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Abstract: The kurtosis and skewness of distributions are important measures that can describe the
shape of a distribution, and there have been many results for symmetric distributions, but there are still
many difficulties and challenges in the characterization of skew distributions. Based on the results
of Mardia’s and Song’s kurtosis measures of elliptical distributions obtained by Zografos [1], we
generalize the results and study some measures for elliptical and skew-elliptical distributions. We also
derive the expressions of moments of skew-elliptical distributions in terms of the ones of skew-normals
and take skew-¢, skew-Pearson type VII and skew-Pearson type II distributions as examples.
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1. Introduction and motivation

Statisticians define the concepts of skewness and kurtosis in the case of univariate based on the
standard normal distribution. Skewness is a measure of the degree of lopsidedness in the frequency
distribution. Conversely, kurtosis is a measure of degree of tailedness in the frequency distribution.
For symmetric distributions, all odd-order central moments (if any) are zero, so the first attempt to
measure asymmetry is to compare the difference between the third-order central moments and zero.
In principle, any other odd-order central moments can be used, or even their linear combination.
Several optional asymmetry indices using modulo or quantiles are also available (see Arnold and
Groeneveld [2], Avérous and Meste [3], Ekstrom and Jammalamadaka [4] ). Similarly, for kurtosis,
the kurtosis coeflicient is obtained by using the fourth order central moment on the standard normal
scale again. When dealing with multivariate distributions, the concepts of skewness as well as
kurtosis measures are not uniquely defined — see for instance (based on moments like Mardia [5],
based on union-intersetion principle of Roy [6] like Malkovich and Afifi [7], based on entropy like
Song [8], etc.).
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The family of multivariate elliptical distributions is a wide range of multivariate distribution family,
which has many similar or even the same properties as multivariate normal. This family includes many
well-known elliptical distributions, such as student-#, Pearson type 1I, Pearson type VII, symmetric
Kotz type, among others. Studying the higher-order central moments of elliptical distributions is more
conducive to our description of the shape of elliptical distributions. Mardia [5] proposed a common
and popular method of measuring the skewness of multivariate distributions; Henze [9] tested the
multivariate normality of the kurtosis measure proposed by Mardia; Azzalini and Dalla Valle [10]
studied the multivariate skew-normal distribution and gave the moment generating function M(¢) for
the case when u = 0; Song [8] defined a general measure of the shape of distribution, that is, Song’s
measure, based on the entropy of A introduced by Rényi [11]; Genton et al. [12] calculated the kurtosis
and skewness of the skew-normal distribution when u # 0.

In recent years, the results on the skewness and kurtosis of multivariate distributions are more
abundant. Zografos [1] calculated the Mardia’s measure and Song’s measure of multivariate elliptical
distributions, and found that the Mardia’s measure is more sensitive to the center of the distribution
while the Song’s measure is more sensitive to the tail of the distribution. Kollo [13] compared
skewness and kurtosis characteristics of multivariate distribution with results of Mardia [5] and used
kurtosis matrix in ICA. Balakrishnan and Scarpa [14] calculated and compared different measures of
skewness of multivariate skew-normal distributions. Tian et al. [15] introduced multivariate extended
skew-normal distributions and discussed its quadratic forms. Kim and Kim [16] studied moments and
quadratic forms of scale mixtures of skew-normal distributions. Jammalamadaka et al. [17] provided
cumulant-based index of multivariate skewness and kurtosis and applied them to spherical,
elliptical-symmetric and skew-symmetric families of multivariate distributions; Abdi et al. [18]
constructed a new mixture family of multivariate normal distributions and derived the first four
moments of it. Arellano-Valle and Azzalini [19] studied moments and Marida’s skewness and kurtosis
of continuous mixtures of multivariate normal distributions. Amiri and Balakrishnan [20] established
Hessian and increasing-Hessian orderings of scale-shape mixtures of multivariate skew-normal
distributions. Zuo and Yin [21] gave tail conditional expectation of generalized multivariate
skew-elliptical distributions. This paper mainly studies some statistical measures of multivariate
elliptical and multivariate skew-elliptical distributions, such as moments, Mardia’s and Song’s
kurtosis measures.

The rest of this article is structured as follows. Section 2 generalizes the result of Mardia’s kurtosis
measure of elliptical distributions obtained by Zografos [1]. Section 3 introduces the skew-elliptical
distributions and gives the expression of the first four moments of skew-elliptical distributions. In
Section 4, the delta method is used to approximate Song’s kurtosis measure of skew-elliptical
distributions. In Section 5, Mardia’s kurtosis measure of skew-elliptical distribution is obtained by
transformation. Skew-#, skew-Pearson type VII and skew-Pearson type II distributions are taken as
examples. In Section 6, we give a simple numerical analysis and consider the sample version for each
of the measures considered as test statistics for the hypothesis of normal against the skew-normal
distribution (SN). Finally, Section 7 gives a summary.
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2. Mardia’s kurtosis measure and its extension

This section extends Mardia’s kurtosis measure to higher-order moments for a family of
multivariate elliptical distributions. This family is a generalization of the family of multivariate
normal distributions, including multivariate normal, multivariate #, multivariate Pearson type VII,
multivariate logistic distributions and so on, which were discussed by Johnson [22]. The definitions
and properties of some distributions in elliptical family were introduced in Fang et al. [23].

T
Definition 1. A p-dimensional random vector X = (X Lo X p) is said to have a multivariate elliptical
distribution if its joint density function is given by

F®)=ClVI g |x - " V'(x - )], 2.1)

where u € R? is the location vector, V is the positive definite scale matrix, g is a non-negative, real
valued function and satisfies fooo w"* g (w)dw < o0, C, is a normalized constant. In this case we shall
write X ~ EC,, (u,V, g). Here g is called the density generator.

If X ~ EC, (u,V, g), then the characteristic function of X has the form

¢ (t) = exp (it'p) y (' Vt), teR?,

where ¢ is a real valued function. The matrix V is proportional to the covariance matrix X of X, i.e.
YX=Cov(X)=-2¢'(0)V.

