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Abstract: Degradation data are an important source of products’ reliability information. Though
stochastic degradation models have been widely used for fitting degradation data, there is a lack of
efficient and accurate methods to get their confidence intervals, especially in small sample cases. In
this paper, based on the Wiener process, a doubly accelerated degradation test model is proposed, in
which both the drift and diffusion parameters are affected by the stress level. The point estimates of
model parameters are derived by constructing a regression model. Furthermore, based on the point
estimates of model parameters, the interval estimation procedures are developed for the proposed
model by constructing generalized pivotal quantities. First, the generalized confidence intervals of
model parameters are developed. Second, based on the generalized pivotal quantities of model
parameters, using the substitution method the generalized confidence intervals for some interesting
quantities, such as the degradation rate µ0, the diffusion parameter σ2

0, the reliability function R(t0) and
the mean lifetime E(T ), are obtained. In addition, the generalized prediction intervals for degradation
amount X0(t) and remaining useful life at the normal use stress level are also developed. Extensive
simulations are conducted to investigate the performances of the proposed generalized confidence
intervals in terms of coverage percentage and average interval length. Finally, a real data set is given
to illustrate the proposed model.

Keywords: doubly accelerated degradation test; generalized pivotal quantity; generalized confidence
interval; generalized prediction interval
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1. Introduction

Accelerated life test (ALT) technology has been widely used in products’ reliability analysis.
However, even under ALT, little or no failure data can be acquired in a reasonable short life testing
time for some high-reliability products. So, it is difficult to evaluate the reliability of those
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high-reliability products. In such a case, if there exists a quality characteristic (QC) related to
reliability which degrades over time, an alternative approach is to collect the degradation data at the
higher stress levels and then extrapolate the lifetime information and reliability metrics of products at
the normal use stress level. Such an experiment is called an accelerated degradation test (ADT) [1, 2].
For high-reliability products, the traditional ALT methods can not meet the requirement of product
reliability evaluation, and the ADT technique provides another way to solve it [3].

As ADTs can greatly shorten the testing time, we often use them to quickly obtain more degradation
data and make reliability analyses for products. In the past decades, the research of ADT models has
become more and more popular [4–6]. In the literature, ADTs are broadly classified into constant-
stress accelerated degradation test (CSADT), step-stress accelerated degradation test (SSADT) and
progressive-step accelerated degradation test (PSADT), according to different stress loading methods.
Among them, CSADT is the most popular ADT in real applications. In a CSADT, the testing units are
divided into several groups, and each group of units is exposed to a certain severe stress condition to
test and collect the degradation data.

In practice, the degradation path of products’ QC over time is often described as stochastic
{X(t); t ≥ 0} to account for inherent randomness. Based on the assumption of additive accumulation of
degradation, three kinds of degradation processes have been well exploited, i.e., the Gamma
process [7–10], the Wiener process [6, 11–13] and the inverse Gaussian process [3, 14–16]. In most
cases, the degradation paths of test units are monotonic, so the Gamma process and inverse Gaussian
process are often used to model degradation data. However, in a few cases, the degradation path is not
monotonic. A distinct feature of the Wiener process is that its sample path is not necessarily
monotone, which might be meaningful in some degradation applications. In this situation, the Wiener
degradation model may be a good choice.

In view of this, the Wiener process, as an important stochastic process, has been widely studied in
degradation data analysis. Pan and Balakrishnan [17] discussed the multiple-step SSADT models
based on the Wiener and Gamma processes, and they used the Bayesian Markov Chain Monte Carlo
method to obtain the maximum likelihood estimates (MLEs) for such analytically intractable models
and presented some computational results obtained from their implementation. Motivated by the
observation that a unit with a higher degradation rate has a more volatile degradation path, Ye and
Chen [18] proposed a new class of random effects models for the Wiener process and discussed the
statistical inference of the model. Wang et al. [13] mainly studied the accurate reliability inference for
the Wiener degradation model with random drift parameter and developed an exact test method to test
whether there exists population heterogeneity. Other research about the Wiener degradation model
with random effects can be found in [11, 19, 20]. Guan et al. [21] used the Bayesian method to study
the Wiener ADT model. Wang et al. [22] discussed the reliability analysis for accelerated degradation
data based on the Wiener process with random effects. By constructing pivotal quantities (PQs), they
developed generalized confidence intervals (GCIs) for model parameters and some quantities, and the
generalized prediction interval (GPI) for future degradation amount at designed stress level was also
developed. Hong et al. [23] developed interval estimation procedures for the Wiener degradation
process with fixed-effects and mixed-effects using the generalized pivotal quantity (GPQ) method.
Pan et al. [24] studied a reliability estimation approach via Wiener degradation model with
measurement errors. Jiang et al. [12] proposed a Wiener CSADT model and obtained the exact
confidence intervals (ECIs) of model parameters. In addition, they proposed a new optimization
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criterion from the perspective of degradation prediction, and provided an optimal experimental design
scheme.

To construct an ADT model, first is to reasonably determine the relations between model parameters
and accelerated stress. For the Wiener ADT model, there are three possible parameter-stress relations.
The first is that the drift parameter of the Wiener process depends on the stress level while the diffusion
parameter is independent of the stress level [12, 20–22, 25]. The second is that the diffusion parameter
depends on the stress level while the drift parameter is independent of it. In the second case, however,
the stress level does not have any effect on the degradation speed while the degradation volatility
increases with the stress level. This case is not common in reality. The third is that both the drift and
diffusion parameters are affected by the stress level [26]. Clearly, the first two relations are special cases
of the third one. In addition, due to the complexity of the Wiener ADT model with the third parameter-
stress relation, few scholars studied such models, especially for the aspect of interval estimation for
reliability metrics. In this paper, we consider a Wiener doubly ADT model in which the parameter-
stress relation follows the third one. The relations between parameters and accelerated stress are given
by µ = a + bξ, σ2 = exp(c + dξ), and ξ is the accelerated stress. We mainly focus on the interval
estimations of model parameters and some reliability metrics based on the Wiener doubly ADT model.

The remainder of the paper is organized as follows. In Section 2, the general framework of the
Wiener doubly ADT model is outlined. In Section 3, the point estimates of model parameters are
derived. In Section 4, we mainly study the interval estimation of model parameters and some reliability
metrics. In Section 5, a simulation study is conducted to evaluate the performance of the proposed
GCIs/GPIs. In Section 6, an example is provided to illustrate the proposed model and GPQ method.
Finally, we provide some final conclusions in Section 7.

2. Model assumptions and data description

Suppose that one accelerated stress ξ is used in a CSADT, and under the stress ξ the degradation
path {X(t), t ≥ 0} of testing unit follows a Wiener process given by

X(t) = µt + σB(t) (2.1)

where B(t) is a standard Brownian motion, µ is the drift parameter, and σ2 is the diffusion parameter.
The unit’s lifetime T under the stress ξ is defined as the first-passage-time of X(t) to a pre-specified
threshold L. It is well known that T follows IG(L/µ, L2/σ2) distribution with cumulative distribution
function (CDF)

FT (t, µ, σ2) = Φ

(
µt − L

σ
√

t

)
+ exp

(
2µL
σ2

)
Φ

(
−
µt + L

σ
√

t

)
, t > 0, (2.2)

where Φ(·) is the CDF of a standard normal distribution.
For this study, statistical inference of the Wiener doubly accelerated degradation test model is

usually based on the following assumptions:
(A1) The CSADT is conducted using a single stress, which has K levels: ξ1 < ξ2 < · · · < ξK . ξ0 and

ξK are the normal use stress level and the highest stress level used in the ADT.
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(A2) For each stress level ξi, the degradation path of a test unit can be described as a Wiener process
Xi(t),

Xi(t) = µit + σiB(t).

