain, (δM(r − j))q = (δM(r))q. Now, (ΨM( j))q = (ΨM(0))q.

(ΨM(r))q = ΨM( j − j + r)q

≤ {(ΨM( j))q ∨ (ΨM(r − j))q}

= {(δM( j))q ∨ (δM(r − j))q}

= {(δM(0))q ∨ (δM(r − j))q}. (2.16)

Because, (ΨM(0))q ≤ (ΨM(r))q form the expression (2.16) we get

(ΨM(r))q ≤ ΨM(r − j)q. (2.17)

Thus, (ΨM(r − j))q ≤ {(ΨM( j))q ∨ (ΨM(r))q} = (ΨK(r))q, then we have

(ΨM(r − j))q ≤ (ΨM(r))q. (2.18)

From Eqs (2.17) and (2.18), we obtain, (ΨM(r − j))q = (ΨM(r))q.

(δM(r))q = δM( j j−1r)q

≥ {(δM( j−1))q ∧ (δM(r j))q}

≥ {(δM( j))q ∧ (δM(r j))q}

= {(δM(0))q ∧ (δM(r j))q}. (2.19)

As, (δM(0))q ≥ (δM(r))q by using the expression (2.19) we get

(δM(r))q ≥ δM(r j)q. (2.20)

Thus, (δM(r j))q ≥ {(δM( j))q ∧ (δM(r))q} = (δK(r))q. we have

(δM(r j))q ≥ (δM(r))q. (2.21)

From Eqs (2.20) and (2.21) we obtain, (δM(r j))q = (δM(r))q.

Now, (ΨM( j))q = (ΨM(0))q.

(ΨM(r))q = ΨM( j j−1r)q

≤ {(ΨM( j−1))q ∨ (ΨM(r j))q}

= {(δM( j))q ∨ (δM(r j))q}

= {(δM(0))q ∨ (δM(r j))q}. (2.22)
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Because, (ΨM(0))q ≤ (ΨM(r))q form the expression (2.22) we get

(ΨM(r))q ≤ ΨM(r j)q. (2.23)

Thus, (ΨM(r j))q ≤ {(ΨM( j))q ∨ (ΨM(r))q} = (ΨK(r))q, then we have

(ΨM(r j))q ≤ (ΨM(r))q. (2.24)

From Eqs (2.23) and (2.24), we obtain, (ΨM(r j))q = (ΨM(r))q. �

Theorem 2.11. Suppose 0 represent the identity element of Γ and M = {r, δM(r),ΨM(r) : r ∈
Γ, (δM(r))q +(ΨM(r))q ≤ 1} be a q-ROFSR of Γ. ThenH = {r ∈ Γ : (δM(r))q = (δM(0))q and (ΨM(r))q =

(ΨM(0))q} is a subring of Γ.

Proof. By definition of H, e ∈ H, so H is non-empty subset of Γ. Suppose j, r ∈ H, then (δM( j))q =

(δM(e))q = (δM(r))q and (ΨM( j))q = (ΨM(e))q = (ΨM(r))q. Now,

(δM( j − r))q ≥ {(δM( j))q ∧ (δM( j))q}

= {(δM( j))q ∧ (δM(r))q}

= {(δM(0))q ∧ (δM(0))q}

= (δM(0))q.

By Theorem (2.3), we have (δM(0))q ≥ (δM( j − r))q. Then, it is clearly (δM(0))q = (δM( j − r))q. Now
we show that (ΨM(0))q = (ΨM( j − r))q for which

(ΨM( j − r))q ≤ {(ΨM( j))q ∨ (ΨM( j))q}

= [(ΨM( j))q ∨ (ΨM(r))q]
= [(ΨM(0))q ∨ (ΨM(0))q]
= (ΨM(0))q.

By Theorem (2.3) we have (ΨM(0))q ≤ (ΨM( j−r))q. Then it is clearly (ΨM(0))q = (ΨM( j−r))q. Hence,
j − r ∈ Γ. Furtherore,

(δM( jr))q ≥ {(δM( j))q ∧ (δM( j))q}

= {(δM( j))q ∧ (δM(r))q}

= {(δM(0))q ∧ (δM(0))q}

= (δM(0))q.

