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1. Introduction

Every day in our environment, we meet with various problems involving uncertainty. For example,
the beauty concept is uncertain because it is impossible to categorize beauty into two categories
beautiful and ugly. Therefore, the concept of beauty is not precise but somewhat uncertain. The
classic set requires precision for all mathematics. Numerous theories exist to address uncertainty, like
probability theory, vague set theory, interval mathematics, intuitionistic fuzzy sets, and fuzzy set theory
to deal with uncertainty, but each of these theories has its difficulties as mentioned in [15]. Soft set
theory was invited by Molodtsov [15], which is a helpful approach to dealing with uncertainty.

Another approach to address uncertainty is the rough set theory proposed by Pawlak in 1982 [17].
Numerous advantageous applications of rough set theory exist. In particular, in the areas of decision-
making, machine learning, pattern recognition, information acquisition, expert systems, knowledge
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creation from databases, inductive reasoning, cognitive sciences, and artificial intelligence. The rough
set techniques are essential [17, 18, 42, 50]. Rough set theory’s major benefit in data analysis is that it
does not need any preliminary or supplemental data information like statistical probability. The Pawlak
rough set is constructed using the equivalence classes as its building blocks. However, for many
practical applications, the equivalence relationship is also restrictive in many situations. To tackle
this problem, the Pawlak rough set model can be generalized in several ways by substituting other
relations for the equivalence relation, tolerance relation, [24, 48], similarity relation [25], dominance
relation [8], neighborhood system [35]. Addressing the rough set using general binary relations
mentioned in [39, 41, 46, 47], the soft, rough set can be seen in [2, 7, 21], covering based discussion
in [4, 11, 38, 43]. Rough approximation based on soft binary relation in [10], Xu et al. [39] expanded
this idea and approximated a set with respect to the aftersets and foresets of the binary relation over the
universe U. Recently, Shabir et al. [23] took this idea a step further and approximated a subset of one
universe, V, in another universe, U. Utilizing the aftersets and foresets of a soft binary relation over
U × V.

All of the generalized rough set models use single relation of the universe, which would have
limitations for addressing multi-granulation information in many real-world circumstances. Therefore,
Qian et al. [19, 20] introduced a multi-granulation rough set for handling this issue. Multi-granulation
has gained the attention of numerous scholars worldwide as a hot issue in management science. A brief
review of multi-granulation is as follows. Qain et al. [34] proposed the pessimistic multigranultion
rough set. Xu et al. [37] presented a generalized multgranulation rough set; Yang et al. [44]
generalized multgranulation rough set from crisp to fuzzy, multi-granulation fuzzy rough set presented
by Xu et al. [40, 49], Zhan et al. [49, 51] discussed two types of coverings based multigranulation
rough sets, Intuitionistic fuzzy multigranulation rough sets were presented by Huang et al. [9], Ali et
al. introduced a novel sort of dominance-based MGRS and discussed its use in conflict analysis issues
in [1].

Many practical as diseasesasymptoms and medications used ina diagnostics and comprise a diverse
universe of objects. To address the rough set issues that occur in the single universe of objects Liu [13],
Yan et al. [45] introduced a generalized RS model over dual universes of objects instead of the single
universe of objects in respect of developing the relationship between the single-universe and dual
universe models. The probabilistic RS over dual universes was established by Ma and Sun [16]
to measure the uncertainty of knowledge, Liu et al. [14] discussed the graded RS model over dual
universes and its properties, Shabir et al. [23] presented SBr based approximation of a set over dual
universes and its application in the reduction of an information system, Zhang et al. [53] presented
FRS over dual universes with interval-valued data, FR approximation of a set over dual universes
were established by Wu et al. [36]. Sun et al. [32] presented MGRS over dual universes of objects.
MGRS over dual universes is a well-structured framework that deals with numerous DM problems.
It has become a hot topic in the field of multiple decision problems and attracting a broad spectrum
of theoretical and practical studies. Zhang et al. [52] presented PFMGRS over dual universes, which
may be used in mergers and acquisitions. MGFRS over dual universes and its application to DM and
three ways GDM based on MGF decision theoretic RS over dual universes were presented by Sun et
al. [27, 28]. Furthermore, applications in GDM of MG over dual universes can be found in [29, 30].
Zhang et al. [54] presented the FMGRS over dual universes for steam turbine fault diagnosis, Tan et
al. [33] demonstrated decision-making with MGRS over dual universes and granulation selection, Sun
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et al. [31] presented diversified binary relation based FMGRS over dual universes. Recently, Din et
al. [5] presented a pessimistic multigranulation roughness of a fuzzy set based on soft binary relations
over dual universes and its application to approximate a fuzzy set of a universe in another universe.

Qian et al. [19], presented the notion of MGRS by multi equivalence relations on a universe U.
Sun et al. [26], replaced multi equivalence relations by general binary relations. On the other hands,
Shabir et al. [22] presented multigranulation roughness based on soft relations, which is optimistic
multigranulation of crisp set over two universes to approximate a subset of a universe in another
universe. It was a very interesting generalization of multigranulation roughness. But some properties
are not satisfied like the lower approximation is not contained in the upper approximation, and
the accuracy measure is not defined to find the degree of exactness. To compensate for this issue
motivated us to study a novel multigranulation roughness in this paper, we mainly focus on pessimistic
multigranulation roughness of set over two universes U and V, to approximate the subset of N ⊆ U in
V by using the afterset set of soft binary relations. The paper is organized as follows. In Section 2,
we recall some basic definitions of the rough set, multigranulation rough set, soft set, and soft binary
relation. In Section 3, we present the pessimistic multigranulation roughness of a set based on two soft
binary relations over dual universes and their properties and present the pessimistic multigranulation
roughness of a set based on finite number soft binary relations over dual universes. Section 4 illustrates
an example and Section 5 concludes the paper.

2. Preliminaries

In this section, we recall some basic notions that will be applied in subsequent sections.

Definition 2.1. [17] Let U be a finite non-empty set and ρ be an equivalence relation over U. Then
{v ∈ U |(u, v) ∈ ρ} is called an equivalence class of u with respect to ρ, we denote it by [u]ρ. Let X ⊆ U.
The Pawlak lower and upper approximations of X are defined as

ρ(X) = ∪{[u]ρ|[u]ρ ⊆ X},

ρ(X) = ∪{[u]ρ|[u]ρ ∩ X , ∅},

the pair (U, ρ) is called Pawlak approximation space.