There are many ways to define the measure of kurtosis for multivariate distributions. The most
commonly used method is the measure introduced by Mardia [5] as follows:
2

Brp = E|[X-p 27 (X - p) (2.2)

Zografos [1] calculated Mardia’s kurtosis measure for multivariate elliptical distributions. Taking
multivariate 7, multivariate Pearson type VII, multivariate Pearson type II and symmetric Kotz type
distributions as examples, the corresponding specific results were calculated as follows:

(1) Multivariate ¢-distribution:
The joint density function is given by

-(v+p)/2

| 1
Jx) =CplV[2 |1 + ;(X -V (x-p) ,

where C, = (ﬂv)‘gf[(v + p)/21/T(v/2), =2¢/'(0) = X,v > 2. The density generator is given by

v=2’
—(v 2
g(w) = (1 + %) ol . The Mardia’s kurtosis measure of the multivariate 7-distribution is given by
+2)(v-2
Bop = 2p )iv ), v >4 (2.3)
V —_—

(2) Multivariate Pearson type VII distribution:
The joint density function is given by

FOO=CIVIE [1+x -V x -] ",
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where m > 5, C, = 7~ 3T(m)/T (m - ’—27), =2¢/(0) = ﬁ. The density generator is given by g(w) =
(1 + w)™. The Mardia’s kurtosis measure of the multivariate Pearson type VII distribution is given by

_ppr2@m-p-2) P, (2.4)
2m—-p -4 2

(3) Multivariate Pearson type II distribution:
The joint density function is given by

F0 = CoIVI2 [1 = (x = )" V' (x = )

where x € § = {XERP c(x—-)TVIix—-p) < 1}, m>-1,C, = 73 I'i(p/2) + m+ 1]/T'(m + 1),

ﬁZ,p

m
2

=2¥'(0) = M:W and g(w) = (1 — w)",0 < w < 1. The Mardia’s kurtosis measure of the multivariate
Pearson type II distribution is given by
p(p+2)Cm+p+2)
P 2m+p+4 m>= 25

(4) Symmetric Kotz type distribution:
The joint density function is given by

_1 Txr—1 m—1
fO) =CyIVI 2|2 = ) V' (x = )]
xexp {~r[ (e = Ve = ]},
where r >0, s >0, 2m+ p > 2,
C[@2m+ p)/2s]r Vs
pL[2m+ p—2)/2s]
B Sr (p/z) r(2m+p—2)/25
P a2 [2m+ p—2) /2s]

The density generator is given by g(w) = w™ 'exp(-rw®). The Mardia’s kurtosis measure of
symmetric Kotz type multivariate distribution is given by

_pT[@m+p+2)/2s]T[2m + p —2) /2]
Pop = T2[2m + p) /29

Inspired by Mardia and Zografos’ work, we consider the following moments

~20/(0) =

, 2m+p > 2. (2.6)

Bip = E[(X =" 27 X -] , ke’ @.7)
for the family of elliptical distributions and take above four distributions as examples.
Theorem 2.1. If X ~ EC, (u,V, g), then
n:C »

_ T ket dw: 28
Plr r(p/2>[—2¢'<0>]kfo wrT s 29

If, in addition, the density generator g does not depend on the dimension p, then
C,I (% +k)
(=20 O #CpoaiT (p/2)

Brp = (2.9)
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Proof. The proofs of results (2.8) and (2.9) are similar to that of Zografos [1]. |
Remark 1. In particular, when k = 2, we get the result in Zografos [1].

Using the above results, we can obtain the expressions of higher-order moments for specific
members of the elliptical family. Next, we take multivariate ¢, multivariate Pearson type 1I and
multivariate symmetric Kotz type distributions as examples.

Example 2.1 (Student-7 distribution)

e v-2T(5+Kk)T(5-k)
rEre)

In particular, in the case of k = 2, 5 , reduces to (2.3).
Example 2.2 (Pearson type II distribution)

, v> 2k

(2m+p+2)"1“(§+m+ 1)F(§+k)

By = ,m>—1.
g F(§+m+k+l)1"(§)
In particular, in the case of k = 2, 5 , reduces to (2.5).
Example 2.3 (Symmetric Kotz type distribution)
k1k—1 ( 2m+p=2 2m+p+2k=2
p'r AL ST
Brp = ( 2 ) ( 2 ) 2m+ p > 2.

r(5)

In particular, in the case of k = 2, 5, , reduces to (2.6).
Next, letting u = (0,0)” and
1 0.6
x= ( 06 1 )’

we calculated the values of 5 , at p=2 and k=2,3,4, for the above three examples. We also plotted the
corresponding density function plots and density contour plots in Figures 1, 2, 3, and 4.

-2 -18  -16 -14 12 -1 08 -06 -04

Figure 1. Student-¢ distribution with v = 9.

AIMS Mathematics Volume 8, Issue 3, 7346-7376.



7351

Probability Density

Figure 2. Student-¢ distribution with v = 19.
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Figure 3. Pearson Type II distribution with m = 1.
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Figure 4. Symmetric Kotz type distribution withm =2, s =1, r = 1/2.
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Table 1. Comparison of g , values of Student-z distribution with different degrees of freedom
and comparison of Sy , values of different distributions.

Distribution k Parameter Sy,
Student-7 k=2 v=9 11.2
k=3 v=9 156.8
k=4 v=9 8780.8
k=2 v=19 9.07
k=3 v=19 71.14
k=4 v=19 879.53
Pearson type 11 k=2 m=1 6
k=3 m=1 21.6
Symmetric Kotz type k=2 m=2, s=1 6
k=3 m=2, s=1 24
k=4 m=2, s=1 120

From Table 1, it can be seen that the values of 5 , all become larger as k increases, with the value
of B, for the student-7 distribution increasing steeply as k increases.