By Theorem (2.3), we have (δM(0))q ≥ (δM( jr))q. Then, it is clearly (δM(0))q = (δM( jr))q. Now we
show that (ΨM(0))q = (ΨM( jr))q for which

(ΨM( jr))q ≤ {(ΨM( j))q ∨ (ΨM( j))q}

= [(ΨM( j))q ∨ (ΨM(r))q]
= [(ΨM(0))q ∨ (ΨM(0))q]
= (ΨM(0))q.

By Theorem (2.3) we have (ΨM(0))q ≤ (ΨM( j − r))q. Then it is clearly (ΨM(0))q = (ΨM( jr))q. Hence,
j − r ∈ Γ. This illustrates the proof. �
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3. q-Rung orthopair fuzzy ideal and q-rung orthopair fuzzy quotient ring

Now, In this section we define q-rung orthopair fuzzy left, right ideal (q-ROFLI), (q-ROFRI) and q-
ROFQR. Moreover, q-rung orthopair fuzzy quotient ring, some of its basic algebraic results, properties
and examples are also discuss.

Definition 3.1. Assume I = {r, δI(r), ΨI(r) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a non empty q-ROFS
of ring Γ is said to be left ideal if following conditions are hold:
if j, r ∈ Γ then,

(1) (δM(r − j))q ≥ {(δI(r))q ∧ (δI( j))q},

(2) (δI( jr))q ≥ (δI(r))q,

(3) (ΨI(r − j))q ≤ {(ΨI(r))q ∨ (ΨI( j))q},

(4) (ΨI( jr))q ≤ (ΨI(r))q.

Example 3.2. Let (Z3,+, .) be ring, where Z3 = {0, 1, 2, } and L = {< j, δ( j), Ψ( j) > j ∈ Z3, (δL( j))q +

(ΨL( j))q ≤ 1} be q-ROFS over Z3, where q ≥ 3 define as

δL(j) =

0.75 if j ∈ {1, 2}
0.8 if j ∈ {0}

and

ΨL(j) =

0.8 if j ∈ {1, 2}
0.75 if j ∈ {0}.

Clearly, L is 3-ROFLI of Z3.

Definition 3.3. Assume I = { j, δI( j),ΨI( j) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a non empty q-ROFS
of ring Γ is said to be right ideal if following conditions are hold:
if r, j ∈ Γ then,

(1) (δM( j − r))q ≥ {(δI( j))q ∧ (δI(r))q},

(2) (δI( jr))q ≥ (δI( j))q,

(3) (ΨI( j − r))q ≤ {(ΨI( j))q ∨ (ΨI(r))q},

(4) (ΨI( jr))q ≤ (ΨI( j))q.

A q-ROFS I of ring Γ have both left and right ideal is called q-ROFI.

Definition 3.4. Assume I = {r, δI(r), ΨI(r) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a non empty q-ROFS
of ring Γ is said to be ideal if following conditions are hold:
if j, r ∈ Γ then,

(1) (δM(r − j))q ≥ {(δI(l))q ∧ (δI( j))q},

(2) (δI(r j))q ≥ max{(δI(r))q ∧ (δI( j))q},
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(3) (ΨI(r − j))q ≤ {(ΨI(r))q ∨ (ΨI( j))q},

(4) (ΨI(r j))q ≤ min{(δI(r))q ∨ (δI( j))q}.

Theorem 3.5. Consider M = {r, δM(r),ΨM(r) : r ∈ Γ, (δM(r))q + (ΨM(r))q ≤ 1} be a q-ROFSR of Γ. If
M is a q-RPFI of Γ then (δM( j − r))q = (δM( j − r))q and (ΨM( j − r))q = (ΨM( j − r))q for all j, r ∈ Γ.

This theorem’s proof is simple to understand.

Theorem 3.6. Let I be q-ROFI. Then M = { j ∈ Γ|(δI(0))q = (δI( j))q and (ΨI(0))q = (ΨI(w))q} is a
q-ROFI of a ring Γ and 0 denotes the identity element in Γ.