The Pawlak rough set model was transformed by Qian et al. [19,20] to a multigranulation rough set
model, where the set approximations are determined by using multiple equivalences relations on the
universe.

Definition 2.2. [19] Let ρ̂1, ρ̂2 be two equivalence relations on the non-empty universal set U and
X ⊆ U. Then

Xρ̂1+ρ̂2
= {u ∈ U : [u]ρ̂1 ⊆ X or [u]ρ̂2 ⊆ X}

X
ρ̂1+ρ̂2

= {u ∈ U : [u]ρ̂1 ∩ X , ∅ and [u]ρ̂2 ∩ X , ∅}

are called the lower and upper approximations of X with respect to ρ1 and ρ2.

Definition 2.3. [19] Let ρ̂1, ρ̂2, . . . , ρ̂m be m equivalence relations on a universal set U and X ⊆ U.
Then the lower and upper approximations of U are defined as

X∑m
i=1 ρ̂i

= {u ∈ U : [u]ρ̂i ⊆ X f orsome i, 1 ≤ i ≤ m},
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X
∑m

i=1 ρ̂i
= (Xc∑m

i=1 ρ̂i
)c.

Molodtsov (1999) defined a soft set as:

Definition 2.4. [15] A pair (ρ, A) is called a soft set over U, where ρ is a mapping given by ρ : A 7−→
P(U),U is a non-empty finite set and A is a subset of E (set of parameters).
A soft set (ρ1, A) is a soft subset of a soft set (ρ2, B) over a common universe U, if A ⊆ B and for
all a ∈ A, ρ1(a) ⊆ ρ2(a). Two soft sets over a common universe are equal if they are soft subsets of
each other.

Feng et al. (2013) defined soft binary relation on a universe U as follows.

Definition 2.5. [6] Let (ρ, A) be a soft set over U ×U. Then (ρ, A) is called a soft binary relation over
U. In fact (ρ, A) is a parameterized collection of binary relations over U, that is, we have a binary
relation ρ(e) on U for each parameter e ∈ A.
We shall denote the collection of all soft binary relations over U by S Br(U).

Li et al. [12], generalized the definition of soft binary relation over a set U to soft binary relation
from U to V, as following.

Definition 2.6. [12] If (ρ, A) is a soft set over U×V, that is ρ : A 7−→ P(U×V), then (ρ, A) is said to be
a soft binary relation (SB-relation) from U to V. (ρ, A) is a parameterized collection of binary relations
from U to V. We shall denote the collection of all soft binary relations from U to V by S Br(U,V).

Shabir et al. [23] defined lower and upper approximations of a set by using soft binary relations as
follows:

Definition 2.7. [23] If (ρ, A) is a SB-relation from U to V and X ⊆ V, then we define two soft sets over
U, by

ρX(e) = {u ∈ U : i∅ , uρ(e) ⊆ X},

ρX(e) = {u ∈ U : iuρ(e) ∩ X , ∅},

where uρ(e) = {v ∈ V : (u, v) ∈ ρ(e)} for each e ∈ A and is called afterset of u corresponding to
parameter e.
Moreover, ρX : A 7→ P(U) and ρX : A 7→ P(U) and we say (U,V, ρ) a generalized soft approximation
space.
If X ⊆ U, then we can define two soft sets over V, by

Xρ(e) = {v ∈ V : i∅ , ρ(e)v ⊆ X}
Xρ(e) = {v ∈ V : iρ(e)v ∩ X , ∅}

where ρ(e)v = {u ∈ U : (u, v) ∈ ρ(e)} for each e ∈ A and is called foreset of v corresponding to
parameter e.
Moreover, Xρ : A 7→ P(V) and Xρ : A 7→ P(V).
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3. Pessimistic roughness of a set by two soft binary relations

In this section, we discuss the roughness of a set based on soft binary relation over dual universe.
We use the aftersets and foresets of a soft binary relations from U to V and approximate subset of V
in U and subset of U in V. In this way we get the corresponding soft rough subset of U(V), which is
called lower and upper approximations with respect to aftersets and foresets of soft binary relations.

Definition 3.1. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ V, A ⊆ E
(set of parameters). Then we define two soft sets over U by

pρ1 + ρ2
X(a) = {u ∈ U | ∅ , uρ1(e) ⊆ X and ∅ , uρ2(a) ⊆ X} f or all a ∈ A

pρ1 + ρ2
X(a) = {u ∈ U | uρ1(a) ∩ X , ∅ or uρ2(e) ∩ X , ∅} f or all a ∈ A

called the pessimistic lower and pessimistic upper approximations of X with respect to the
aftersets. We denote these soft sets by (pρ1 + ρ2

X(a), A), (pρ1 + ρ2
X(a), A), respectively. The pair(

(pρ1 + ρ2
X(A), (pρ1 + ρ2

X(A)
)

is called the generalized soft rough set approximation of X with respect

to aftersets of ρ1 and ρ2. The sets POS ρ1+ρ2(X) = pρ1 + ρ2
X(A), BNρ1+ρ2(X) = pρ1 + ρ2

X(A) −

pρ1 + ρ2
X(A) and NEGX

ρ1+ρ2
(A) = U − pρ1 + ρ2

X(A) are called ρ1, ρ2-positive, ρ1, ρ2-boundary and
ρ1, ρ2-negative regions X in U respectively. These regions induced the partition of U with respect
to each parameter, which classified the elements of U. If BNρ1+ρ2(X) = 0 empty set then we say the
corresponding soft subset of U, to X ⊆ V is exact (definable) with respect to ρ1, ρ2. Otherwise inexact
(Rough).