Figures 1 and 2 plot the density function plots and contour plots of the student- distribution at the
same mean vector and covariance matrices, with different degrees of freedom, and the corresponding
values of S , are calculated in Table 1. It is very obvious from Table 1 that the value of 5, , decreases
as v increases, and the decrease is greater when k is larger, which is consistent with the properties of the
student #-distribution. However, in the figures, we can see that the changes in the graphs and contours
are not particularly pronounced, and the difference can be seen in the density contours between -1.2 and
-1.4. Figures 3 and 4 plot the density function plots and contour plots for Pearson type Il and symmetric
Kotz type distributions for the same location, scale, skewness and kurtosis (Mardia indices), with the
tail of symmetric Kotz type being relatively thicker. From the calculation results in Table 1, it can be
seen that the difference of their gy , values is larger as k increases.

Thus, it can be seen that the purpose of higher-order moments is to measure the degree of heavy
tailing of a distribution and it applies to risk analysis. When the tails of a distribution are thicker, there
is also a higher probability of events occurring for events that are further from the mean, and extreme
events away from the centre of the distribution play a very important role. For example, a bankruptcy
is more likely to come from a single extreme event. Therefore, the study of higher order moments is
important.

3. Skew-elliptical distributions and their moments

Azzalini [24] introduced and studied the properties of unitary skew-normal distribution and its
density function. Azzalini and Dalla Valle [10] put forward a general theory and probability
properties of multivariate skew-normal distributions. Branco and Dey [25] generalized their results to
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multivariate skew-elliptical distributions. Some work moving in this direction can be found in recent
review papers Azzalini [26] and Lee and McLachlan [27]. Azzalini and Capitanio [28] provided the
main concepts and results of the skew-normal and related families, covering both the probability and
the statistics sides of the subject in the univariate and multivariate settings. In the following, we adopt
the notations in Branco and Dey [25].

* T r * (p+1) T, . .
Let X* = (XO,X ) ~ EC,y (p , X, 8 ), where X = (Xl,Xz, ...,Xp) is a p-dimensional random

T
vector, u* = (O,uT) = (s oy s )T, gD = Chig(usp + 1), gus p + 1) and Cpyy are the
generator function and the normalizing constant of the p + 1 dimensional elliptic model, and the scale
parameter matrix X has the following form

1 67
=5 a)

with 6 = (61, 025 e 6P)T and Q is the scale matrix of X.

It is said that the random vector Y = {X]|X, > 0} has the skew-elliptical distribution and is denoted
asY ~SE, (u, Q. 6, g(P“)), if the density of random vector X* exists and P(X* = 0) = 0, the density
function of Y is as follows:

AW = 2f0(NFe, (@' (v - ), (3.1)
where f;i(-) is the density function of EC (;1, , 8P ) 8P is the marginal generator function, and
F,) 1s the cumulative distribution function of EC; (O I, q(y)) Here,

Q!
o = = (3.2)
(1-6"Q6)
2V (u) = f 2 gV (r + uydr, (3.3)
0
Zao () = 77V [+ q(y)] /187 [q(¥)]. (3.4)
qy) =y -y - p). (3.5)

Family of skew-elliptical distributions includes many useful distributions, for examples, the
multivariate skew-z, multivariate skew-Pearson type VII and multivariate skew-Pearson type II
distributions.

Because it is complicated to directly find the moment generating function of skew-elliptical
distribution, we will use the first four moments of skew-normal distribution obtained by Genton et
al. [12] to get the first four moments of it through transformation and take multivariate skew-t,
multivariate skew-Pearson type VII and multivariate skew-Pearson type II distributions as examples.

The following result is well known.

Lemma 3.1. (Fang and Zhang [23]) Let X ~ EC),, (;1, X g(l’)) and By, is an invertible matrix, then

BX ~ EC, (Bu, BZB": g").

AIMS Mathematics Volume 8, Issue 3, 7346-7376.
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Lemma 3.2. (Gomez et al. [29]) p-dimensional random vector
X ~ EC, (u,X; ) if and only if

X £+ ATRUY,

where A is a square matrix and ATA = X, U is a random vector with uniform distribution on the

unit sphere in R”, R is an absolutely continuous non-negative random variable, and R is independent
of UP. The density function of R is

2
[ 15 g(dr

Inspired by Terdik [30] we get the following lemma.

h(r) = rp_lg(rz) , ¥ € (0, +00).

Lemma 33. Let U* = (U;, ) ~ ECpui (", X%, g7*"), where Uj = Uy, Uj = (Use-+ ,Upai)
T

o= (;ff, ,u;T)T and uy =0, y = (,Lt1,"‘ ,,Up) ,

. 1 0
== ( Opxl gl;*p )’
where Q" is a p-dimensional symmetric matrix. Let Z; = 6,;|U;| + (1 - 5?)% X (Uj - ,uj_l) +pjo; —1<
0;<1,j=2,3,--,p+1,thenZ; = (Zz, .- -,Zp+1)T has a density function equivalent to (3.1).
Proof. Let U™ = (U1l Uz, -+, Uput) 2 (U, UST)', then
U™ ~ p;1|2*|—%g(p+1) [(u** _ﬂ*)T y -l U™ _”*)] ’

where p. = P(U;* > 0) =4, g%V = Cpuigus p + 1).
T A T
LetZ' = (2.2, . Zp) =(2.257) . and

1 0 0
1
& (1-83) 0
o S
Spe1 O 0o - (1—55,“)%

where

1 1
A= diag{(l —55)2 ,(1 —5§+1)2},

then Z* = B (U™ — u*) + p*.