Proof. Assume M is q-ROFS of a ring Γ also 0 ∈ MM is q-ROFI of a ring Γ. Let j, r ∈ Γ. (δI(r))q =

(δI(0))q and (ΨI(r))q = (ΨI(0))q such that,

(δI( j − r))q ≥ {(δI( j))q ∧ (δI(r))q}

= {(δI(0))q ∧ (δI(0))q}.

(δI( j − r))q ≥ (δI(0))q. (3.1)
But we know that (δI( j − r))q ≤ (δI(0))q. (3.2)

By using Eqs (3.1)and (3.2) (δI( j − r))q = (δI(0))q.

Similarly, (δI( jr))q ≥ {(δI( j))q ∧ (δI(r))q}

≥ {(δI(0))q ∧ (δI(0))q}

(δI( jr))q ≥ (δI(0))q (3.3)
But we know that (δI( jr))q ≤ (δI(0))q. (3.4)

By using Eqs (3.3)and (3.4) (δI( j − r))q = (δI(0))q.

Since: I be q-ROFI so,
Furthermore,

(ΨI( j − r))q ≤ {(ΨI( j))q ∨ (ΨI(r))q}

= {(ΨI(0))q ∨ (ΨI(0))q}.

(ΨI( j − r))q ≤ (ΨI(0))q. (3.5)
But we know that (ΨI( j − r))q ≥ (ΨI(0))q. (3.6)

By using Eqs (3.5)and (3.6) (ΨI( j − r))q = (ΨI(0))q.

Similarly, (ΨI( jr))q ≤ {(ΨI( j))q ∨ (ΨI(r))q}

≤ {(ΨI(0))q ∨ (ΨI(0))q}

(ΨI( jr))q ≤ (ΨI(0))q. (3.7)
But we know that (ΨI( jr))q ≥ (ΨI(0))q. (3.8)

By using Eqs (3.7)and (3.8) (ΨI( j − r))q = (ΨI(0))q.

Conditions are hold. So,M is a q-ROFI of a ring Γ. �
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4. q-Rung orthopair fuzzy level subring

In this portion, we study the idea of q-rung orthopair fuzzy level subring (q-ROFLSR) and also
discuss some important results.

Definition 4.1. Let F = {r, δF(r), ΨF(r)} be a q-ROFS of crisp set of Γ and (ξ, τ) ∈ [0, 1] such that
0 ≤ (ξ)q + (τ)q ≤ 1. Then F(ξ,τ) = {r ∈ Γ : (δF(r))q ≥ ξ and (ΨF(r))q ≤ τ} is known as q-rung orthopair
fuzzy level subset of q-ROFSW of Γ.

Theorem 4.2. If F = {u, δF(r), ΨF(r)} be a q-ROFS of Γ and ξ, τ, ξ́, τ́ ∈ [0, 1]. Then

(1) F(ξ,τ) ⊆ F(ξ́,τ́) if ξ́ ≤ ξ and τ ≤ τ́,

(2) F(ξ,τ) ⊆ F(ξ́,τ́) if F ⊆ F́.

Proof. (1) Let l ∈ F(ξ,τ) then (δF(l))q ≥ ξ and (ΨF(l))q ≤ τ such that ξ́ ≤ ξ and τ ≤ τ́, thus (δF(l))q ≥

ξ ≥ ξ́ and (ΨF(l))q ≤ τ ≤ τ́. This implies that l ∈ F(ξ́,τ́). So, F(ξ,τ) ⊆ F(ξ́,τ́).
(2) Let l ∈ F(ξ,τ) then (δF(l))q ≥ ξ and (ΨF(l))q ≤ τ and F ⊆ F́ therefore (δF(l))q ≤ (δF́(l))q and
(ΨF(l))q ≥ (ΨF́(l))q. Then consequently, ξ ≤ (δF(l))q ≤ (δF́(l))q and τ ≥ (ΨF(l))q ≥ (ΨF́(l))q, after this
implementations we get l ∈ F́(ξ,τ). Hence, F(ξ,τ) ⊆ F́(ξ,τ). �

Theorem 4.3. If F = {r, δF(r), ΨF(r)} be a q-ROFS of Γ and ξ, τ, ξ́, τ́ ∈ [0, 1]. Then

(1) F(ξ,τ) ⊆ F(ξ́,τ́) if ξ́ ≤ ξ and τ ≤ τ́,

(2) F(ξ,τ) ⊆ F(ξ́,τ́) if F ⊆ F́.