Definition 3.2. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ U, A ⊆
E(set of parameters). Then we define two soft sets over V by

Xρ1 + ρ2 p
(a) = {v ∈ V | ∅ , ρ1(a)v ⊆ X and ∅ , ρ2(a)v ⊆ X} f or all a ∈ A

Xρ1 + ρ2
p(a) = {v ∈ V | ρ1(a)v ∩ N , ∅ or ρ2(a)v ∩ X , ∅} f or all a ∈ A

called the lower and upper approximations of X with respect to the foresets. We denote these soft sets

by (Xρ1 + ρ2 p
(a), A), (Xρ1 + ρ2

p(a), A), respectively. The pair
(
(Xρ1 + ρ2 p

(A), (Xρ1 + ρ2
p(A)

)
is called

the generalized soft rough set approximation of X with respect to aftersets of ρ1 and ρ2. The sets
POS ρ1+ρ2(X) = Xρ1 + ρ2 p

(A), BNρ1+ρ2(X) = Xρ1 + ρ2
p(A) − pρ1 + ρ2 p

(A) and NEGX
ρ1+ρ2

(A) = U −
Xρ1 + ρ2

p(A) are called ρ1, ρ2-positive, ρ1, ρ2-boundary and ρ1, ρ2-negative regions X in V respectively.
These regions induce the partition of V with respect to each parameter, which classified the elements
of V. If BNρ1+ρ2(X) = 0 empty set then we say the corresponding soft subset of V, to X ⊆ U is exact
(definable) with respect to ρ1, ρ2. Otherwise inexact (Rough).

To explain the above definitions, we have the following example.

Example 3.1. Let U = {u1, u2, u3},V = {v1, v2, v3} and A = {a1, a2}.
Let X = {v1, v2} ⊆ V,Y = {u1, u2} ⊆ U and (ρ1, A), (ρ2, A) be two soft relations from universe U to V
defined by

ρ1(a1) = {(u1, v1), (u2, v1), (u3, v2)}, ρ2(a1) = {(u2, v2), (u2, v3), (u3, v1)},
ρ1(a2) = {(u2, v2), (u3, v1)}, ρ2(a2) = {(u1, v3), (u3, v2), (u3, v3)}.
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Then their aftersets and foresets are

u1ρ1(a1) = {v1}, u1ρ2(a1) = ∅, ρ1(a1)v1 = {u1, u2}, ρ2(a1)v1 = {u3}

u2ρ1(a1) = {v1}, u2ρ2(a1) = {v2, v3}, ρ1(a1)v2 = {u1}, ρ2(a1)v2 = {u2}

u3ρ1(a1) = {v2}, u3ρ2(a1) = {v1}, ρ1(a1)v3 = ∅, ρ2(a1)v3 = {u2}

u1ρ1(a2) = ∅, u1ρ2(a2) = {v3}, ρ1(a2)v1 = {u3}, ρ2(a2)v1 = ∅

u2ρ1(a2) = {v2}, u2ρ2(a2) = ∅, ρ1(a2)v2 = {u2}, ρ2(a2)v2 = {u3}

u3ρ1(a2) = {v1}, u3ρ2(a2) = {v2, v3}, ρ1(a2)v3 = ∅, ρ2(a2)v3 = {u1, u3}

Then
pρ1 + ρ2

X(a1) = {u3}, pρ1 + ρ2
X(a2) = ∅, pρ1 + ρ2

X(a1) = {u1, u2, u3},
pρ1 + ρ2

X(a2) = {u2, u3}

So we get two soft sets over U, (pρ1 + ρ2
X(a), A) = {{u3}, ∅} and (pρ1 + ρ2

X(a), A) =

{{u1, u2, u3}, {u2, u3}}.

Similarly,
Yρ1 + ρ2 p

(a1) = {v2},
Yρ1 + ρ2 p

(a2) = ∅, Yρ1 + ρ + 2
p
(a1) = {v1, v2, v3},

Yρ1 + ρ2
p(a2) = {v2, v3},

So we ge two soft sets over V, (Yρ1 + ρ2 p
(a), A) = {{v2}, ∅} and (Yρ1 + ρ2

p(a), A) = {{v1, v2, v3}, {v2, v3}}.

The following proposition shows the relationship between the lower and upper approximations.

Proposition 3.1. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ V. Then

(1) pρ1 + ρ2
X(a) ⊆ pρ1 + ρ2

X(a)

(2) pρ1 + ρ2
Xc

(a) ⊆
(

pρ1 + ρ2
X(a)

)c
,

(3) pρ1 + ρ2
Xc

(a) ⊆
(

pρ1 + ρ2
X(a)

)c
.

Proof.

(1) Let u ∈ pρ1 + ρ2
X(a). Then ∅ , uρ1(a) ⊆ X and ∅ , uρ2(a) ⊆ X, these imply that uρ1(a) ∩ X , ∅

and uρ2(a) ∩ X , ∅. That is u ∈ pρ1 + ρ2
X(a). Thus pρ1 + ρ2

X(a) ⊆ pρ1 + ρ2
X(a).

(2) Let u ∈ pρ1 + ρ2
Xc

(a). Then ∅ , uρ1(a) ⊆ Xc and ∅ , uρ2(a) ⊆ Xc. These imply that uρ1(a)∩X =

∅ and uρ2(a) ∩ X = ∅. Thus u < pρ1 + ρ2
X(a), that is u ∈ (pξ1 + ρ2

X
(a))c. Thus pρ1 + ρ2

X(a) ⊆

(pρ1 + ρ2
X(a))c.

(3) Let u ∈ pξ1 + ρ2
Xc

(a). Then uρ1(a) ∩ Xc , ∅ or uρ2(a) ∩ Xc , ∅, these imply that uρ1(a) * X or
uξ2(a) * X. Thus u < pρ1 + ρ2

X, that is u ∈ (pξ1 + ρ2
X(a))c. Thus pρ1 + ρ2

Xc

(a) ⊆ (pξ1 + ρ2
X(a))c.

To show that the reverse inclusion in the parts of the Proposition 3.1. It is not true that we have the
following example.

Example 3.2. (Continue from Example 3.1) Utilize the U,V and (ρ1, A), (ρ2, A) of Example 3.1. Let
X = {v1, v2} ⊆ W, Xc = {v3}. Then

(1) pρ1 + ρ2
X(a1) = {u1} + {u1, u2, u3} = pρ1 + ρ2

X(a1).

(2) pρ1 + ρ2
Xc

(a2) = ∅ + {u3} =
(

pρ1 + ρ2
X(a2)

)c
.

(3) pρ1 + ρ2
Xc

(a2) = {u2} + {u1, u2, u3} =
(

pρ1 + ρ2
X(a2)

)c
.
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Remark 3.1. If uρ1(e) , ∅ and uρ2(e) , ∅ for all a ∈ A and u ∈ U, then pρ1 + ρ2
Xc

=
(

pρ1 + ρ2
X)c

and
pρ1 + ρ2

Xc

=
(

pρ1 + ρ2
X
)c

Proposition 3.2. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ U. Then

(1) Xρ1 + ρ2 p
(a) ⊆ Xρ1 + ρ2

p(a)

(2) Xc
ρ1 + ρ2 p

(a) ⊆
(

Xξ1 + ρ2
p
(a)

)c
,

(3) Xc
ρ1 + ρ2

p(a) ⊆
(

Xρ1 + ρ2
p(a)

)c
.