From Lemma 3.1, we can get

T
7" ~p;'[Z 2Bl gD [(z* ) (B7) =B (@ - /,t*)]
— _1 * * - * *
=p,'[x["2gP*D [(z —p)' 2@ - )],
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where

1 0 1 0 1 4
)y é BZ*BT — IXp)( lxp)( lXp)

(1 6
6 68" +AQA)
_1
Lett =X/, (z’{ — u’{_z), the marginal density of Z; is
A R I L (OSSO
7;>0
i o @) [ o Gl
ZT>0 2
% _1 % * - * * *
=2few (Zz)f . Z112l728 () [(Z1 - 1) 5L (5 _ﬂ1.2)] dz)
77>

=2fiw @) | Butas) () d

2 -1 * *
1<k, (Zz_/‘z)

=2fy0 () Fy, (. o @ - 1s)]

_1
where @’ = X 7, X,X7). This formula is equivalent to (3.1).
This completes the proof of Lemma 3.3. O

From Lemma 3.3, we can obtain a lemma as follows:
Lemma 34. IfY ~ SE, (1, Q,6,47*V), then

YZR (61UD]+ AATUP) + p,

T
where R is an absolutely continuous non-negative random variable, (U(l),U(P)T) has the uniform
distribution on the unit sphere in RPT' and independent of R, ATA* = Q,

1 1
A= diag{(l ~&) .1 _5§+1)2}.
Proof. By Lemma 3.2, we obtain

T 4 1 le )
U*’U*T £ = +R P U(p+1),
wrvr) Luerfy!

T . e e . .
where UP*D = (U M U(P)T) has the uniform distribution on the unit sphere in RP*!, y* = (O, ,uT),
A*TA* = Q and R is independent of U”*D. The density of R is

b

p+1

2n2

2,

2

hg(r) =

AIMS Mathematics Volume 8, Issue 3, 7346-7376.
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where gP+V (rz) = Cpy (rz; p+ 1). From Lemma 3.3, we have

d * *

Y S81U + A(US — p) +
ZOIRUD| + A (i + RATUY — ) + p (3.6)
=R (8|U"] + AATUP) + p.

Remark 2. If X ~ SN, (0, Q, §), we can obtain
X <R, (B1U] + AATUP), (3.7)

where Ry ~ x,+1. See, for example, Genton [31].

Lemma 3.5. (Genton et al. [12]) If Z ~ SN,(0,€2,6), then the first four moments of Z are

()M, = \/gé; (2) M = L

(3) M5 = \/g[m Q +vec(@)6” +(1,06)Q - (I,86)(6846")]:
@) My =|(L;z + U,,) Q @ Q + vec(Q) (vec())" |

Theorem 3.1. IfY ~ SE, (,u, Q, 4, g(””)), then the first four moments of Y are expressed as follows:

ER [2
E (R()) /s ’
ER) |2
E (R()) /s

(DM, =p+
E(R2)

(2) My = pu" + E(R)

(uéT + 6uT) + Q;

ER) |[2
BYM;=peu” ou+ ( )\/j[6®uT®u+y®6T®u
E(Ro) T

E (R2)
E(R})
ER® [2

* 5 Vi [6©Q +vec(@)s” + (I,86) Q- (I,6)(6®4")|;

+pueu’ ®68]+ [Qeu+peQ+vec@) ou|

ER) |2 E(RZ)G E(R®) |2

HMy=peu" opepu” + = =
DMy=pu Quepu ERy) V2! E(R(Q))z B ~Gs

E(RY

)

Gy,

AIMS Mathematics Volume 8, Issue 3, 7346-7376.
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where
Gi=6p eueu’ +ued oueou’ +uepu’ @5 u’
+ueu eued;
G, =Qouou’ +ueQeu’ +vec@opu' ou’ +u' Qe pu
+uu® (vec(Q) +ueu’ ®Q;
Gy =60Qau" +vec @ @8 op" +((I,86)Q)eu" + 5" e Qopu
+6® (vec(@) o +(Q(L, 06" ))eu+p" 0500
+1" ®(vec(@)8") +p" @ ((1,©6)Q) +u®6" @R+ @6 ® (vec(Q))"
+ue(Q(I,86")-608 @deu’ -6 0626 op
~ 'R ®6-ud ®604";
Gi=(1,+U,,) 28 Q +vec(Q) (vec(Q))" .
Proof. From Lemma 3.4 and Remark 2, we have known that
YLRM+p, X< RM, X ~SN,(0,Q,0),
where M = §|UD| + AA*TUP), then
E(Y) = EREM) + p; EX) = E(R)EM).

So we obtain

" E(Ry)’
E(Y)=p+ ;ﬁ))E(X).
In the same way, we have
T T
poin) = “0%), b e o) - EXEX ©%)
E(R7) E(R;)
E(X®XT®X®XT)
E(M®MT®M®MT): E(R“)
0

According to Lemma 3.5 and using above relationship, we obtain

P B =+ s,
E(RO) E(Ro) T
M, = E|(u + RM)(u + RM)' |

=F ([JﬂT +R°MM” + RuM” + RMuT)
E(R?)

E(r})

My =EY)=p+

_ . ER® [2
~H T ER) N

(y6T + dyT) + Q;
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M, = E|(u + RM)(u + RM)' |
= E([JﬂT +R°MM” + RuM” +RMyT)
E(R?)
E (k)
M;=E(Y®Y'®Y)=E|(u+RM)®(u+RM)’ & (u+RM)|

=Euou" ou+Ruopu” @M) +R* MM’ ® )
+RRMeM M)+ RueM’ @ u) + RZ(u@ M’ @ M)
+RMeu’ @)+ RMeu’ @ M)]
E(R)

_ 4 E®
~H T E®RY

( 67 + 6ﬂT) + Q;

_ T T
=uen eut pos [6®u ou+u®d ou+peu’ @)
E(R?) , ER *)\[
QeuU+u®Q+vec(Q)® 530
E(R%)[ M+ vec(L2) u E(R [

+vec(Q)6” + (I, 88)Q - (I,6) (508" )I;
M, = E[(;1+RM)®(/1+RM)T®(/1+RM)®(;1 +RM)T]

—pou opeu’ + = [[6@;1 euep’ +ueds’ eueu’
E(R?)
E(K})