Proof. (1) Let l ∈ F(ξ,τ) then (δF(l))q ≥ ξ and (ΨF(l))q ≤ τ such that ξ́ ≤ ξ and τ ≤ τ́, thus (δF(l))q ≥

ξ ≥ ξ́ and (ΨF(l))q ≤ τ ≤ τ́. This implies that l ∈ F(ξ́,τ́). So, F(ξ,τ) ⊆ F(ξ́,τ́).
(2) Let l ∈ F(ξ,τ) then (δF(l))q ≥ ξ and (ΨF(l))q ≤ τ and F ⊆ F́ therefore (δF(l))q ≤ (δF́(l))q and
(ΨF(l))q ≥ (ΨF́(l))q. Then consequently, ξ ≤ (δF(l))q ≤ (δF́(l))q and τ ≥ (ΨF(l))q ≥ (ΨF́(l))q, after this
implementations we get l ∈ F́(ξ,τ). Hence, F(ξ,τ) ⊆ F́(ξ,τ). �

Theorem 4.4. A q-ROFS F of ring Γ is a q-ROFSR of Γ if and only if q-rung orthopair fuzzy level set
F(ξ,τ) of subring Γ is a subring of Γ.

Proof. By the definition of q-rung orthopair fuzzy level set F(ξ,τ) = {r ∈ Γ : (δF(r))q ≥ ξand(ΨF(r))q ≤

τ}. For all entries (ξ, τ) ∈ [0, 1] we have (δF(l))q ≥ ξ and (ΨF(l))q ≤ τ. As a result, at least 0 ∈ F(ξ,τ)

which is show that F(ξ,τ) is non-empty.
Let l, r ∈ F(ξ,τ) then by definition of q-rung orthopair fuzzy level set F(ξ,τ) we have

(δF(l))q ≥ ξ, δF(w))q ≥ ξ and (ΨF(l))q ≤ τ, (ΨF(r))q ≤ τ. Here, F is a q-ROFSR of Γ. So,

(δF(l − r))q ≥ {(δF(l))q ∧ (δF(r))q}

= {(δF(l))q ∧ (δF(−r))q}

= {(δF(l))q ∧ (δF(r))q}

≥ {ξ ∧ ξ}
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(δF(l − r))q ≥ {ξ}.

(δF(lr))q ≥ {(δF(l))q ∧ (δF(r))q}

= {ξ ∧ ξ}

(δF(lr))q ≥ ξ.

and (ΨF(l − r))q ≤ {(ΨF(l))q ∨ (ΨF(r))q}

= {(ΨF(l))q ∨ (ΨF(−r))q}

= {(ΨF(l))q ∨ (ΨF(r))q}

≤ {τ ∨ τ}

(ΨF(l − r))q ≤ {τ}.

(ΨF(lr))q ≤ {(ΨF(l))q ∨ (ΨF(r))q}

= {τ ∨ τ}

(ΨF(lu))q ≤ τ.

Thus, (l − r), (lr) ∈ F(ξ,τ) by subring criteria F(ξ,τ) is a subring of Γ.
Conversely, suppose F q-ROFS Γ and ∀ ξ, τ ∈ [0, 1], F(ξ,τ) be subring of Γ. Let r, l ∈ Γ such
that (δF(l))q = ξ1, (δF(r))q = ξ2, (ΨF(l))q = τ1, (ΨF(r))q = τ2. Then l, r ∈ F((ξ1∧,ξ2), (τ1,∧τ2)) and
F((ξ1∧,ξ2), (τ1,∧τ2)) is q-ROFSR of Γ, therefore (lr), (l − r) ∈ F((ξ1∧,ξ2), (τ1,∧τ2)). By using this

(δF(l − r))q ≥ {ξ1 ∧ ξ2}

≥ {(δF(l))q ∧ (δF(r))q}

(δF(l − r))q = {(δF(l))q ∧ (δF(−r))q}.