(A3) Both the drift and the diffusion parameters are affected by the stress levels through the
parameter-stress relationships

µi = a + bξi, σ
2
i = exp(c + dξi),

where, a, b, c and d are unknown parameters. The degradation rate and the diffusion parameter under
normal use condition can be obtained by µ0 = a + bξ0, σ

2
0 = exp(c + dξ0), respectively.

Suppose that ni units are tested under the stress level ξi, and ri, j is the number of measurements
for the jth test unit under the stress level ξi. The degradation characteristics of the jth test unit are
measured at the times ti, j = {ti, j,k; k = 0, 1, . . . , ri, j} under the stress level ξi. Moreover, let Xi, j =

{Xi, j(ti, j,0), Xi, j(ti, j,1), . . . , Xi, j(ti, j,ri, j)} denote the observed degradation characteristics of the jth test unit
under the stress level ξi. Define ∆Xi, j,k = Xi, j(ti, j,k)−Xi, j(ti, j,k−1), and ∆ti, j,k = ti, j,k− ti, j,k−1, where ti, j,0 = 0.
The data collected from stress level ξi is Di = {(ti, j,Xi, j); j = 1, 2, . . . , ni}, and the data from the whole
double ADT is D =

⋃K
i=1Di. Let N =

∑K
i=1 ni be the total number of test units and Mi = Σ

ni
j=1ri, j be the

total number of measurements under stress level ξi. Further, define M =
∑K

i=1 Mi as the total number
of measurements in the whole ADT and T =

∑K
i=1

∑ni
j=1 ti, j,ri, j as the total test time.

3. Point estimations for model parameters

In this study, we mainly focus on the interval estimation of the proposed model. In order to develop
the interval estimation procedures, we need to obtain the point estimations of model parameters first.
That is because the point estimates are the basis for constructing PQs of interval estimations. Suppose
that ni units are tested under the stress level ξi, and the degradation data Di is provided. Based on Di,
the log-likelihood function is given by

l(µi, σ
2
i |Di) =

−1
2

ni∑
j=1

ri, j∑
k=1

[
ln(2πσ2

i ∆i, j,k) +
(∆Xi, j,k − µi∆ti, j,k)2

σ2
i ∆ti, j,k

]
.

Let Xi = Σ
ni
j=1Σ

ri, j

k=1∆Xi, j,k, Ti = Σ
ni
j=1Σ

ri, j

k=1∆ti, j,k, and then the MLEs of µi and σ2
i are given as

µ̂i =
Xi

Ti
; S 2

i =
1

Mi − 1

ni∑
j=1

ri, j∑
k=1

(∆Xi, j,k − µ̂i∆ti, j,k)2

∆ti, j,k
. (3.1)

Notice that
∆Xi, j,k − µi∆ti, j,k = (∆Xi, j,k − µ̂i∆ti, j,k) + (̂µi∆ti, j,k − µi∆ti, j,k),

and we have the following factorization:
ni∑
j=1

ri, j∑
k=1

(∆Xi, j,k − µi∆ti, j,k)2

σ2
i ∆ti, j,k

=
(Mi − 1)S 2

i

σ2
i

+
(̂µi − µi)2Ti

σ2
i

.

According to Cochran’s theorem in [27], we can easily prove the following facts:
(i) µ̂i ∼ N(a + bξi, σ

2
i /Ti);

(ii) (Mi − 1)S 2
i /σ

2
i ∼ χ

2(Mi − 1);
(iii) µ̂i and S 2

i are mutually independent.
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3.1. Point estimations for a and b

Let Yi = Xi/Ti, i = 1, 2, . . . ,K, and then Yi ∼ N(µi, σ
2
i /Ti). So, the mean and variance of Yi are

given by E(Yi) = a + bξi and Var(Yi) = σ2
i /Ti, respectively. In order to get the estimates of parameters

a and b, the following linear regression model is considered.

Yi = a + bξi + εi, εi ∼ N(0, σ2
i /Ti). (3.2)

Based on the linear regression model (3.2), the estimates of parameters a and b are provided in the
following Theorem 3.1.

Theorem 3.1. Under the linear regression model (3.2), given the degradation data D,
(1) The estimates of parameters a and b are given as

â =
GH − IM
FG − I2 , b̂ =

FM − IH
FG − I2 , (3.3)

where

F =

K∑
i=1

Ti

σ2
i

, I =

K∑
i=1

Tiξi

σ2
i

;

G =

K∑
i=1

Tiξ
2
i

σ2
i

,H =

K∑
i=1

Xi

σ2
i

,M =

K∑
i=1

ξiXi

σ2
i

.

(2) The estimates â and b̂ follow the normal distributions, that is,

â ∼ N
(
a,

G
FG − I2

)
, b̂ ∼ N

(
b,

F
FG − I2

)
.

(3) The covariance of the estimates â and b̂ is given by

Cov(̂a, b̂) =
−I

FG − I2 .

In addition, the degradation rate µ0 at normal use stress level ξ0 can be estimated by µ̂0 = â + b̂ξ0,
and the estimate µ̂0 is also unbiased and has the variance Var(̂µ0) = (G − 2Iξ0 + Fξ2

0)/(FG − I2).

3.2. Point estimations for c and d

Notice that (Mi − 1)S 2
i /σ

2
i ∼ χ2(Mi − 1), and let Ωi=̂ log[(Mi − 1)S 2

i /σ
2
i ]. By calculating, the

moment generating function (MGF) of Ωi is derived.

MΩi(t) =
2tΓ

(
Mi−1

2 + t
)

Γ
(

Mi−1
2

) .

Using the MGF MΩi(t), the mean and variance of Ωi are given by

E(Ωi) = ψ

(
Mi − 1

2

)
+ log 2, Var(Ωi) = ψ

′

(
Mi − 1

2

)
,
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respectively, where
ψ(x) = d log(Γ(x))/dx, ψ

′

(x) = d2 log(Γ(x))/dx2.

Let Ui=̂ log[(Mi − 1)S 2
i /2] − ψ( Mi−1

2 ), and by calculation we find that

E(Ui) = log(σ2
i ) = c + dξi,Var(Ui) = ψ

′

(
Mi − 1

2

)
. (3.4)

To get the estimates of parameters c and d, the following linear regression model is constructed.

Ui = c + dξi + δi, E(δi) = 0,Var(δi) = ψ
′

(
Mi − 1

2

)
. (3.5)

Some properties about the estimates of c and d are given in the following Theorem 3.2.

Theorem 3.2. Under the linear regression model (3.5), given the degradation data D.
(1) The estimates of parameters c and d are given as

c̃ =
G1H1 − I1M1

F1G1 − I2
1

, d̃ =
F1M1 − I1H1

F1G1 − I2
1

, (3.6)

where

F1 =

K∑
i=1

[ψ
′

(
Mi − 1

2
)]−1, I1 =

K∑
i=1

ξi[ψ
′

(
Mi − 1

2
)]−1;

G1 =

K∑
i=1

ξ2
i [ψ

′

(
Mi − 1

2
)]−1,H1 =

K∑
i=1

Ui[ψ
′

(
Mi − 1

2
)]−1,M1 =

K∑
i=1

ξiUi[ψ
′

(
Mi − 1

2
)]−1.

(2) The estimates c̃ and d̃ are unbiased, that is, E(̃c) = c, E(d̃) = d.
(3) The variance and covariance of the estimates c̃ and d̃ are given by

Var(̃c) =
G1

F1G1 − I2
1

,Var(d̃) =
F1

F1G1 − I2
1

,Cov(̃c, d̃) =
−I1

F1G1 − I2
1

.