+ueQeu’ +vec @ eu ou’ +u' Qe

E(R )

+uu' @6u’ +pu’ eue s+ Qeoueu’

ry oo EE) 2 :
+uu® (vec(Q)) +ueu ® Q1+ —-[0®Qou
E(R)) '

+vec @)@ op’ +(1,88) e’ +5 e Qepu

+0® (vec(Q) ou+ Q1,88 )Qu+u’ @60 Q

+ 1" @ (vec(@)6") + " © (1,8 0)Q) + u® s’ 2 Q

+pR6® (vecQ) + e (QI,868))-686 @seou”

— 'R0 u-u'®606" ®6-ue6" ®696"]
E(R*)

£ (R})

+ [z + U,,)Q® Q + vec(@)(vec()) |.
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Remark 3. If Rj ~ x>, and x>, is a central chi square distribution with p + 1 degrees of freedom,
then

E(R) = —————1 E(R})=p+1;

: E(R§)=(p+1(p+3).

Using above results, we give the first four moments of multivariate skew-t (St), multivariate skew-
Pearson type VII (SPVII) and multivariate skew-Pearson type II (SPII) distributions, respectively.
Example 3.1 If Y = {X|X, > 0} ~ S¢ (,u, Q,4, g(P“)) and its joint density function is given by

. () Y- Q&' y-p)
2|02 1 -5t
Fo ) =20 : ]

T6-w T+ p+ 1) /2][1 + CR 20 1042
X fﬂ - dr,

o T+ p) /201 + SO i

with

[(v+p+1)/2] u\~ 5
1 - s

I'(v/2) (ny)<P+1>/2( " )

14
then the first four moments of Y are expressed as follows:

(HOM, =u+ \/gl“r((vj))
")

2) My = pp" + \/gﬁ (16" + 6u") + vTvzg v 2

v=1
(3)M3:I~l®ﬂr®ﬂ+ \/ZF( 2 )
i)

T v T 4%
+ueu ®6]+V_—2[Q®u+u®9+vec(9)®u ]+(§)

vl _
X zu[6®ﬂ+vec(ﬂ)6T+(Ip®6)Q
™ @)
- (L, ®68)(6®6" )1, v>3;
(g

. ‘
G+ G2+(—
rg) v—2

g () =

o, v>1;

ou Qu+ueds opu

@My=pep" oueu’ + \/g

—

2 V2
z S — 4.
% \/;G3 * (v—2)(v—4)G4’ e
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Proof. See the Appendix. O
Example 3.2 If Y = {X|X, > 0} ~ SPVII (/J, Q,6, g(P”)) and its joint density function is given by

r(m-3) ]
F(m - pTH;mJ/z [1 " (y_”)TQ l(y_”)]

fafw—m rofiea-w et a-p]”
A7
= al(m= 1)1+ - (y— )+ 1

fr (y) =219/

with r(m) :
+
m (1+u)*’",m>p

P+D () =
grw r(m__g;)ﬂwﬁwz 27

then the first four moments of Y are expressed as follows:

r(m-1-2)
(1)M1:u+m6,m>§+l;
r(m-1-%) 1 p+3
(2)M2 :ﬂﬂT+WJ;)(ﬂ6T+6ﬂT)+mg,m> > 5
COMy=pueu’ ® +31T:l;élw® Tou+ueds ®
3THOML QU \/EF(m—pT“) H o+ H
+,u®uT®6]+;[Q®u+u®ﬂ+vec(ﬂ)®uq
2m—-p -3
F(m—Z—E) )
m\/;[6®9+V€C(Q)6T+(IP®6)Q
—@@@@@fﬂm>§+z
_1_2
M)M@zy@uT®u®uT+I%m 2)G ! G,

ITm—2—§)JE 1 p+5
+—— =G+ Gy, —_—.
(- Vr T em—p-nan-p-5 """ 2
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Example 3.3If Y = {X|X, > 0} ~ SPII (,u, Q,6, g(l’”)) and its joint density function is given by

Pl 1
Clne 15 )s"’”% [s-o-w o' y-w|"

1
Sy (y) =219
F(m + %)nl’/z

dr,

y faT(y—u) r (m + %) [s - —-(y-pw'Ql(y- ,u)]ml

VA m D[s-y-p' @ -]

with
F[m +1+ ”T“]
I'(m+ 1) 7p+b/2

then the first four moments of Y are expressed as follows:

C(m+1+22
<1>M1=u+\/§( 2)5;

(mr2t)

g () = s—uw)", 0<u<s, m>-l s>0,

F(m+2+§)
sl“(m+1+”7“) s _
)Mo= e+ \/;r(m+2+§) (18" + 0uT) 55

p+1
~ ; sF(m+1+—2) , ,

BMy=peou u+ |- U Qu+ud @u

”F(m+2+’2—’)

rueuedl ol

s %F(m+ 1 +"—;1
“(3)

2 F(m+3+§)
- (1,®6)(6®4")I;

Q®ﬂ+u®ﬂ+vec(ﬂ)®ﬂT]

)\/§[6®Q+vec(9)6T +(I,@6)Q
T

T(m+1+ 20 s

G+ —G
F(m+2+§) Y om4p+3

GDMy=popu ouou’ + \/g

3T (m+1+22 2 2
+(f)2 ( ) ~Gs + - G..
2 F(m+3+§) n Cm+p+3)2m+p+5)
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4. Song’s measure in the skew-elliptical distributions

Based on the A order entropy, Song [8] has defined a general measure of the distribution shape
known as Song’s measure:

d
S(f) = _zﬁJR(l) = Var[log(f(X))], 4.1)
where f denotes a univariate or multivariate density function, Jg(1) = ﬁ logG(1), 4 >0,and A # 1,

G() = [ fdx.