Proof. The proof is similar to the proof of Proposition 3.1.

Remark 3.2. If ρ1(e)v , ∅ and ρ2(e)v , ∅ for all a ∈ A and v ∈ V, then Xc
ρ1 + ρ2 p

=
(

Xρ1 + ρ2
p)c

and

Xc
ρ1 + ρ2

p
=

(
Xρ1 + ρ2 p

)c

Proposition 3.3. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ V. Then
the following properties hold.

(1) pρ1 + ρ2
X(a) = ρ1

X(a) ∩ ρ2
X(a)

(2) pρ1 + ρ2
X(a) = ρ1

X(a) ∪ ρ2
X(a)

(3) pρ1 + ρ2
V(a) ⊆ V and pρ1 + ρ2

V(a) ⊆ V

(4) pρ1 + ρ2
∅(a) = ∅ and pρ1 + ρ2

∅(a) = ∅

(5) pρ1 + ρ2
X(a) = pρ2 + ρ1

X(a) and pρ1 + ρ2
X(a) = pρ2 + ρ1

X(a)

Proof.

(1) Let u ∈ pρ1 + ρ2
X(a). Then ∅ , uρ1(a) ⊆ X and ∅ , uρ2(a) ⊆ X. These imply that u ∈ ρ1

X(a) and
u ∈ ρ2

X(a). That is u ∈ ρ1
X(a) ∩ ρ2

X(a). Thus pρ1 + ρ2
X(a) ⊆ ρ1

X(a) ∩ ρ2
X(a).

Conversely, let u ∈ ρ1
X(a) ∩ ρ2

X(a). Then u ∈ ρ1
X(a) and u ∈ ρ2

X(a). Thus ∅ , uρ1(a) ⊆ X and
∅ , uρ2(a) ⊆ X. These imply that u ∈ pρ1 + ρ2

X(a). Thus ρ1
X(a) ∩ ρ2

X(a) ⊆ pρ1 + ρ2
X(a).

Hence pρ1 + ρ2
X(a) = ρ1

X(a) ∩ ρ2
X(a).

(2) Let u ∈ pρ1 + ρ2
X(a). Then uρ1(a) ∩ X , ∅ or uρ2(a) ∩ X , ∅. These imply that u ∈ ρ1

X(a) or
u ∈ ρ2

X(a), that is u ∈ (ρ1
X(a) ∪ ρ2

X(a)). Thus pρ1 + ρ2
X(a) ⊆ ρ1

X(a) ∪ ρ2
X(a).

Conversely, let u ∈ ρ1
X(a) ∪ ρ2

X(a). Then u ∈ ρ1
X(a) or u ∈ ρ2

X(a), that is uρ1(a) ∩ X , ∅ or
uρ2(a) ∩ X , ∅. These imply that u ∈ pρ1 + ρ2

X(a). Thus ρ1
X(a) ∪ ρ2

X(a) ⊆ pρ1 + ρ2
X(a),

Hence pρ1 + ρ2
X(a) = ρ1

X(a) ∪ ρ2
X(a).

(3) (a) By definition pρ1 + ρ2
V(a) = {u ∈ U | ∅ , uρ1(a) ⊆ V and ∅ , uρ2(a) ⊆ V} ⊆ U.

(b) By definition pρ1 + ρ2
V(a) = {u ∈ U | uρ1(a) ∩ V , ∅ or uρ2(a) ∩ V , ∅} ⊆ U.

(4) (a) By definition pρ1 + ρ2
∅(a) = {u ∈ U | ∅ , uρ1(a) ⊆ ∅ and ∅ , uρ2(a) ⊆ ∅} = ∅.

(b) On contrary suppose that pρ1 + ρ2
∅(a) , ∅. Then there exists u ∈ U such that

u ∈ pρ1 + ρ2
∅(a). Thus uρ1(a) ∩ ∅ , ∅ or uρ2(a) ∩ ∅ , ∅ which is a contradiction.

Hence pρ1 + ρ2
∅(a) = ∅.

(5) (a) Obvious. (b) Obvious.

Corollary 3.1. (1) pρ1 + ρ2
V(e) = U if uρ1(a) , ∅ and uρ2(a) , ∅ for all a ∈ A and for all u ∈ U.
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(2) pρ1 + ρ2
V(e) = U if uρ1(a) , ∅ or uρ2(a) , ∅, for all a ∈ A and for all u ∈ U.

Proposition 3.4. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X ⊆ U.
Then the following properties hold.

(1) Xρ1 + ρ2 p
(a) = Xρ1(a) ∩ Xρ2(a),

(2) Xρ1 + ρ2
p(a) = Xρ1(a) ∪ Xρ2(a),

(3) Uρ1 + ρ2 p
(a) ⊆ V and Uρ1 + ρ2

p(a) ⊆ V

(4) ∅ρ1 + ρ2 p
(a) = ∅ and ∅ρ1 + ρ2 p(a) = ∅

(5) Xρ1 + ρ2 p
(a) = Xρ2 + ρ1 p

(a) and Xρ1 + ρ2
p(a) = Xρ2 + ρ1

p(a).

Proof.
The proof is similar to the proof of Proposition. 3.3.

Corollary 3.2. (1) Uρ1 + ρ2 p
(a) = V if ρ1(a)v , ∅ and ρ2(a)v , ∅, for all a ∈ A and for v ∈ V.

(2) Uρ1 + ρ2(a) = V if ρ1(a)v , ∅ or ρ2(a)v , ∅, for all a ∈ A and for all v ∈ V.

Proposition 3.5. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X1 ⊆ V, X2 ⊆

V. Then the following properties hold, for all a ∈ A.

(1) pρ1 + ρ2
X1∩X2(a) = pρ1 + ρ2

X1(a) ∩ pρ1 + ρX2(a)),

(2) pρ1 + ρ2
X1∪X2(a) = pρ1 + ρ2

X1(a) ∪ pρ1 + ρ2
X2(a),

(3) X1 ⊆ X2 ⇒ pρ1 + ρ2
X1(a) ⊆ pρ1 + ρ2

X2(a),

(4) X1 ⊆ X2 ⇒
pρ1 + ρ2

X1(a) ⊆ pρ1 + ρ2
X2(a),

(5) pρ1 + ρ2
X1∩X2(a) ⊆ pρ1 + ρ2

X1(a) ∩ pρ1 + ρ2
X2(a),

(6) pρ1 + ρ2
X1∪X2(a) ⊇ pρ1 + ρ2

X1(a) ∪ pρ1 + ρ2
X2(a).