Based on estimates c̃ and d̃, the diffusion parameter σ2
0 at the normal use stress level ξ0 can be

estimated by σ̃2
0 = exp(̃c + d̃ξ0). However, the estimate σ̃2

0 is biased. The following Theorem 3.3 gives
an unbiased estimate of σ2

0.

Theorem 3.3. Let c̃ and d̃ be the estimates of c and d defined in (3.6), and

Di=̂[G1 − (ξ0 + ξi)I1 + ξ0ξiF1]/[ψ
′

(
Mi − 1

2
)(F1G1 − I2

1)].

Then,
(1) If (Mi − 1)/2 + Di > 0(i = 1, 2, . . . ,K), an unbiased estimate of σ2

0 can be given by

σ̃2
0u = σ̃2

0 exp

 K∑
i=1

Diψ

(
Mi − 1

2

) K∏
i=1

Γ( Mi−1
2 )

Γ(Di + Mi−1
2 )

. (3.7)

(2) If (Mi − 1)/2 + 2Di > 0(i = 1, 2, . . . ,K), the variance of σ̃2
0u is given by

Var(σ̃2
0u) = σ2

0

K∏
i=1

Γ( Mi−1
2 )Γ(2Di + Mi−1

2 ) − Γ2(Di + Mi−1
2 )

Γ2(Di + Mi−1
2 )

 . (3.8)

(3) If (Mi − 1)/2 + 2Di > 0(i = 1, 2, . . . ,K), the estimate σ̃2
0u has a smaller mean square error than

that of σ̃2
0.
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4. Interval estimations of model parameters and quantities

4.1. GCIs for parameters a and b

In this subsection, we try to derive the GCIs of parameters a and b. In order to get the GPQs of
a, b, we first develop the GPQs of parameters σ2

i (i = 1, 2, . . . ,K). As (Mi − 1)S 2
i /σ

2
i ∼ χ2(Mi − 1),

generating a copy Q0,i from the χ2(Mi − 1) distribution, the GPQ of σ2
i can be obtained by

Wi =
(Mi − 1)S 2

i

Q0,i
, i = 1, 2, . . . ,K. (4.1)

It is worth emphasizing that Q0,i is treated as a known quantity in generalized inference [28].
Based on the model (3.2), substituting S 2

i for the unknown parameter σ2
i , the following weighted

sum of squares is considered.

U(a, b) =

K∑
i=1

Ti

S 2
i

(Yi − a − bξi)2 (4.2)

By minimizing (4.2), the estimates of a, b are given as

ã =
(
∑K

i=1
Tiξ

2
i

S 2
i

)(
∑K

i=1
Xi
S 2

i
) − (

∑K
i=1
Tiξi

S 2
i

)(
∑K

i=1
ξiXi

S 2
i

)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
,

b̃ =
(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
ξiXi

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)(
∑K

i=1
Xi
S 2

i
)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
.

Let V1 = ã − a,V2 = b̃ − b, and then V1,V2 can be presented as

V1 =
(
∑K

i=1
Tiξ

2
i

S 2
i

)(
∑K

i=1
Ziσi

√
Ti

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)(
∑K

i=1
ξiZiσi

√
Ti

S 2
i

)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
, (4.3)

V2 =
(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
ξiZiσi

√
Ti

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)(
∑K

i=1
Ziσi

√
Ti

S 2
i

)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
, (4.4)

where
Zi=̂[Xi − (a + bξi)Ti]/(σi

√
Ti) ∼ N(0, 1).

It is obvious that in (4.3) and (4.4) the distributions of V1 and V2 only depend on the unknown
parameter σ2

i . So, generating a series of copies Z∗i from the standard normal distribution N(0, 1),
replace the unknown parameter σi by its GPQ

√
Wi in (4.3) and (4.4) to get the quantities V∗1 and V∗2 .

V∗1 =
(
∑K

i=1
Tiξ

2
i

S 2
i

)(
∑K

i=1
Z∗i
√
Wi
√
Ti

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)(
∑K

i=1
ξiZ∗i
√
Wi
√
Ti

S 2
i

)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
, (4.5)
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V∗2 =
(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
ξiZ∗i
√
Wi
√
Ti

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)(
∑K

i=1
Z∗i
√
Wi
√
Ti

S 2
i

)

(
∑K

i=1
Ti
S 2

i
)(
∑K

i=1
Tiξ

2
i

S 2
i

) − (
∑K

i=1
Tiξi

S 2
i

)2
. (4.6)

According to the substitute method given in [28, 29], the GPQs of a and b are obtained by

G1 = ã − V∗1 , G2 = b̃ − V∗2 . (4.7)

Based on G1 and G2, the confidence intervals of a and b can be constructed. Because the
distributions of G1 and G2 are very complicated, a simulation procedure can be used. Let Gi,α be the α
percentile of Gi, and then [G1,α/2,G1,1−α/2] and [G2,α/2,G2,1−α/2] are the 1 − α level GCIs of a and b,
respectively.

4.2. GCIs for parameters c and d

In this subsection, we will derive the GCIs of model parameters c and d. Based on (3.6) in
Theorem 3.2, let V3 = c̃ − c, V4 = d̃ − d, and then V3 and V4 can be represented as

V3 =

(∑K
i=1 ξ

2
i [ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1(log Qi

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

−

(∑K
i=1 ξi[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1ξi(log Qi

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

. (4.8)

V4 =

(∑K
i=1[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1ξi(log Qi

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

−

(∑K
i=1 ξi[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1(log Qi

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

, (4.9)

where Qi=̂(Mi − 1)S 2
i /σ

2
i ∼ χ

2(Mi − 1). From (4.8) and (4.9) we know that the distribution of V3 and
V4 only depend on the unknown parameters σ2

i through Qi. So, we can generating a series of Q∗i from
the distribution χ2(Mi − 1) to replace Qi and get V∗3 and V∗4 .

V∗3 =

(∑K
i=1 ξ

2
i [ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1(log Q∗i

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

−

(∑K
i=1 ξi[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1ξi(log Q∗i

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

. (4.10)

V∗4 =

(∑K
i=1[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1ξi(log Q∗i

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

−

(∑K
i=1 ξi[ψ

′

( Mi−1
2 )]−1

) [∑K
i=1[ψ

′

( Mi−1
2 )]−1(log Q∗i

2 − ψ( Mi−1
2 ))

]
F1G1 − I2

1

. (4.11)

Hence, the GPQs of parameters c and d can be given by

G3 = c̃ − V∗3 , G4 = d̃ − V∗4 . (4.12)
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Let Gi,α denote the α percentile of Gi, and then [G3,α/2,G3,1−α/2] and [G4,α/2,G4,1−α/2] are the 1−α level
GCIs of c and d, respectively.

4.3. GCIs for quantities µ0, σ2
0, R(t0) and E(T )

In practical applications, some important quantities for the Wiener double ADT model at the normal
use stress level ξ0, such as µ0, σ2

0 and the reliability function of lifetime T , may be of more interest than
the model parameters (a, b, c, d). However, because these quantities involve two or more parameters,
their interval estimations tend to be difficult. Similar to the cases of parameters (a, b, c, d) , we can
develop the GCIs for these quantities.

Notice that µ0, σ
2
0 and the reliability function of lifetime T are given by µ0 = a + bξ0, σ

2
0 = exp(c +

dξ0) and R(t0) = 1 − FT

(
t0|µ0, σ

2
0

)
, respectively. According to the substitution method given in [28],

the GPQs for µ0, σ
2
0 and R(t0) are given by

G5 = G1 + G2ξ0, (4.13)
G6 = exp(G3 + G4ξ0), (4.14)
G7 = 1 − FT (t0|G5,G6), (4.15)

respectively.
Let Gi,α denote the α percentile of Gi. Then, [Gi,α/2,Gi,1−α/2], i = 5, 6, 7, are the 1 − α level GCIs of

µ0, σ
2
0, and R(t0), respectively. The percentiles of Gi, i = 1, 2, · · · , 7 can be obtained by the following

simulation, Algorithm 1.