Since, (δF(l))q ≤ {(δF(−r))q}.

(δF(lr))q ≥ {ξ1 ∧ ξ2}

= {(δF(l))q ∧ (δF(r))q}.

(ΨF(l − r))q ≤ {τ1 ∨ τ2}

≤ {(ΨF(l))q ∨ (ΨF(r))q}

(ΨF( j − w))q = {(ΨF(l))q ∨ (ΨF(−r))q}.

Since, (ΨF(r))q ≥ {(ΨF(−r))q}.

(ΨF(lr))q ≤ {τ1 ∨ τ2}

= {(ΨF(l))q ∨ (ΨF(r))q}.

Hence, F is a q-ROFSR of Γ. �
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5. Homomorphism on q-rung orthopair fuzzy subring

The effect of ring homomorphism on q-ROFSR is examined in this section. We examine the q-
ROFSR’s pre-image and image homomorphism properties. Additionally, investigate the pre-image
homomorphism on q-ROFSR and different aspects of images.

Theorem 5.1. Let Γ1 and Γ2 are two subrings. Let κ be surjective homomorphism from Γ1 to Γ2 and
I = {w1, δI(w1), ΨI(w1) : w1 ∈ Γ1} be q-ROFSR of Γ1. Then κ(I) = {w, δI(w), ΨI(w) : w ∈ Γ2} is a
q-ROFSR of Γ2.

Proof. Let κ : Γ1 → Γ2 is a onto homomorphism, then κ(Γ1) = Γ2. Let w2, j2 be elements of Γ2.
Suppose j2 = κ( j1) , w2 = Γ(w1), κ( j1w1) = κ( j1)κ(w1) = j2w2 and κ( j1−w1) = κ( j1)− κ(w1) = j2−w2.

(δκ(I)( j1 − w1))q = {(δI(z)|z ∈ Γ1 ∨ κ(z) = ( j1 − w1))q}

= {((δI(z)))q|z ∈ Γ1 ∨ κ(z) = ( j1 − w1)}
= {(δI( j1 − w1))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j1 − w1)

and κ( j1 − w1) = κ( j1) − κ(w1) = j2 − w2}}. (Because κ is homomorphism)

≥ max{{(δI( j1))q ∧ (δI( j2))q}| j1,w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}.

I is q-ROFSR Γ1.

= {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

So, (δκ(I)( j1 − w1))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2,w2 ∈ Γ2.

(δκ(I)( j1w1))q = (δI(z)|z ∈ Γ1 ∨ κ(z) = ( j1w1))q

= {((δI(z)))q|z ∈ Γ1 ∨ κ(z) = ( j1w1)}
= {(δI( j1w1))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j1w1)

and κ( j1w1) = κ( j1)κ(w1) = j2w2}}. Because κ is homomorphism

≥ max{{(δI( j1))q ∧ (δI( j2))q}| j1,w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}

I is q-ROFSR of Γ1

= {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

Therefore, (δκ(I)( j1w1))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2,w2 ∈ Γ2.

Similar, for non membership Ψκ(I).

(Ψκ(I)( j1 − w1))q = (ΨI(z)|z ∈ Γ1 ∧ κ(z) = ( j1 − w1))q

= {((ΨI(z)))q|z ∈ Γ1 ∧ κ(z) = ( j1 − w1)}
= {(ΨI( j1 − w1))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∧ {κ(z) = ( j1 − w1)

and κ( j1 − w1) = κ( j1) − κ(w1) = j2 − w2}}. Because κ is homomorphism
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≤ min{{(ΨI( j1))q ∨ (ΨI( j2))q}| j1, w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}

I is q-ROFSR of Γ1

= {min((ΨI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∨min((ΨI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q}.

So, (Ψκ(I)( j1 − w1))q ≤ {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q} for all j2, w2 ∈ Γ2.

(Ψκ(I)( j1w1))q = (ΨI(z)|z ∈ Γ1 ∧ κ(z) = ( j1w1))q

= {((ΨI(z)))q|z ∈ Γ1 ∧ κ(z) = ( j1w1)}
= {(ΨI( j1w1))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∧ {κ(z) = ( j1w1)

and κ( j1w1) = κ( j1)κ(w1) = j2w2}}. Because κ is homomorphism

≤ min{{(ΨI( j1))q ∨ (ΨI( j2))q}| j1, w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}

I is q-ROFSR of Γ1.