Proof.

(1) By part (1) of Proposition 3.3, we have pρ1 + ρ2
X1∩X2(a) = ρ1

X1∩X2(a) ∩ ρ2
X1∩X2(a)

=
(
ρ1

X1(a) ∩ ρ1
X2(a)

)
∩

(
ξ2

X1(a) ∩ ρ2
X2(a)

)
=

(
ρ1

X1(a) ∩ ξ2
X1(a)

)
∩

(
ρ1

X2(a) ∩ ρ2
X2(a)

)
= pρ1 + ρ2

X1(a) ∩ pρ1 + ρ2
X2(a).

(2) By part (2) of Proposition 3.3, we have pρ1 + ρ2
X1∪X2(a) = ρ1

X1∪X2(a) ∪ ρ2
X1∪X2(a)

=
(
ρ1

X1(a) ∪ ρ1
X2(a)

)
∪

(
ρ2

X1(a) ∪ ρ2
X2(a)

)
=

(
ρ1

X1(a) ∪ ρ2
X1(a)

)
∪

(
ρ1

X2(a) ∪ ρ2
X2(a)

)
= pρ1 + ρ2

X1
∪ pρ1 + ρ2

X2(a).
(3) Let u ∈ pρ1 + ρ2

X1(a). Then ∅ , uρ1(a) ⊆ X1 and ∅ , uρ2(a) ⊆ X1.
Since X1 ⊆ X2 so ∅ , uρ1(a) ⊆ X1 ⊆ X2 and ∅ , uρ2(a) ⊆ X1 ⊆ X2.

Thus u ∈ pρ1 + ρ2
X2(a). Hence pρ1 + ρ2

X1(a) ⊆ pρ1 + ρ2
X2(a).

(4) Let u ∈ pξ1 + ρ2
X1(a). Then uρ1(a) ∩ X1 , ∅ or uξ2(a) ∩ X1 , ∅.

Since X1 ⊆ X2 so uρ1(a) ∩ X2 , ∅ or uρ2(a) ∩ X2 , ∅. Thus u ∈ pρ1 + ρ2
X2(a). This implies that

pξ1 + ρ2
X1(a) ⊆ pρ1 + ρ2

X2(a).
(5) Since X1 ⊇ X1 ∩ X2, X2 ⊇ X1 ∩ X2, we have from (4)

ρ1 + ρ2
X1∩X2(a) ⊆ ρ1 + ξ2

X1(a) and ρ1 + ρ2
X1∩X2(a) ⊆ ρ1 + ρ2

X2(a), these imply that
ρ1 + ρ2

X1∩X2(a) ⊆ ξ1 + ρ2
X1(a) ∩ ρ1 + ρ2

X1(a).
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(6) Since X1 ⊆ X1 ∪ X2, X2 ⊆ X1 ∪ X2, we have from (3)
pρ1 + ρ2

X1∪X2(a) ⊇ pξ1 + ρ2
X1(a) and pρ1 + ρ2

X1∪X2(a) ⊇ pρ1 + ρ2
X2(a), these imply that

pρ1 + ρ2
X1∪X2(a) ⊇ pξ1 + ρ2

X1(a) ∪ pρ1 + ρ2
X1(a).

Proposition 3.6. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V and X1 ⊆ U, X2 ⊆

U. Then the following properties hold, for all a ∈ A.

(1) X1∩X2ρ1 + ρ2 p
(a) = X1ρ1 + ρ2 p

(a) ∩ X2ξ1 + ρ
p
(a)),

(2) X1∪X2ρ1 + ρ2
p(a) = X1ξ1 + ρ2

p
(a) ∪ X2ρ1 + ρ2

p(a),
(3) X1 ⊆ X2 ⇒

X1ξ1 + ρ2 p
(a) ⊆ X2ξ1 + ρ2 p

(a),

(4) X1 ⊆ X2 ⇒
X1ρ1 + ξ2

p
(a) ⊆ X2ρ1 + ρ2

p(a),
(5) X1∩X2ξ1 + ρ2

p
(a) ⊆ X1ρ1 + ρ2

p(a) ∩ X2ξ1 + ρ2
p
(a),

(6) X1∪X2ρ1 + ρ2 p
(a) ⊇ X1ρ1 + ξ2 p

(a) ∪ X2ρ1 + ρ2 p
(a).

Proof. The proof is similar to the proof of Proposition 3.5.

Proposition 3.7. Let (ρ1, A), (ρ2, A) be two soft binary relations from non-empty universe U to V with
(ρ1, A) ⊆ (ρ2, A) and X ⊆ V. Then

(1) pρ1 + ρ2
X(a) = ρ2

X(a),

(2) pρ1 + ρ2
X(a) = ρ2

X(a).

Proof. Suppose (ρ1, A) ⊆ (ρ2, A), for any u ∈ U, uρ1(a) ⊆ uρ2(a)
for all a ∈ A therefore, we have that

ρ2
X(a) ⊆ ρ1

X(a), (3.1)

ρ1
X(a) ⊆ ρ2

X(a). (3.2)

Thus

(1) pρ1 + ρ2
X(a) = ρ1

X(a) ∩ ρ2
X(a), that is pρ1 + ρ2

X(a) = ρ2
X(a) by Eq (3.1).

(2) pρ1 + ρ2
X(a) = ρ1

X(a) ∪ ρ2
X(a), that is pρ1 + ρ2

X(a) = ρ2
X(a) by Eq (3.2).

Proposition 3.8. Let (ρ1, A), (ρ2, A) be two soft binary relations from universe U to V, with (ρ1, A) ⊆
(ρ2, A) and X ⊆ U. Then

(1) Xρ1 + ρ2 p
(a) = Xρ2(a),

(2) Xρ1 + ρ2
p(a) = Xρ2(a).

Proof. The proof is similar to the proof of Proposition 3.7.