Algorithm 1: GCIs for a, b, c, d and quantities µ0, σ
2
0 and R(t0).

(1) Given data set {(∆Xi, j,k,∆ti, j,k, ξi), i = 1, · · · ,K; j = 1, · · · , ni; k = 1, · · · , ri, j}, compute Xi, S 2
i and

Ui.
(2) Generate a series of {Q0,i}

K
i=1 from χ2(Mi − 1), and then compute a series of {Wi}

K
i=1 through

Eq (4.1).
(3) Generate a series of {Z∗i }

K
i=1 from N(0, 1), based on {Wi}

K
i=1, and through Eq (4.7) compute G1

and G2.
(4) Generate a series of {Q∗i }

K
i=1 from χ2(Mi − 1), and through Eq (4.12) compute G3 and G4.

(5) Based on G1,G2,G3 and G4, through Eqs (4.13)–(4.15) compute G5,G6 and G7.
(6) Repeat (2)–(5) B times, and then B values of Gi, i = 1, 2, · · · , 7 are obtained, respectively.
(7) Arrange all Gi values in ascending order: Gi,(1) < Gi,(2) < · · · < Gi,(B), i = 1, 2, · · · , 7. Then, the

α percentile of Gi is estimated by Gi,(αB).

Remark 1. As is known to all, at the normal use stress level ξ0, the unit’s mean lifetime E(T ) = L/µ0

is the monotonic function of µ0. Therefore, the GCI of E(T ) can be derived from the GCI of µ0.

4.4. GPI for X0(t) and RUL(τ)

In practical applications, the prediction intervals of the degradation characteristic, the lifetime and
the remaining useful lifetime (RUL) of unit under normal use condition may be more practical and
interesting for the product designer and user. So, it is important and meaningful to discuss the
prediction interval of degradation characteristic X0(t) and RUL(τ). Unfortunately, for the proposed
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Wiener double ADT model, it is hard to obtain the exact prediction interval of these quantities, so we
develop the GPI for them.

At the normal use stress level ξ0, the degradation characteristic X0(t) can be presented as

X0(t) = µ0t + σ0B(t), µ0 = a + bξ0, σ
2
0 = exp(c + dξ0).

Notice that given the failure threshold L, the product’s lifetime T under the normal operating
condition follows an inverse Gaussian distribution IG(L/µ0, L2/σ2

0). Given a fixed time τ, if the
degradation characteristic X0(τ) = xτ is known, the remaining useful life RUL(τ) is defined as

RUL(τ) = in f {t|X0(t + τ) − X0(τ) ≥ L − xτ, t ≥ 0} .

Note that X0(t) has stationary independent increments, so RUL(τ) ∼ IG
(
(L − xτ)/µ0, (L − xτ)2/σ2

0

)
.

Based on GPQs G5 and G6, using the substitution method given in [33], the GPQs of X0(t) and RUL(τ)
are obtained by

G8 = G5t +
√
G6tZ, Z ∼ N(0, 1), (4.16)

G9 ∼ IG
(
(L − xτ)/G5, (L − xτ)2/G6

)
. (4.17)

Let Gi,α be the α percentile of Gi, and then [G8,α/2,G8,1−α/2] and [G9,α/2,G9,1−α/2] are the 1 − α level
GPIs of degradation characteristic X0(t) and RUL. The percentiles of G9 and G10 can be obtained by
the following simulation, Algorithm 2.

Algorithm 2: GPIs for X0(t) and RUL(τ).
(1) Given data set {(∆Xi, j,k,∆ti, j,k, ξi), i = 1, · · · ,K; j = 1, · · · , ni; k = 1, · · · , ri, j}, compute Xi, S 2

i and
Ui.

(2) Generate a series of {Q0,i}
K
i=1 from χ2(Mi − 1), and then compute a series of {Wi}

K
i=1 through Eq

(4.1).
(3) Generate a series of {Z∗i }

K
i=1 from N(0, 1), based on {Wi}

K
i=1, and through Eq (4.7) compute the

G1 and G2.
(4) Generate a series of {Q∗i }

K
i=1 from χ2(Mi − 1), and through Eq (4.12) compute G3 and G4.

(5) Based on G1,G2,G3 and G4, through Eqs (4.13) and (4.14) compute G5 and G6.
(6) Based on G5,G6, through Eqs (4.16) and (4.17) compute G8 and G9.
(7) Repeat (2)–(6) B times, and B values of G8,G9 are obtained, respectively.
(8) Arrange all Gi values in ascending order: Gi,(1) < Gi,(2) < · · · < Gi,(B), i = 8, 9. Then, the α

percentile of Gi is estimated by Gi,(αB).

Remark 2. Note that at the normal use stress level ξ0, the unit’s lifetime T follows the IG(L/µ0, L2/σ2
0)

distribution. So, the GCI of lifetime T can be obtained by the GPQ G10, where G10 ∼ IG(L/G5, L2/G6).

5. Simulation study and comparative analysis

In this section, a Monte Carlo simulation study is implemented to evaluate the proposed
GCIs/GPIs of model parameters and some quantities in terms of coverage percentage (CP) and
average interval length (AL). Without loss of generality, we consider an ADT with three stress levels
ξ1 = 1, ξ2 = 2 and ξ3 = 3, and the normal use stress level is ξ0 = 0.5. Four parameter settings are
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selected and given in Table 1. For convenience, the values of ni, ri, j,∆ti, j,k are chosen to be
n1 = · · · = nK=̂n = 5, 8, 10; ri, j=̂r = 4, 6, 8; and ∆ti, j,k = 1. Three combinations of (n, r,∆ti, j,k) are
considered in the simulation: (5, 4, 1), (8, 6, 1), (10, 8, 1). A total of 12 combinations of (a, b, c, d, L)
and (n, r,∆ti, j,k) are examined in the simulation study. We take B = 5000 in the simulation study, and
all the results are based on 5000 replications. The simulation results are provided in Tables 2–4.

Table 1. Parameter settings for simulation study.

Case a b c d L
I -0.25 1.20 -0.80 1.60 5.15
II -0.50 2.00 -1.00 2.50 6.30
III -0.75 3.00 -1.20 3.20 7.80
IV 0.30 1.00 0.20 0.60 8.20

Table 2. The CPs and ALs (in parentheses) of model parameters and quantities under case II
for nominal levels 0.9, 0.95, based on 5,000 replications.

(n, r) 0.9 0.95 0.9 0.95

a b

(5, 4) 0.8980(5.7245) 0.9535(6.8696) 0.8910(5.0503) 0.9490(6.0723)

(8, 6) 0.8930(3.6243) 0.9530(4.3272) 0.8935(3.1994) 0.9505(3.8228)

(10, 8) 0.8945(2.7886) 0.9420(3.3271) 0.8920(2.4650) 0.9460(2.9447)

c d

(5, 4) 0.9065(1.6709) 0.9520(1.9989) 0.9050(0.7740) 0.9455(0.9269)

(8, 6) 0.9080(1.0463) 0.9565(1.2489) 0.9085(0.4847) 0.9570(0.5787)

(10, 8) 0.8955(0.8043) 0.9430(0.9593) 0.9005(0.3723) 0.9440(0.4443)

µ0 σ2
0

(5, 4) 0.9030(2.0925) 0.9530(2.4557) 0.9015(1.9745) 0.9515(2.4745)

(8, 6) 0.8960(1.4858) 0.9500(1.7236) 0.9090(1.1410) 0.9585(1.3864)

(10, 8) 0.8920(1.2317) 0.9410(1.4231) 0.8935(0.8448) 0.9455(1.0188)

R(5) E(T )