Zografos [1] calculated Song’s kurtosis measures of multivariate #, multivariate Pearson VII and
multivariate Pearson II distributions respectively, and the corresponding specific results are as follows:
(1) Multivariate ¢-distribution:

- )3

(2) Multivariate Pearson type VII distribution:
S(f) = mz{‘P’(m— B)—‘I”(m)}, m > B;
2 2
(3) Multivariate Pearson type II distribution:
S(f) = mz{‘{"(m+ 1)—\?'(% +m+ 1)} m>—1,

where W(z) = (d/dz) logI['(z), W'(z) = (d?/dz?) log I'(2).

Since finding the exact value of Song’s measure of skew-elliptical distribution is very complicated
and difficult to obtain, it is considered to approximate the variance of the random variable function by
using delta method and Taylor expansion (similar to that used in Balakrishnan and Scarpa [14]).

The Taylor expansion of A(x) at x = a is

hl/ (a)

h(x) = h(a) + h'(a)(x — a) + X

(x— a)2 +o0 [(x— a)z] ,

and the approximate formula is
h(x) =~ h(a) + W' (a)(x — a).

If E(X) = u, Var(X) = 0%, then
h(X) ~ h(u) + ' (X — ).

According to the property of the variance, we get
Var[h(X)] ~ Var [h(u) + ' (@)X - )] = [K @,
If X is a p-dimensional random vector, E(X) = u and Var(X) = X, then
Varlh(X)] ~ [ ()] (). (4.2)
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Proposition 4.1. If Y ~ SE, (/J, Q, 4, g(f’”)) and has the density function form of (3.1), then Song’s

kurtosis measure is

T
S {2ﬂ‘wY ~ 08 [ty — Ry = )] S [0 iy = 0] }

8P [(uy =" (py — ] Fuple (y - ﬂ)]a
2001 — )’ -7 ! _ - T _
Var(Y) (ﬂf 8 [(I;Y —1ﬂ) i ﬂ)] + Jaam [aT(ﬂY 'u)]a'
8P [(uy — " QN (uy — p)] Fp L@ (y — )]

where py 1s the mean vector of Y.

Proof. From (4.1) and (4.2), let H(y) = log f(y), we obtain
S(f) = Var[log f(Y)] = Var [H(Y)] ~ [H' (E(Y)]" Var(Y) [H' (E(Y))],

H(y) =1og (2fun(¥)Fg,, [ (v — w)])
=log2 +log|@*8" [(y - ) Q7 (y - )| + log Fy,,, [@” (y - )]

1 . _
=log2 - 7 log |0 +10g 27 |(y — )" @y = )| + log Fy,,, [ (v ~ ).

Because Fjg,, is the distribution function of EC; (0, 1, grq(y)),

Jran |6 = )| =8 |y — ) @@ (y - )|
V|- (e’ + Q7 (v - )
S Py -wey -]

From (4.5) and (4.6), we obtain

2076 -y |5 -G -] o [o" - p0)
gV [(y - (y - ] Fg [@"(y — p)]

207 (uy — WP |y — )" (uy — )]
8P [(uy — " (uy — )]
N fgq<y> [Q’T(HY - ,u)]
Fai [e" (uy — )]
Using H' (E(Y)) and (4.4), complete the proof of Proposition 4.1.

H'(y) =

a,

H'(E(Y)) =

Example 4.11If Y ~ St,(u, Q, 68, g"*"), then

T
P IR0 al R ) Gl Ll
T Gy T T

(V + p)Q_l(llY _ﬂ) i tgq(ﬂv) [a,T(IlY _IJ)] o
vy - )T Q (uy —p) T [T (uy -] |’

8qpy)

X Var(Y) {—

4.3)

4.4)

4.5)

(4.6)
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where
vI{(v-1)/2]
= [ A 1
Hy —H \/; roy vt
v vI[(v=1D/2] 5 or
Var(Y) = Q-[\[-—=—=—160", 2,
ar¥) =375 [\/; T2 00V
F(V+p+l)(1 N (l‘Y—ﬂ)Tg_l(lly—ﬂ))V;p
2 %
gq(ﬂY) [ (IJY IJ)] \/Er(w—p) (1 + (IIY—M)T(CWTﬂ‘Q’I)(ﬂY—Il))(V+p+l)/2 ’
2 1%
o (uy—p)
gq(ﬂY)[ (”Y ﬂ)] f gq(u )(I”)dl”
Proof. 1t is proved by using Example 3.1 and Proposition 4.1. m|

Example 42 If Y ~ S PVII, (11, 2,6, D), then

T
s o]_Cmovetay PV, [ ]
| Ty - Ry — ) PVIE e (py — )]

@m =10y =) PV | Gy =)
X Var(Y) {—1 T (iy — T iy — ) + PVH;thww [@” (uy _IJ)]‘Y ,
where
o [[(m—1) - p/2] P
R e T2

Var(Y) =

1 [ Tm-D-p2] Py p+3

2m—p—3 |:\/%l"(m_(p+l)/2)] 66,m> 5 ,
rom) |1+ Gay — 2 ay — ]

“ DR+ (uy — ) (@a” + @Dy — )]

r o (uy—p)
PVIL, o (uy - )| = f pVIL,, (1.

—00

pVIL, o (uy - u)]

Example 431If Y ~ SPII, (,u, Q. 6, g(f’”)), then

T
s lo_@mevetey —p P g [ by =]
s -y - PIL Ty =]

s—(uy — " Q uy — ) PIL [a" (py — p)]

8quy)

Sy I T
XVW(Y){_ @+ DO My =g P [ 005 = ]}’
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where

sTm+1+(p+1)/2]
=S 5, m>—1, 50,
Hr—H \/; Tm+2+p2) M7 70°%7

2
s _\/Er[m+l+(p+l)/2] 56T m> —1. 550,
2m+p+3 n T'(m+2+p/2)

F(m+3)[s = @Gy = " @a” + Q7 uy = )]
C(m+ D) VA [s = Gy = )" (uy = )]

o’ (py—p)

PIr; o' (uy — )| = f pIL;,, (r)dr.