Definition 3.3. Let (ρ1, A) and (ρ2, A) be two soft binary relations from non-empty universal set U to
V, and X ⊆ V. Then the accuracy measure with respect to afterset is defined by

α(ρ1 + ρ2, X)(a) =
|pρ1 + ρ2

X(a)|

|pρ1 + ρ2
X(a)|
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Definition 3.4. Let (ρ1, A) and (ρ2, A) be two soft binary relations from non-empty universal set U to
V, and X ⊆ U. Then the accuracy measure with respect to foreset is defined by

α(X, ρ1 + ρ2)(a) =
|Xρ1 + ρ2 p

(a)|

|Xρ1 + ρ2
p(a)|

.

Where |.| shows the cardinality. Its is obvious that 0 ≤ α(X, ρ1 + ρ2)(a) ≤ 1. When α(X, ρ1 + ρ2)(a) = 1,
then X is pessimistic multigranulation definable otherwise pessimistic multigranulation undefinable.

3.1. Pessimistic Roughness of a set over multi soft binary relations

In the previous section, we defined the multigranulation roughness of the set by two soft relations.
In this subsection, we generalize the concept of the previous section and present the multigranulation
roughness of the set by finite numbers of soft binary relations and discuss its basic properties.

Definition 3.5. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty universal
set U to V, and X ⊆ V. Then we define two soft sets over U by

p

n∑
j=1

ρ j

X

(a) = {u ∈ U | ∅ , uρ j(a) ⊆ X, f or all j = 1, 2, . . . n}

p
n∑

j=1

ρ j

X

(a) = {u ∈ U | uρ j(a) ∩ X , ∅, f or some j = 1, 2, . . . , n}

called the pessimistic lower and pessimistic upper approximations of X with respect to aftersets, we
denote these soft sets by
(p
∑n

j=1 ρ j
X(a), A), (p∑n

j=1 ρ j
X
(a), A) respectively.

Definition 3.6. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty universal
set U to V, and X ⊆ U. Then we define two soft sets over V by

X
n∑

j=1

ρ j

p

(a) = {v ∈ V | ∅ , ρ j(a)v ⊆ X, f or all j = 1, 2, . . . n}

X
n∑

j=1

ρ j

p

(a) = {v ∈ V | ρ j(a)v ∩ X , ∅, f or some j = 1, 2, . . . , n}

called the pessimistic lower and pessimistic upper approximations of X with respect to foresets, we
denote these soft sets by
(X∑n

j=1 ρ j
p
(a), A), (X∑n

j=1 ρ j
p
(a), A) respectively.

Proposition 3.9. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty universal
set U to V, and X ⊆ V. Then

(1) p
∑n

j=1 ρ j
X(a) ⊆ p∑n

j=1 ρ j
X
(a),

AIMS Mathematics Volume 8, Issue 4, 7881–7898.



7891

(2) p
∑n

j=1 ρ j
Xc

(a) ⊆
(

p∑n
j=1 ρ j

X
(a)

)c
,

(3) p∑n
j=1 ρ j

Xc

(a) ⊆
(

p
∑n

j=1 ρ j
X(a)

)c
.

Proof. The proof is similar to the proof of Proposition 3.1.

Remark 3.3. If uρ j(a) , ∅ for all a ∈ A, u ∈ U and for all j. Then p
∑n

j=1 ρ j
Xc

=

(
p∑n

j=1 ρ j
X
)c

and

p∑n
j=1 ρ j

Xc

=

(
p
∑n

j=1 ρ j
X
)c

Proposition 3.10. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ U. Then

(1) X∑n
j=1 ρ j

p
(a) ⊆ X∑n

j=1 ρ j
p
(a)

(2) Xc∑n
j=1 ρ j

p
(a) ⊆

(
X∑n

j=1 ρ j
p
(a)

)c
,

(3) Xc∑n
j=1 ρ j

p
(a) ⊆

(
X∑n

j=1 ρ j
p(a)

)c
.

Proof. The proof is similar to the proof of Proposition 3.1.

Remark 3.4. If ρ j(a)v , ∅, for all a ∈ A, v ∈ V and for all j. Then Xc∑n
j=1 ρ j

p
=

(
X∑n

j=1 ρ j
p)c

and

Xc∑n
j=1 ρ j

p
=

(
X∑n

j=1 ρ j
p

)c

.

Proposition 3.11. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ V. Then the following properties hold.

(1) p
∑n

j=1 ρ j
X(a) = ∩n

j=1ρ j
X(a)

(2) p∑n
j=1 ρ j

X
(a) = ∪n

j=1ρ j
X(a)

(3) p
∑n

j=1 ρ j
V(a) ⊆ U and p∑n

j=1 ρ j
V

(a) ⊆ U

(4) p
∑n

j=1 ρ j
∅(a) = ∅ and p∑n

j=1 ρ j
∅

(a) = ∅.

Proof. The proof is similar to the proof of Proposition 3.3.

Corollary 3.3. (1) p
∑n

j=1 ρ j
V(a) = U if uρ j(e) , ∅, for all a ∈ A, for all u ∈ U and for all j.

(2) p∑n
j=1 ρ j

V
(a) = U if uρ j(a) , ∅ for all a ∈ A, for all u ∈ U and for some j.

Proposition 3.12. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ U. Then the following properties hold.

(1) X∑n
j=1 ρ j

p
(a) = ∩n

j=1
Xρ j(a),

(2) X∑n
j=1 ρ j

p
(a) = ∪n

j=1
Xρ j(a),

(3) U∑n
j=1 ρ j

p
(a) ⊆ V and U∑n

j=1 ρ j
p
(a) ⊆ V

(4) ∅
∑n

j=1 ρ j
p
(a) = ∅ and ∅

∑n
j=1 ρ j p

(a) = ∅
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(5) X∑n
j=1 ρ j

p
(a) = X∑n

j=1 ρ j
p
(a) and X∑n

j=1 ρ j
p
(a) = X∑n

j=1 ρ j
p
(a).

Proof. The proof is similar to the proof of Proposition 3.3.

Corollary 3.4. (1) U∑n
j=1 ρ j

p
(a) = V if ρ j(a)v , ∅, for all a ∈ A, for v ∈ V and for all j.

(2) U∑n
j=1 ρ j(a) = V if ρ1(a)v , ∅ for all a ∈ A, for all v ∈ V, and for some j.

Proposition 3.13. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ V. Then the following properties hold, for all a ∈ A.