(5, 4) 0.9090(0.7848) 0.9585(0.8661) 0.9025(5.4195×104) 0.9525(5.8182×104)

(8, 6) 0.8960(0.6604) 0.9505(0.7522) 0.8955(5.0215×104) 0.9505(5.4538×104)

(10, 8) 0.9105(0.5661) 0.9585(0.6571) 0.8915(4.5678×104) 0.9405(5.2177×104)

X0(10) RUL(4)

(5, 4) 0.9090(26.0166) 0.9595(31.1272) 0.9075(0.8362×103) 0.9580(3.2902×103)

(8, 6) 0.9085(20.1517) 0.9535(24.0043) 0.9095(0.6120×103) 0.9570(2.3715×103)

(10, 8) 0.9040(17.7753) 0.9580(21.1568) 0.9080(0.4568×103) 0.9535(1.7337×103)
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Tables 2–4 summarize the CPs and ALs of the two-sided equal-tailed 90% and 95% GCIs/GPIs
for model parameters and some quantities under the cases of II, III and IV. It is observed from the
simulation results that the CPs of the proposed GCIs/GPIs are quite close to the nominal levels, even for
small sample sizes. Based on the normal approximation to the binomial distribution, CPs between 94%
and 96% are considered appropriate for the 95% confidence intervals. For fixed parameter settings,
when the sample size n and the number of measurements r increase, the ALs of GCIs/GPIs decrease
as expected. These findings show that the proposed confidence interval procedures work well, and the
performances of the proposed GCIs/GPIs are satisfactory with respect to the CPs.

As is known to all, the parametric bootstrap method is a classic approach to obtain confidence
intervals for model parameters. In order to fully evaluate the performances of the GCIs/GPIs, we also
consider the bootstrap CIs for the Wiener double ADT model. For comparison, the confidence limits
(CLs), such as lower confidence limit (LCL) and upper confidence limit (UCL), for model parameters
and some quantities are also examined. We performed a comparative analysis of the CIs, LCLs and
UCLs obtained by the GPQ method and the bootstrap-p method. For saving space, we only give the
simulation results under the case I, and they are provided in Tables 5–7. The bootstrap-p procedure is
also based on 5,000 bootstrap samples.

Table 3. The CPs and ALs (in parentheses) of model parameters and quantities under case
III for nominal levels 0.9, 0.95, based on 5,000 replications.

(n, r) 0.9 0.95 0.9 0.95

a b

(5, 4) 0.8965(10.3095) 0.9475(12.3940) 0.9005(9.6583) 0.9485(11.6339)

(8, 6) 0.9020(6.5242) 0.9500(7.8010) 0.9015(6.1281) 0.9515(7.3373)

(10, 8) 0.8930(5.0067) 0.9425(5.9777) 0.8920(4.7051) 0.9440(5.6210)

c d

(5, 4) 0.9020(1.6707) 0.9530(1.9987) 0.9010(0.7740) 0.9470(0.9267)

(8, 6) 0.8995(1.0471) 0.9495(1.2498) 0.8995(0.4847) 0.9530(0.5789)

(10, 8) 0.9045(0.8040) 0.9515(0.9589) 0.8960(0.3723) 0.9495(0.4441)

µ0 σ2
0

(5, 4) 0.8960(3.4859) 0.9430(4.0890) 0.9020(2.3736) 0.9505(2.9752)

(8, 6) 0.8975(2.4609) 0.9505(2.8554) 0.9020(1.3195) 0.9505(1.6046)

(10, 8) 0.8905(1.9922) 0.9420(2.3054) 0.9015(0.9827) 0.9530(1.1847)

R(5) E(T )

(5, 4) 0.9075(0.8565) 0.9525(0.9185) 0.8960(6.8449×104) 0.9435(7.2617×104)

(8, 6) 0.8920(0.7815) 0.9475(0.8611) 0.8975(6.3119×104) 0.9515(6.9116×104)

(10, 8) 0.8910(0.7136) 0.9415(0.8020) 0.8915(6.0068×104) 0.9420(6.5718×104)

X0(10) RUL(4)

(5, 4) 0.9075(39.8173) 0.9535(47.4507) 0.9085(0.9394×103) 0.9580(3.7096×103)

(8, 6) 0.9095(29.3593) 0.9540(34.8016) 0.9090(0.7060×103) 0.9585(2.7778×103)

(10, 8) 0.9070(24.8711) 0.9565(29.4950) 0.9075(0.5405×103) 0.9570(2.1125×103)
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Table 4. The CPs and ALs (in parentheses) of model parameters and quantities under case
IV for nominal levels 0.9, 0.95, based on 5,000 replications.

(n, r) 0.9 0.95 0.9 0.95

a b

(5, 4) 0.8925(2.0082) 0.9470(2.4155) 0.9065(1.1180) 0.9500(1.3433)

(8, 6) 0.8940(1.2607) 0.9460(1.5079) 0.8945(0.7043) 0.9510(0.8417)

(10, 8) 0.9020(0.9708) 0.9500(1.1593) 0.8990(0.5423) 0.9515(0.6473)

c d

(5, 4) 0.8935(1.6708) 0.9475(1.9989) 0.8975(0.7740) 0.9525(0.9268)

(8, 6) 0.9070(1.0463) 0.9560(1.2489) 0.9080(0.4847) 0.9570(0.5787)

(10, 8) 0.8975(0.8042) 0.9505(0.9592) 0.8980(0.3725) 0.9455(0.4443)

µ0 σ2
0

(5, 4) 0.8945(1.3499) 0.9440(1.5745) 0.8945(2.6428) 0.9475(3.3125)

(8, 6) 0.8910(0.9320) 0.9455(1.1026) 0.9090(1.4650) 0.9590(1.7801)

(10, 8) 0.9000(0.7308) 0.9460(0.8707) 0.9025(1.0978) 0.9500(1.3239)

R(5) E(T )

(5, 4) 0.9005(0.4893) 0.9500(0.5779) 0.8940(3.8581×104) 0.9440(4.9431×104)

(8, 6) 0.8980(0.3236) 0.9535(0.3857) 0.8910(1.0701×104) 0.9455(1.7598×104)

(10, 8) 0.9080(0.2481) 0.9495(0.2961) 0.9000(2.1828×103) 0.9465(4.1033×103)

X0(10) RUL(4)

(5, 4) 0.9040(19.7837) 0.9535(23.7148) 0.9095(172.1151) 0.9575(611.4828)

(8, 6) 0.9085(16.5558) 0.9560(19.8108) 0.9000(42.7509) 0.9510(108.4594)

(10, 8) 0.9000(15.4118) 0.9535(18.4244) 0.8935(22.2517) 0.9425(38.8602)

Tables 5–7 show that the CPs of the CIs, LCLs and UCLs obtained by the GPQ method are all
very close to the nominal levels, even for small sample sizes. However, the CPs of the CIs, LCLs and
UCLs obtained by the bootstrap-p method are not close to the nominal levels for some parameters and
quantities. In particular, from Table 5 we find that the bootstrap-p CIs of RUL(4) are not close to the
nominal levels. In addition, from Tables 6 and 7 we also find that the LCLs and UCLs obtained in
the bootstrap-p method perform badly. For example, the CPs of model parameters c, σ2

0, reliability
function R(5), mean lifetime E(T ), degradation amount X0(10) and RUL(4) deviate from the nominal
levels.

As the sample size n increases, the CPs of the bootstrap-p CIs/PIs approach the nominal levels.
Tables 5–7 also indicate that, for fixed parameter settings, as the sample size n increases, the ALs
become shorter, the LCLs become larger, and the UCLs become smaller for both GPQ method and
bootstrap-p method as expected. These findings indicate that the CIs, LCLs and UCLs obtained in the
GPQ method perform better than the corresponding bootstrap-p ones in terms of CP. Therefore, we
recommend the proposed CIs, LCLs and UCLs in the GPQ method for the proposed Wiener double
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ADT model, especially in small sample cases.