8q(uy)
-3

Var(Y) =

P @ (ay = )] =

5. Mardia’s measure of kurtosis in skew-elliptical distributions

In Section 2, we have considered Marida’s kurtosis measure:

2
Prp=E[X-p'27 X - p)
and the result for elliptical distribution has been given by Zografos [1]. Next, we consider how to

calculate Mardia’s kurtosis measure for skew-elliptical distributions.

Lemma 5.1 IfY ~ SE, (11, Q,6,g7*"), then

~ _1 ~ o~
Y =E7(Y - py) ~ SE, (1.2.8,g7),
where py is the mean vector of Y, Xy is the covariance matrix of Y,
1 ~ 1 T _1
A=Y -my), @=50(5)  F-x

Lemma 5.1 is a special case of Branco and Dey [25] for C = Z;l/ 2and b = E;l/ 2,uy. From the
Lemma 5.1, it can be known that the Mardia’s kurtosis measure of skew-elliptical distribution

Bop = E|(Y =) Iy (¥ = )| = E(YV'Y)

turns out to be the expectation of the square of a quadratic form of a skew-elliptical distribution, that

is,
o w2
_ T
Bop=E(Y'LY)",
where I, is the p-dimensional unit matrix.

Lemma 5.2. (Schott [32]) Let A, B, C, D be matrices of sizes m X n, p X q, n X p, g Xxm, Uy, be
the n* X n* commutation matrix, U, be the pm X pm commutation matrix, U, = U! , x be an m x 1
vector, y be a p X 1 vector. Then

tr(A ® B) = tr(A)tr(B);
tr(A®B)U,,) = tr(AB), if p=nand g = m;
U,n(A®y)=y®A; U, (y®A)=AQYy;

Upn(x®y) =y®x; 1r(ACBD) = (vec(A”))' (D" ® C) vec(B).
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Proposition 5.1. If Y ~ SE, (,u, Q, 4, g(””)) and A,B are the p X p dimensional symmetric matrix,

then

(7 AY) (7 BY) = 4 (7 Bi) + 2R 2 4745 (B

E(R)
E (k)

+2u"AQBy + 21" BQAp + (1" Ap) tr (BQ)]

+2(u" Ap) (u" AS)] +

[(1" Bu)tr (AQ)

\F E(R) ,
+4/= [4u” AQBS + 44" BQAS
TE(R))

+ 24" Botr (AQ) + 2" Adtr (BQ) - 2 (67 AS)
E(R*)
E(R})

x (4" B&) - 2 (u" A8) (6" BS)] + [ir (AQ)

X tr (BQ) + 2tr (AQBQ)].

Proof. From E (Y'AY)(Y'BY) = t[(A®B) M,] (See Genton et al. [12]) and Theorem 3.1 and
Lemma 5.2, the following results can be obtained

tr|(AeB) (uou" ouepu")| =r(App” © Bup") = (u" Ap) (1" Bu):
tr[(A®B)G] =2(u"A6) (" Bu) + 2 (1" Ap) (" AS):
tr[[A®B)G;] = (uTB/,t) tr(AQ) + 2u” AQBu + 2u" BQAu

+ (4" Ap) tr (BQ):
1tr[(A @ B)G3] = 4u” AQB6S + 4u” BQAGS + 2u" Bétr (AQ)

+2u" Astr (BQ) — 2 (6" AS) (1" B6) - 2 (u" A8) (6" BS):
tr[(A ® B) G4] = tr (AQ) tr (BQ) + 2tr (AQBQ) ;
E(Y'AY)(Y'BY) = tr{A®B) My =1r[(A®B) (uopu" opau’)|

2 E(R) E(R’)
+ \/;E(Ro)l [(A®B)G] + e Rz)tr [(A®B)G;]
)
)

(
3
+\/§iR) tr[(A ® B) G3] + E(R
n E(R4

E(R}) ;

——tr[(A ® B) G4].
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Corollary 1. IfY ~ SE, (ﬂ, Q. 6, g(P”)), then

where fi, Q. & is consistent with the form in Lemma 5.1.

Proof. By Proposition 5.1, let A = B = I, the conclusion can be proved.

O

From this, we can get Mardia’s kurtosis measures of skew-elliptical distributions. Next, we apply
Corollary 1 and Proposition 5.1 to give three examples:

Example 5.1IfY ~ S1, (y, Q. 0, g(”“)), then Mardia’s kurtosis measure of Y is

(=t
=)+ 470

+ =20 =4 [(tr (Q))z + 2tr (QZ)] , v>4,

where
o e ]
- o [0 ]
[ (Ve
b= [ [ b )
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Example 52If Y ~ SPVII, (,u, Q, 8, g(”“)), then Mardia’s kurtosis measure of Y is

o = (i) + e (78) (87 ) + 57— (") o (€2) + 227
; 2(m-2-4) 2" 5 + " 5t () — (578) (75
o2 ()~ (5'3)(5"3)

f—

- - 5
+(Zm_p_S)(zm_p_s)[(W(g))%zﬂ(m)],m>p; :

where

F(m— — %)
)

2

Cc1 =

1
1 —2
fi=— Q- ci66"
o c[ 3 c1§6] o,

1

Q= ! Q 266T_2!2 ! Q zﬁaT_éT
2m-p-3 ‘1 2m—-p -3 ‘1 ’

1
-5
= s!— .
6 [ C166 :| 6

Example 5.31f Y ~ S PII, (u, Q. 6, g(”“)), then Mardia’s kurtosis measure of Y is

Bop = (") +4c, (5"8) ("R + 2 |(&" ) 1 () + 20" Q|

2520 (m+ 1+ 24

T (m+3+ g)) (25705 + i br (@) - (576) (" 3)

82

~ \2 ~ 5
+(2m+p+3)(2m+p+5) [(tr(g)) + 21r(L )], m>—1, s>0,

where

SF(m+l+"T“)
Cy = —

n F(m+2+’—2’) ’