(1) p
∑n

j=1 ρ j
∩m

i=1Xi(a) = ∩m
i=1 p

∑n
j=1 ρ j

Xi(a),

(2) p∑n
j=1 ρ j

∪m
i=1Xi

(a) = ∪m
i=1

p∑n
j=1 ρ j

Xi
(a),

(3) X1 ⊆ X2 ⇒ p
∑n

j=1 ρ j
X1(a) ⊆ p

∑n
j=1 ρ j

X2(a),

(4) X1 ⊆ X2 ⇒
p∑n

j=1 ρ j
X1

(a) ⊆ p∑n
j=1 ρ j

X2
(a),

(5) p∑n
j=1 ρ j

∩m
i=1Xi

(a) ⊆ ∩m
i=1

p∑n
j=1 ρ j

Xi
(a),

(6) p
∑n

j=1 ρ j
∪Xi(a) ⊇ ∪m

i=2 p
∑n

j=1 ρ j
Xi(a).

Proof. The proof is similar to the proof of Proposition 3.5.

Proposition 3.14. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ U. Then the following properties hold, for all a ∈ A.

(1) ∩
m
i=1Xi

∑n
j=1 ρ j

p
(a) = ∩m

i=1
Xi
∑n

j=1 ρ j
p
(a),

(2) ∪
m
i=1Xi

∑n
j=1 ρ j

p
(a) = ∪m

i=1
Xi
∑n

j=1 ρ j
p
(a),

(3) X1 ⊆ X2 ⇒
X1
∑n

j=1 ρ j
p
(a) ⊆ X2

∑n
j=1 ρ j

p
(a),

(4) X1 ⊆ X2 ⇒
X1
∑n

j=1 ρ j
p
(a) ⊆ X2

∑n
j=1 ρ j

p
(a),

(5) ∩
m
i=1Xi

∑n
j=1 ρ j

p
(a) ⊆ ∩m

i=1
Xi
∑n

j=1 ρ j
p
(a),

(6) ∪
m
i=1Xiρ1 + ρ2 p

(a) ⊇ ∪m
i=1

Xiρ1 + ρ2 p
(a).

Proof. The proof is similar to that of Proposition 3.5.

Proposition 3.15. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ V, with (ρ1, A) ⊆ (ρ2, A) ⊆ (ρ3, A) ⊆ . . . ⊆ (ρn, A) Then

(1) p
∑n

j=1 ρ j
X(a) = ρn

X(a),

(2) p∑n
j=1 ρ j

X
(a) = ρn

X(a).

Proof. The proof is similar to the Proposition 3.7.

Proposition 3.16. Let (ρ1, A), (ρ2, A), (ρ3, A) . . . . . . (ρn, A) be n soft relations from a non-empty
universal set U to V, and X ⊆ U, with (ρ1, A) ⊆ (ρ2, A) ⊆ (ρ3, A) ⊆ . . . ⊆ (ρn, A). Then

(1) X∑n
j=1 ρ j

p
(a) = Xρn(a),

(2) X∑n
j=1 ρ j

p
(a) = Xρn(a).

AIMS Mathematics Volume 8, Issue 4, 7881–7898.



7893

Proof. The proof is similar to that of Proposition 3.7.

Definition 3.7. Let (ρ1, A), (ρ2, A), (ρ3, A), · · · (ρn, A), be n soft binary relation from non-empty
universal set U to V, and X ⊆ V. Then the accuracy measure with respect to afterset are defined
by

α(
n∑

j=1

ρ j, X)(a) =
|p
∑n

j=1 ρ j
X(a)|

|p
∑n

j=1 ρ j
X
(a)|

.

Definition 3.8. Let (ρ1, A), (ρ2, A), (ρ3, A), · · · (ρn, A), be n soft binary relation from non-empty
universal set U to V, and X ⊆ U. Then the accuracy measure with respect to foreset are defined by

α(X,
n∑

j=1

ρ j)(a) =

|X
∑n

j=1 ρ j
X

p
(a)|

|X
∑n

j=1 ρ j
p
(a)|

.

4. Example

Example 4.1. Suppose a University advertises the vacancies of lecturers for their two campuses U
and V. The set U = {π1, π2, π3, π4, π5, π6, π7, π8}, represent the candidate applied in campus U and the
set V = {π′1, π

′
2, π

′
3, π

′
4, π

′
5, π

′
6, π

′
7} represent the candidate applied in campus V. Let two teams of experts

compare them based on pure Mathematics and applied mathematics, a set of parameters A = {p =

Pure Math, a = Applied Math}. From these comparisons, we have

ρ1 : A→ P(U × V), represents the comparison of first-team of experts defined by.

ρ1(p) ={(π1, π
′
2), (π1, π

′
3), (π2, π

′
2), (π2, π

′
5), (π3, π

′
4), (π3, π

′
5), (π4, π

′
1), (π4, π

′
3), (π5, π

′
1), (π5, π

′
6), (π7, π

′
4), (π7, π

′
7)},

ρ1(a) ={(π1, π
′
3), (π1, π

′
6), (π2, π

′
1), (π2, π

′
4), (π3, π

′
1), (π4, π

′
5), (π4, π

′
7), (π5, π

′
2), (π5, π

′
7), (π7, π

′
3), (π7, π

′
6), (π8, π

′
1),

(π8, π
′
7)},

ρ2 : A→ P(U × V) represents the comparison of second-team of experts defined by

ρ2(p) ={(π1, π
′
2), (π2, π

′
3), (π2, π

′
5), (π3, π

′
4), (π4, π

′
3), (π4, π

′
5), (π4, π

′
6), (π5, π

′
4), (π6, π

′
7), (π7, π

′
3), (π7, π

′
7)(π8, π

′
2),

(π8, π
′
5)},

ρ2(a) ={(π1, π
′
3), (π1, π

′
4), (π2, π

′
3), (π2, π

′
4), (π2, π

′
7), (π3, π

′
1), (π3, π

′
6), (π4, π

′
2), (π4, π

′
4), (π5, π

′
2), (π6, π

′
5), (π7, π

′
6),

(π8, π
′
1), (π8, π

′
3)}.