Table 5. The CPs and ALs (in parentheses) of different CIs under case I for nominal levels
0.9, 0.95, based on 5,000 replications.

(n, r) parameter GCI/GPI bootstrap-p CI

0.9 0.95 0.9 0.95

(5, 4) a 0.8970(2.7521) 0.9495(3.3031) 0.8955(2.6992) 0.9460(3.2173)

b 0.9020(2.0580) 0.9500(2.4701) 0.9065(2.0494) 0.9425(2.4435)

c 0.8965(1.6708) 0.9475(1.9989) 0.9050(1.6712) 0.9430(1.9996)

d 0.8975(0.7740) 0.9525(0.9268) 0.9130(0.7739) 0.9545(0.9269)

µ0 0.8990(1.2206) 0.9480(1.4245) 0.8900(1.1859) 0.9435(1.3769)

σ2
0 0.8965(1.6029) 0.9475(2.0091) 0.9070(1.4805) 0.9425(1.7927)

R(5) 0.9035(0.6619) 0.9530(0.7557) 0.9080(0.6433) 0.9575(0.7340)

E(T ) 0.8995(4.3254×104) 0.9480(4.6507×104) 0.8900(4.2568×104) 0.9425(4.6248×104)

X0(10) 0.9045(17.4588) 0.9535(20.9393) 0.9080(17.0667) 0.9585(20.4164)

RUL(4) 0.9095(0.7176×103) 0.9560(2.7925×103) 0.9150(1.0513×103) 0.9595(4.0867×103)

(8, 6) a 0.9025(1.7323) 0.9470(2.0689) 0.9075(1.7223) 0.9560(2.0526)

b 0.8965(1.3058) 0.9460(1.5596) 0.9060(1.3045) 0.9555(1.5551)

c 0.8960(1.0462) 0.9490(1.2487) 0.9085(1.0471) 0.9545(1.2495)

d 0.8965(0.4847) 0.9455(0.5786) 0.9090(0.4849) 0.9550(0.5787)

µ0 0.9040(0.8624) 0.9475(0.9978) 0.9060(0.8752) 0.9555(1.0068)

σ2
0 0.8970(0.8852) 0.9490(1.0761) 0.9085(0.8621) 0.9465(1.0335)

R(5) 0.9030(0.4646) 0.9495(0.5502) 0.9040(0.4719) 0.9465(0.5564)

E(T ) 0.9035(3.8440×104) 0.9475(4.2632×104) 0.9070(3.8062×104) 0.9565(4.3076×104)

X0(10) 0.9065(14.1289) 0.9560(16.8762) 0.9095(14.1436) 0.9575(16.8773)

RUL(4) 0.9030(0.4656×103) 0.9475(1.7509×103) 0.9185(0.4966×103) 0.9565(1.8667×103)

(10, 8) a 0.9020(1.3350) 0.9520(1.5926) 0.8915(1.3304) 0.9450(1.5851)

b 0.9005(1.0058) 0.9505(1.1999) 0.9055(1.0064) 0.9525(1.1990)

c 0.8975(0.8042) 0.9505(0.9592) 0.9040(0.8042) 0.9470(0.9593)

d 0.8980(0.3725) 0.9465(0.4443) 0.9065(0.3724) 0.9560(0.4442)

µ0 0.9030(0.7263) 0.9535(0.8376) 0.8960(0.7174) 0.9470(0.8268)

σ2
0 0.9025(0.6659) 0.9500(0.8030) 0.8955(0.6544) 0.9485(0.7827)

R(5) 0.9035( 0.3685) 0.9525(0.4397) 0.8950(0.3635) 0.9455(0.4331)

E(T ) 0.9025(3.3101×104) 0.9520(3.9055×104) 0.8945(3.2908×104) 0.9450(3.8446×104)

X0(10) 0.9030(13.0539) 0.9505(15.5771) 0.9050(12.9732) 0.9555(15.4825)

RUL(4) 0.9080(0.3250×103) 0.9510(1.1652×103) 0.9245(0.3730×103) 0.9655(1.3665×103)
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Table 6. The CPs and ALs (in parentheses) of different LCLs under case I for nominal levels
0.9, 0.95, based on 5,000 replications.

(n, r) parameter LCL in GPQ method LCL in bootstrap-p method

0.9 0.95 0.9 0.95

(5, 4) a 0.9035(-1.3223) 0.9470(-1.6337) 0.8925(-1.3213) 0.9445(-1.6200)

b 0.9010(0.4076) 0.9545(0.1749) 0.8935(0.4172) 0.9555(0.1905)

c 0.8940(-1.4176) 0.9435(-1.5874) 0.9130(-1.4733) 0.9640(-1.6779)

d 0.9010(1.2911) 0.9535(1.2043) 0.9040(1.3052) 0.9570(1.2183)

µ0 0.9025(0.0831) 0.9485(0.0441) 0.9035(0.0862) 0.9470(0.0468)

σ2
0 0.9035(0.6658) 0.9425(0.5840) 0.9175(0.6349) 0.9640(0.5390)

R(5) 0.9430(0.4179) 0.9570(0.3116) 0.9245(0.4328) 0.9595(0.3310)

E(T ) 0.9035(0.1479×104) 0.9510(0.0675×104) 0.8920(0.1548×104) 0.9430(0.0677×104)

X0(10) 0.8915(-1.3915) 0.9425(-3.0086) 0.8805(-1.3434) 0.9375(-2.9459)

RUL(4) 0.9410(2.2967) 0.9575(1.6463) 0.9260(2.4000) 0.9650(1.7000)

(8, 6) a 0.9005(-0.9378) 0.9495(-1.1313) 0.9035(-0.9058) 0.9485(-1.0969)

b 0.8915(0.7058) 0.9455(0.5602) 0.9135(0.6798) 0.9565(0.5356)

c 0.9005(-1.2072) 0.9495(-1.3165) 0.9180(-1.2202) 0.9660(-1.3435)

d 0.8940(1.4130) 0.9465(1.3590) 0.9050(1.4146) 0.9435(1.3605)

µ0 0.8965(0.0942) 0.9475(0.0551) 0.9025(0.0961) 0.9490(0.0549)

σ2
0 0.9015(0.7492) 0.9515(0.6879) 0.9165(0.7385) 0.9655(0.6693)

R(5) 0.9095(0.5941) 0.9560(0.5075) 0.9185(0.5863) 0.9580(0.4999)

E(T ) 0.9030(0.0551×104) 0.9535(0.0189×104) 0.9135(0.0472×104) 0.9575(0.0136×104)

X0(10) 0.8950(-1.2837) 0.9430(-2.7351) 0.8870(-1.1942) 0.9405(-2.6476)

RUL(4) 0.9060(2.7260) 0.9530(2.0512) 0.9145(2.7046) 0.9625(2.0479)

(10, 8) a 0.9015(-0.7763) 0.9525(-0.9249) 0.9055(-0.7809) 0.9560(-0.9278)

b 0.8995(0.8159) 0.9490(0.7041) 0.8905(0.8152) 0.9500(0.7039)

c 0.8955(-1.1031) 0.9445(-1.1882) 0.9065(-1.1142) 0.9560(-1.2075)

d 0.9025(1.4501) 0.9525(1.4087) 0.9065(1.4532) 0.9550(1.4119)

µ0 0.9030(0.1066) 0.9535(0.0640) 0.9040(0.1079) 0.9565(0.0659)

σ2
0 0.8965(0.8010) 0.9485(0.7494) 0.9070(0.7934) 0.9555(0.7366)

R(5) 0.9050(0.6699) 0.9520(0.6012) 0.8940(0.6735) 0.9485(0.6061)

E(T ) 0.9065(0.0268×104) 0.9515(0.0111×104) 0.8885(0.0353×104) 0.9430(0.0162×104)

X0(10) 0.8975(-1.2025) 0.9465( -2.5920) 0.8960(-1.2022) 0.9450(-2.5857)

RUL(4) 0.8930(2.8285) 0.9525(2.1574) 0.9120(2.8721) 0.9590 (2.1891)
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Table 7. The CPs and ALs (in parentheses) of different UCLs under case I for nominal levels
0.9, 0.95, based on 5,000 replications.