= {min((ΨI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∨min((ΨI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q}.

Thus, (Ψκ(I)( j1w1))q ≤ {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q} for all j2, w2 ∈ Γ2.

κ(I) = {w2, δI(w),ΨI(w) : w2 ∈ Γ} is a q-ROFSR of Γ2. �

The converse of Theorem (5.1) is hold in the form of Theorem (5.2).

Theorem 5.2. Let κ : Γ1 → Γ2 is a bijective homomorphism and T = {w2, δT (w2), ΨT (w2) : w2 ∈ Γ2}

is a q-ROFSR of Γ2 such that κ−1(I) = {w1, δκ−1T (w1), Ψκ−1T (w1) : w1 ∈ Γ1} is a q-ROFSR of Γ1.

Proof. Consider j1, w1 ∈ Γ1, then j1w1 ∈ Γ2. Now,

δκ−1(T )( j1 − w1))q = (δ(T )κ( j1 − w1))q

= (δ(T )κ( j1) − κ(w1))q (κ is homomorphism)
≥ {(δT ( j1))q ∧ (δT (w1))q}(T is q-ROFSR of Γ2).
≥ {δκ−1(T )( j1))q ∧ δκ−1(T )(w1))q}.

Similarly in case of non membership,

Ψκ−1(T )( j1 − w1))q = (Ψ(T )κ( j1 − w1))q

= (Ψ(T )κ( j1)κ(w1))q (κ is homomorphism)
≤ {(ΨT ( j1))q ∨ (ΨT (w1))q}(T is q-ROFSR of Γ2).
≤ {Ψκ−1(T )( j1))q ∨ Ψκ−1(T )(w1))q}

δκ−1(T )( j1w1))q = (δ(T )κ( j1w1))q

= (δ(T )κ( j1)κ(w1))q (κ is homomorphism)
≥ {(δT ( j1))q ∧ (δT (w1))q}(T is q-ROFSR of Γ2).
≥ {δκ−1(T )( j1))q ∧ δκ−1(T )(w1))q}.
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In other words,

Ψκ−1(T )( j1w1))q = (Ψ(T )κ( j1w1))q

= (Ψ(T )κ( j1)κ(w1))q (κ is homomorphism)
≤ {(ΨT ( j1))q ∨ (ΨT (w1))q}(T is q-ROFSR of Γ2).
≤ {Ψκ−1(T )( j1))q ∨ Ψκ−1(T )(w1))q}.

�

Theorem 5.3. If κ : Γ1 → Γ2 is surjective homomorphism, Γ1, Γ2 are two subrings and I be q-ROFI of
Γ1 then κ(I) is q-ROFI of Γ2.

Proof. Suppose I be q-ROFI of Γ1, then (δI( j1−w1))q = (δI(w1− j1))q and (ΨI( j1−w1))q = (ΨM(w1− j1))q

for all j1, w1 ∈ Γ1. Let j2, w2 ∈ Γ2. Then there exist some elements j1, w1 ∈ Γ1 for this w2 =

κ(w1) and j2 = κ( j1). Then,

(δκ(I)( j2 − w2))q = {(δI(z)|z ∈ Γ1 ∨ κ(z) = ( j2 − w2))q}

= {((δI(z)))q|z ∈ Γ1 ∨ κ(z) = ( j2 − w2)}
= {(δI( j2 − w2))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j2 − w2)

and κ( j2 − w2) = κ( j1) − κ(w1) = j2 − w2}}. Because κ is homomorphism

≥ max{{(δI( j1))q ∧ (δI( j2))q}| j1, w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}

= {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

So, (δκ(I)( j2 − w2))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2, w2 ∈ Γ2.