We get two SBrs from U to V f romthesecomparisons. Now the aftersets are

π1ρ1(p) = {π′2, π
′
3}, π1ρ1(a) = {π′3, π

′
6}, π1ρ2(p) = {π′2}, π1ρ2(a) = {π′3, π

′
4}

π2ρ1(p) = {π′2, π
′
5}, π2ρ1(a) = {π′1, π

′
4}, π2ρ2(p) = {π′3, π

′
5}, π2ρ2(a) = {π′3, π

′
4, π

′
7}

π3ρ1(p) = {π′4, π
′
5}, π3ρ1(a) = {π′1}, π3ρ2(p) = {π′4}, π3ρ2(a) = {π′1, π

′
6}

π4ρ1(p) = {π′1, π
′
3}, π4ρ1(a) = {π′5, π

′
7}, π4ρ2(p) = {π′3, π

′
5, π

′
6}, π4ρ2(a) = {π′2, π

′
4}
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π5ρ1(p) = {π′1, π
′
6}, π5ρ1(a) = {π′2, π

′
7}, π5ρ2(p) = {π′4}, π5ρ2(a) = {π′2}

π6ρ1(p) = ∅, π6ρ1(a) = ∅, π6ρ2(p) = {π′7}, π6ρ2(a) = {π′5}

π7ρ1(p) = {π′4, π
′
7}, π7ρ1(a) = {π′3, π

′
6}, π7ρ2(p) = {π′3, π

′
7}, π7ρ2(a) = {π′6}

π8ρ1(p) = ∅, π8ρ1(a) = {π′1, π
′
7}, π8ρ2(p) = {π′2, π

′
5}, π8ρ2(a) = {π′1}.

And foresets are

ρ1(p)π′1 = {π4, π5}, ρ1(a)π′1 = {π2, π3, π8}, ρ2(p)π′1 = ∅, ρ2(a)π′1 = {π3, π8}

ρ1(p)π′2 = {π1, π2}, ρ1(a)π′2 = {π5}, ρ2(p)π′2 = {π8}, ρ2(a)π′2 = {π4, π5}

ρ1(p)π′3 = {π1, π4}, ρ1(a)π′3 = {π7}, ρ2(p)π′3 = {π2, π4, π7}, ρ2(a)π′3 = {π1, π2}

ρ1(p)π′4 = {π7}, ρ1(a)π′4 = {π2}, ρ2(p)π′4 = {π3, π5}, ρ2(a)π′4 = {π1, π4}

ρ1(p)π′5 = {π2, π3}, ρ1(a)π′5 = {π4}, ρ2(p)π′5 = {π2, π4, π8}, ρ2(a)π′5 = {π6}

ρ1(p)π′6 = {π5}, ρ1(a)π′6 = {π1, π7}, ρ2(p)π′6 = {π4}, ρ2(a)π′6 = {π3, π7}

ρ1(p)π′7 = {π7}, ρ1(a)π′7 = {π4, π5, π8}, ρ2(p)π′7 = {π6, π7}, ρ2(a)π′7 = {π2}.

If the candidates X = {π′2, π
′
3, π

′
6, π

′
8} ⊂ V are recommended for selection in campus V then who will be

recommended for selection in campus U?
Now we categorize the candidates who applied on campus U.

pρ1 + ρ2
X(p) = {π1},

pρ1 + ρ2
X(p) = {π1, π2, π4, π5, π7, π8},

pρ1 + ρ2
X(a) = {π7}

pρ1 + ρ2
X(a) = {π1, π2, π3, π4, π5, π7}.

In this case, the lower approximation contains all those candidates who applied to campus U
recommended by both teams of experts, and the upper approximation contains all those candidates
who applied to campus U recommended by one of the teams of experts.

If the candidates X = {π1, π2, π4, π7} ⊂ U recommended for selection in campus U, then who will be
recommended for selection in campus V?

Now we categorize the candidates who applied in campus V.

Xρ1 + ρ2 p(p) = {π′3},
Xρ1 + ρ2

p(p) = {π′1, π
′
2, π

′
3, π

′
4, π

′
5, π

′
6, π

′
7},

Xρ1 + ρ2 p
(a) = {π′3, π

′
4}

Xρ1 + ρ2
p(a) = {π′1, π

′
2, π

′
3, π

′
4, π

′
5, π

′
6, π

′
7}.

In this case, the lower approximation contains all those candidates who applied to campus V
recommended by both teams of experts, and the upper approximation contains all those candidates
who applied to campus V recommended by one of the teams of experts.

5. Comparason

In this section, we will analyze comparatively the effectiveness of our method. To deal with
incompleteness and vagueness, an MGRS model is proposed in terms of equivalence relations by
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Qain et al. [19], which is better than RS. To make the equivalence relation more flexible, the conditions
had to be relaxed; Shabir et al. [22] presented the MGRS of a crisp set based on soft binary relations
and its application in data classification, Ayub et al. [3] introduced SMGRS which is the particular
case of MGRS [22]. Here, we have a new hybrid model APMRS by using multi-soft binary relations.
Let us suppose we illustrate the example 4.1. If the candidates X = {π1, π2, π4, π7} ⊂ U in campus
U recommended for selection, then who will be recommended for selection in campus V? Now we
categorize the candidate who applies in campus V through Shabir et al. [22] with respect to aftersets.
Xρ1 + ρ2(P) = {π′2, π

′
3, π

′
4, π

′
6, π

′
7} and Xρ1 + ρ2(P) = {π′3, π

′
4, π

′
5, π

′
7}. That is Xρ1 + ρ2 *

Xρ1 + ρ2 and
Xρ1 + ρ2 *

Xρ1 + ρ2 that is [22] is not parallel with Pawlak Rough set and Qian et al. MGRS. However,
our model satisfies this property. Secondly, when Xρ1 + ρ2 *

Xρ1 + ρ2 and, Xρ1 + ρ2 *
Xρ1 + ρ2,

then we are unable to defined accuracy measure, but in our model, we defined accuracy measure.
SMGRS [3] is the particular case of [22]; the same issue occurs in [3], which also occurs in [22]. That
is why our proposed model is more effective.

6. Conclusions

This article studies a novel pessimistic multigranulation roughness of set over two universes. Firstly,
we present the roughness of a set by using the aftersets and foresets of two soft binary relations over
dual universes and their essential properties. From this roughness, we got two new soft sets. Then
we extended this definition and defined the roughness of a set by using the aftersets and foresets of
the finite number of soft binary relations over dual universes. We also investigated some algebraic
properties and an example in data classifications to illustrate our proposed pessimistic multigranulation
rough set model. In the future, we can apply this model to classify the data in many practical fields
like medical sciences, classification of the data of different diseases, classification of economics data,
management science, and social sciences data.
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