(n, r) parameter UCL in GPQ method UCL in bootstrap-p method

0.9 0.95 0.9 0.95

(5, 4) a 0.9045(0.8079) 0.9490(1.1184) 0.8925(0.7807) 0.9470(1.0792)

b 0.9030(2.0010) 0.9525(2.2329) 0.8950(2.0136) 0.9480(2.2399)

c 0.9025(-0.1204) 0.9540(0.0834) 0.8925(-0.1762) 0.9410(-0.0067)

d 0.8955(1.8914) 0.9455(1.9784) 0.9070(1.9054) 0.9575(1.9922)

µ0 0.9055(1.0601) 0.9505(1.2647) 0.8920(1.0396) 0.9430(1.2327)

σ2
0 0.9025(1.8569) 0.9540(2.1869) 0.8870(1.7710) 0.9390(2.0194)

R(5) 0.8925(0.9535) 0.9450(0.9735) 0.8855(0.9539) 0.9440(0.9743)

E(T ) 0.9020(0.0000×104) 0.9485(4.3930×104) 0.9025(0.0000×104) 0.9470(4.3245×104)

X0(10) 0.9425(0.0000) 0.9580(14.4502) 0.9330(0.0000) 0.9705(14.1208)

RUL(4) 0.9030(256.4904) 0.9545(984.8106) 0.9035(274.7000) 0.9550(1053.0000)

(8, 6) a 0.9020(0.4084) 0.9540(0.6010) 0.9150(0.4357) 0.9570(0.6254)

b 0.9025(1.7209) 0.9450(1.8660) 0.9045(1.6961) 0.9445(1.8400)

c 0.8950(-0.3928) 0.9445(-0.2703) 0.8930(-0.4057) 0.9425(-0.2964)

d 0.8925(1.7898) 0.9515(1.8437) 0.9135(1.7916) 0.9615(1.8454)

µ0 0.9030(0.7902) 0.9565(0.9176) 0.9135(0.8048) 0.9570(0.9301)

σ2
0 0.8940(1.4264) 0.9445(1.5732) 0.8930(1.4061) 0.9410(1.5314)

R(5) 0.8980(0.9570) 0.9455(0.9721) 0.8970(0.9563) 0.9450(0.9719)

E(T ) 0.8975(0.0000×104) 0.9480(3.8629×104) 0.9035 (0.0000×104) 0.9465(3.8199×104)

X0(10) 0.9095(0.0000) 0.9580(11.3939) 0.9315(0.0000) 0.9665(11.4959)

RUL(4) 0.9040(148.1373) 0.9540(532.5225) 0.9050 (139.0714) 0.9560(498.6037)

(10, 8) a 0.8990(0.2619) 0.9520(0.4101) 0.8915(0.2559) 0.9400(0.4026)

b 0.9020(1.5987) 0.9515(1.7099) 0.9045(1.5994) 0.9525(1.7103)

c 0.9030(-0.4769) 0.9540(-0.3841) 0.8960(-0.4880) 0.9450(-0.4033)

d 0.8975(1.7399) 0.9485(1.7812) 0.9035(1.7430) 0.9515(1.7843)

µ0 0.9060(0.6921) 0.9515(0.7903) 0.8885(0.6862) 0.9425(0.7833)

σ2
0 0.9045(1.3143) 0.9540(1.4152) 0.8950(1.3016) 0.9430(1.3910)

R(5) 0.9035(0.9563) 0.9590(0.9697) 0.8965(0.9560) 0.9485(0.9696)

E(T ) 0.9020(0.0000×104) 0.9540(3.3212×104) 0.9025(0.0000×104) 0.9545(3.3070×104)

X0(10) 0.9090(0.0000) 0.9555(10.4619) 0.9170(0.0000) 0.9590(10.3875)

RUL(4) 0.9085(103.6819) 0.9560(345.9644) 0.9160(111.2404) 0.9655(375.1649)
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6. An illustrative example

In this section, we provide the ADT data of commercial white LEDs to illustrate our proposed
methods. Degradation in lumen maintenance is the main failure mechanism for LEDs [30]. An LED
is defined as a failure when the lumen maintenance decreases by 30% of its initial level.

In the ADT, 16 retrofit LED tubes based on a low-power LED are assigned to be tested at stress
levels s1 = 25 ◦C and s2 = 55 ◦C, respectively. In general, the normal operating temperature of the
LED is s0 = 25 ◦C. The tubes are placed in the climate chamber to ensure the stability of the ambient
operating temperature, and the lumen outputs of the tubes are measured regularly. Note that there
exists a very short period of increase in the lumen output due to incomplete burn-in [31], so this period
is identified from the original data and is discarded in the analysis. For each test unit, the decrease
in lumen output is normalized by the initial output. In addition, there is an unexpected catastrophic
failure, and only 15 tubes under 55 ◦C are recorded. Figure 1 shows the degradation paths of the LEDs.
Similar to Hong et al. [23], to protect proprietary information, a power-law time-scale transformation
with exponent 0.70 is used to linearize the degradation paths.

Figure 1. Degradation paths and fitted mean degradation paths at 25 ◦C and 55 ◦C.

The degradation data are not monotone, so the Gamma process and inverse Gaussian process are
not suitable to deal with them. Thus, we choose the Wiener process to model the degradation data. In
order to assess the goodness-of-fit, a standard normal Q-Q plot for the average standardized degradation
increments is given in Figure 2. The points scatter around the line nicely except one point at the left
tail, probably due to measurement errors for some observations.

Since temperature acts as the accelerated stress in this example, the Arrhenius model is used to
describe the relationship between parameters and the accelerated stress. Hence, we take

ξi = exp(−11605/(si + 273.15)).
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Similar to Lim and Yum [32], the standardized stress levels are given by

ζi =
ξi − ξ0

ξ2 − ξ0
, i = 0, 1, 2.

Since s0 = s1, the temperature levels are standardized as ζ0 = ζ1 = 0, ζ2 = 1.

Figure 2. Q-Q plot.

Let σ2
i be replaced by its estimate S 2

i in (3.3), and the point estimates of the parameters a and b are
given by ã = 0.2026, b̃ = 0.0619. Based on Eq (3.6), the point estimates of the parameters c and d are
obtained by c̃ = 3.9533, d̃ = 0.2960. Notice that µi = a + bζi, σ

2
i = exp(c + d)ζi, i = 1, 2. The estimates

of µi and σ2
i are given by µ̃1 = 0.2044, µ̃2 = 0.2645, σ̃2

1 = 52.5497, σ̃2
2 = 70.0571, respectively.

Notice that the mean degradation path at the stress level si is E(Xi(t)) = µit, and the estimate of
E(Xi(t)) is then given by ˜E(Xi(t)) = µ̃it (considering the transformed time scale, here the time t should
be replaced by t0.7). The degradation paths and the estimates of these mean degradation paths under
transformed time scale are given in Figure 1. It is obvious that these degradation data are fitted well by
the proposed Wiener doubly accelerated degradation model.