(δκ(I)( j1w1))q = {(δI(z)|z ∈ Γ1 ∨ κ(z) = ( j1w1))q}

= {((δI(z)))q|z ∈ Γ1 ∨ κ(z) = ( j1w1)}
= {(δI( j1w1))q|z ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j1w1)

and κ( j1w1) = κ( j1)κ(w1) = j2w2}}. Because κ is homomorphism

≥ max{{(δI( j1))q ∧ (δI( j2))q}| j1,w1 ∈ Γ1, {κ( j1) = j2, κ(w1) = w2}}

= {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

So, (δκ(I)( j1w1))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2, w2 ∈ Γ2.

In same way we can show that (Ψκ(I)( j2 − w2))q ≤ {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q} and (Ψκ(I)( j1w1))q ≤

{(Ψκ(I)( j2))q ∨ (Ψκ(I)(w2))q} for all j2,w2 ∈ Γ2. Hence, all the axiom of q-ROFI are hold. So, κ(I) is
q-ROSI of Γ2. �

Theorem 5.4. Let Γ1, Γ2 are two subrings. Let κ be bijective homomorphism κ : Γ1 → Γ2 and
I = {w1, δI(w1), ΨI(w1) : w1 ∈ Γ1} be q-ROFI of Γ2. Then κ−1(I) = {w2, δI(w2), ΨI(w) : w1 ∈ Γ1} is a
q-ROFSR of Γ1.
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Proof. I be q-ROFI of Γ2 then (δI( j2 − w2))q = (δI(w2 − j2))q and (ΨI( j2 − w2))q = (ΨM(w2 − j2))q

for all j2,w2 ∈ Γ2. Suppose that j1, w1 ∈ Γ1.then there exist some elements j1, w1 ∈ Γ1 for this
w2 = κ(w1) and j2 = κ( j1). Let w2, j2 be elements of Γ2. Suppose j2 = κ( j1) , w2 = Γ(w1), κ( j1w1) =

κ( j1)κ(w1) = j2w2 and κ( j1 − w1) = κ( j1) − κ(w1) = j2 − w2.

(δκ−1(I)( j1 − w1))q = (κ−1(δI)(( j1 − w1))q

(δκ−1(I)( j1 − w1))q = (δI(κ( j1 − w1)))q

= {(δI( j1 − w1))q|( j1 − w1) ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j1 − w1)
and κ( j1 − w1) = κ( j1) − κ(w1) = j2 − w2}}.

≥ {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

So, (δκ(I)( j2 − w2))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2,w2 ∈ Γ2.

Similarly, (Ψκ(I)( j2 − w2))q ≤ {(Ψκ(I)( j2))q ∨ (Ψκ(I)(w))q} for all j2,w2 ∈ Γ2.

(δκ−1(I)( j1w1))q = (κ−1(δI)(( j1w1))q

(δκ−1(I)( j1w1))q = (δI(κ( j1w1)))q

= {(δI( j1w1))q|( j1w1) ∈ Γ1, {κ( j1) = j2, κ(w1) = w2} ∨ {κ(z) = ( j1w1)
and κ( j1w1) = κ( j1)κ(w1) = j2w2}}. Because κ is homomorphism

≥ {max((δI( j1))q : j1 ∈ Γ1, κ( j1) = j2) ∧max((δI( j2))q : j1 ∈ Γ1, κ( j1) = j2)}
= {(δκ(I)( j2))q ∧ (δκ(I)(w2))q}.

So, (δκ(I)( j2w2))q ≥ {(δκ(I)( j2))q ∧ (δκ(I)(w2))q} for all j2,w2 ∈ Γ2.

Hence, κ−1(I) is a q-ROFSR of Γ1. �

6. Conclusions

The Objectives of this article is to introduce q-ROFSR and their operations. We have examined
certain algebraic features of q-ROFSR. We generated the essential and appropriate parameters for q-
ROFSR. Every Pythagorean fuzzy subring is q-ROFSR, like we have shown, but the converse is not
true. We have introduced q-rung orthopair fuzzy quotient ring and q-rung orthopair fuzzy left ideal
right ideals. We got q-rung orthopair fuzzy level subring is an ideal. Moreover, we discussed the
consequence of homomorphism on q-ROFSR. In the future, we intend to define q-ROFSR on various
algebraic structures, such as isomorphism on subrings and subfields under the action of q-ROFSR. We
will also apply the Q-ROFS to various complex algebraic structures.
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