To illustrate the GPQ method described in section 4, we use the degradation data in Figure 1 to
derive the GCIs/GPIs of model parameters and some reliability metrics. Based on the
Gi, i = 1, 2, · · · , 6, the GCIs of model parameters a, b, c, d and quantities µ0, σ

2
0 are obtained, for

nominal levels 90% and 95%. According to G7, the GCIs of reliability function R(100) are also
obtained. In addition, using G8 and G9, the GPIs of degradation amount X0(150) and remaining useful
life RUL(126) are developed. All the results are based on 10,000 replications and presented in
Table 8.
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Table 8. The GCIs/GPIs of model parameters and reliability metrics based on the LED
degradation data.

Parameter 90% Length 95% Length
a (-0.0739, 0.4786 ) 0.5525 (-0.1286, 0.5323) 0.6609
b (-0.3882, 0.5149) 0.9031 (-0.4743, 0.6016) 1.0759
c (3.7885, 4.1246) 0.3361 (3.7577, 4.1592) 0.4015
d (0.0953, 0.4927) 0.3974 (0.0571, 0.5302) 0.4731
µ0 (0.0000, 0.4786) 0.4786 (0.0000, 0.5323) 0.5323
σ2

0 (44.1879, 61.8413) 17.6534 (42.8486, 64.0231) 21.1745
R(100) (0.4704, 0.6095) 0.1391 (0.4570, 0.6196) 0.1626

T (0.0008, 1.3891)×104 1.3883×104 (0.0005, 4.3066)×104 4.3061×104

RUL(126) (0.0004, 0.9336)×104 0.9332×104 (0.0003, 2.9032)×104 2.9029×104

X0(150) (-62.2527, 76.5406) 138.7933 (-76.1094, 90.2592) 166.3686

7. Conclusions

In this paper we proposed a doubly accelerated degradation test model of Wiener process, in which
both the degradation rate and the diffusion parameter are affected by the stress level. The point
estimates of model parameters are obtained by constructing a regression model. Furthermore, based
on the point estimates of model parameters, the GCIs of model parameters are developed by
constructing GPQs. Utilizing the substitute method, the GCIs of some quantities and reliability
metrics are derived, and the GPIs of degradation amount X0(t) and RUL for units under normal use
stress level are also developed.

Extensive simulations are carried out to evaluate the performances of the proposed procedures.
The simulation results reveal that the proposed confidence intervals performed well in terms of CPs,
and compared with the traditional bootstrap method. Finally, an illustrative example is provided to
demonstrate the proposed procedures. As is known to all, the Gamma process and inverse Gaussian
process are also widely used in analysis of accelerated degradation data. In the future, we shall mainly
focus on studying the small sample inferential methods for doubly accelerated degradation test models
based on the Gamma and inverse Gaussian process.
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Supplementary

A. Proof of Theorem 3.1

Let V = diag(σ2
1/T1, · · · , σ

2
K/TK),Y = (Y1, · · · ,YK)T , and

Z =

(
1 1 · · · 1 · · · 1
s1 s2 · · · si · · · sK

)T

.

Then, the estimates (̂a, b̂) are given by(
â
b̂

)
= (ZT V−1Z)−1ZT V−1Y =

1
FG − I2

(
GH − IM
FM − IH

)
.

So, we have the expectation of â and b̂

E
(

â
b̂

)
=

1
FG − I2

(
GE(H) − IE(M)
FE(M) − IE(H)

)
=

(
a
b

)
.

Furthermore, the covariance matrix of the estimates (̂a, b̂) is given by

Var
(

â
b̂

)
= (ZT V−1Z)−1 =

1
FG − I2

(
G −I
−I F

)
.

So, the variance and covariance of the estimates â and b̂ are obtained by

Var(̂a) =
G

FG − I2 ,Var(̂b) =
F

FG − I2 ,Cov(̂a, b̂) =
−I

FG − I2 .

Notice that the Xi’s are normal distributions and independent of each other and â and b̂ are linear
combinations of them, so the estimates â and b̂ are also normal distributions. That is,

â ∼ N
(
a,

G
FG − I2

)
, b̂ ∼ N

(
b,

F
FG − I2

)
.

The proof of Theorem 3.1 is completed.
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B. Proof of Theorem 3.2

Let V = diag(ψ
′

( M1−1
2 ), · · · , ψ

′

( MK−1
2 )),Y = (U1, · · · ,UK)T . Similar to the proof of Theorem 3.1,

Theorem 3.2 can be easily proved, and here we neglect the detailed proof.

C. Proof of Theorem 3.3

Let ζi = log
(

(Mi−1)S 2
i

2σ2
i

)
− ψ( Mi−1

2 ), and then E(ζi) = 0,Var(ζi) = ψ
′

( Mi−1
2 ). Notice that

H1 =

K∑
i=1

[ψ
′

(
Mi − 1

2
)]−1ζi + c

K∑
i=1

[ψ
′

(
Mi − 1

2
)]−1 + d

K∑
i=1

ξi[ψ
′

(
Mi − 1

2
)]−1 =: H0 + cF1 + dI1.

M1 =

K∑
i=1

[ψ
′

(
Mi − 1

2
)]−1ξiζi + c

K∑
i=1

ξi[ψ
′

(
Mi − 1

2
)]−1 + d

K∑
i=1

ξ2
i [ψ

′

(
Mi − 1

2
)]−1 =: M0 + cI1 + dG1.

So, we have

c̃ =
G1H0 − I1M0

F1G1 − I2
1

+ c, d̃ =
F1M0 − I1H0

F1G1 − I2
1

+ d.

So,

log σ̃2
0 − logσ2

0 = (̃c − c) + (d̃ − d)ξ0

=
G1H0 − I1M0

F1G1 − I2
1

+
F1M0 − I1H0

F1G1 − I2
1

ξ0

=

K∑
i=1

G1 − (ξ0 + ξi)I1 + ξ0ξiF1

ψ′( Mi−1
2 )(F1G1 − I2

1)
ζi

=

K∑
i=1

Di log
(
(Mi − 1)S 2

i

2σ2
i

)
−

K∑
i=1

Diψ

(
Mi − 1

2

)
.

Because (Mi−1)S 2
i

σ2
i
∼ χ2(Mi − 1), and

σ̃2
0/σ

2
0 =

K∏
i=1

(
(Mi − 1)S 2

i

2σ2
i

)Di

exp[−
K∑

i=1

Diψ(
Mi − 1

2
)],

we have

E
(
σ̃2

0

σ2
0

)
= exp

− K∑
i=1

Diψ

(
Mi − 1

2

) E

 K∏
i=1

(
(Mi − 1)S 2

i

2σ2
i

)Di


= exp

− K∑
i=1

Diψ

(
Mi − 1

2

) K∏
i=1

Γ(Di + Mi−1
2 )

Γ( Mi−1
2 )

.

E
(
(σ̃2

0)2

σ4
0

)
= exp

−2
K∑

i=1

Diψ

(
Mi − 1

2

) K∏
i=1

Γ(2Di + Mi−1
2 )

Γ( Mi−1
2 )

.
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From the above formulas, the unbiased estimate of σ2
0 and its variance Var(σ̃2

0u) can be given as

σ̃2
0u = σ̃2

0 exp
[
ΣK

i=1Diψ

(
Mi − 1

2

)] K∏
i=1

Γ( Mi−1
2 )

Γ(Di + Mi−1
2 )

.

Var(σ̃2
0u) = σ2

0

K∏
i=1

Γ( Mi−1
2 )Γ(2Di + Mi−1

2 ) − Γ2(Di + Mi−1
2 )

Γ2(Di + Mi−1
2 )

 .
Similar to the proof of Theorem 6 in Wang and Yu [33], we can prove that σ̃2

0u has a smaller mean
square error than that of σ̃2

0, where we neglect the detailed proof. The proof of Theorem 3.3 is
completed.
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