~ S 2 T_%
fi=-c Q — 360 0,

2m+p+3
_1 _1qT
n=|l— 5 a-2657| @ S o8|
|2m+p+3 2 2m+p+3 2 ’
5 * o 266T_%6
=[—Q —-¢ )
2m+p+3 2
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6. Numerical analysis

Next, we consider the comparison of Mardia’s and Song’s measures of above distributions at
different parameters values. First we have known that 3, , and Song’s measure do not always exist.
For example, when v < 4, B, , of skew-t distribution does not exist. Therefore, we let the parameters
of skew-t distribution: v=10, 20, 30, 50, 100, the parameters of skew-Pearson type VII distribution:
m=10, 20, 30, 50 and the parameters of skew-Pearson type II distribution: s=3, m=2, 4, 6, 12. We
choose p=3, 6, 12, and the results are given in Table 2 and Table 3.

Table 2. Comparison of kurtosis measures at different dimensions and v-values of skew-¢

distribution.
ST

P v S(f) Bop

p=3 v=10 0.0357 20.1682
y=20 0.0100 16.9255
v=30 0.0055 16.1882
y=50 0.0031 15.6782
y=100 0.0018 15.3343

p=6 y=10 0.1804 64.4543
y=20 0.0501 54.1396
y=30 0.0278 51.7881
y=50 0.0154 50.1601
y=100 0.0088 49.0618

p=12 v=10 0.9520 225.1901
y=20 0.2651 189.3568
v=30 0.1441 181.1648
y=50 0.0773 175.4872
v=100 0.0423 171.6536

From Table 2, we can observe that Song’s measures and 3, , of skew-z distribution decrease as the
degrees of v increase. This phenomenon is justified because the tails become lighter as the degree
of freedom v increases. Moreover, taking into account that tails become lighter and Song’s measure
tends to zero when v increases, we may infer that Song’s measure is mainly concerned to the tails of a
distribution.

Table 3 shows values of B8, , and Song’s measures for some values of the parameter m and the
dimensions p of skew-Pearson type VII and skew-Pearson type Il distributions. By observing Tables 1
and 2, we can find that 8, , and Song’s measures increase when the dimension p increases.

All the above phenomena suggest that Song’s measure is more sensitive to the tails of a distribution
while 3, , is more sensitive in the centre, which is consistent with that of Zografos [1] described. Both
kurtosis measures provide useful information about the kurtosis of skew-elliptical distributions.
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Table 3. Values of §,, and Song’s measures for skew-Pearson type VII and skew-Pearson

type II distributions.

SPVII
N S(f) Bap

p=3 m=10 0.0145 17.5683
m=20 0.0044 15.9679
m=30 0.0028 15.6019
m=50 0.0018 15.3481

p=6 m=10 0.1065 58.9302
m=20 0.0246 51.4002
m=30 0.0145 50.0308
m=50 0.0092 49.1411

p=12 m=10 2.0827 2833144
m=20 0.1672 182.8716
m=30 0.0827 176.0014
m=50 0.0468 172.2055

SPII

p=3 m=2 0.0083 12.9026
m=4 0.0034 14.9109
m=6 0.0016 16.6496
m=12 0.0002 21.2602

p=6 m=2 0.0163 40.52733
m=4 0.0079 44.1548
m=6 0.0038 47.2754
m=12 0.0003 55.3368

p=12 m=2 0.0275 145.2465
m=4 0.0161 151.2772
m=6 0.0088 156.5489
m=12 0.0008 170.0363

Similar to Balakishnan and Scarpa [14], we consider the sample version for each of the measures
considered as test statistics for the hypothesis of normal against the skew-normal distribution (SN). By
proceeding via simulation, a sensitivity index (p-value) for these kurtosis measures can be provided
by enumerating the number of samples from multivariate normal distribution having each index of
kurtosis not exceeding the theoretical value obtained for the SN. For Song’s measure, sensitivity is
obtained by considering the reverse rejection regions. By Proposition 4.1 and Corollary 1, Song’s and

AIMS Mathematics

Volume 8, Issue 3, 7346-7376.



7371

Mardia’s measures of kurtosis in skew-normal distribution are as follows.
If Y ~ SN, (1. Q,6,87*), then

2 TTORE
~ ) _ = -1
S(f)~{ \/;Q 6+®(QT6)0/}
2. _\ﬁ Lo ¢(d9)
Q ”66” S0 s

X

where
5= Qu
(1 +a"Qa)'?
oy = (W77) + ] 8) (a77) + 21(57) () + 24"
b 2108 + B () — (378) (3 8)1 + (1r (@) + 20r (),
where
_1
f=- %{9-%5&} 5

For sensitivity analysis, we simulated 1000 samples of size 100 from the multivariate normal model
with parameter settings as listed in Table 4. For each sample, we computed every empirical index
of kurtosis and counted the proportion of samples for which the kurtosis index fell in the rejection
region. From Table 4, we can find that the measures of kurtosis of Mardia performs very well in most
of the cases considered in terms of indication of kurtosis as well as in terms of sensitivity, but the
Song’s measure performs relatively average. Therefore, Marida’s kurtosis measure is the one to be
recommended for practical use.
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Table 4. Kurtosis measures for test for some bivariate skew-normal distributions and p-
values for test for bivariate normality against skew-normal.

Parameters Bop S(f)
0.5 04 .
Q (0.4 0.5) kurtosis value: 13.527 0.0149
0.5
(0.5) p-value: 0.999 0.480
05 0 .
Q 0 o. 5) kurtosis value: 10.412 0.0093
0.5
a p-value: 0.992 0.457
0.5
Q 0.5 0 kurtosis value: 9.2497 0.0049
0 05
0
a (0.5) p-value: 0.950 0.032

7. Concluding remarks

In this paper, the Mardia’s and Song’s kurtosis measures of elliptical distributions obtained by
Zografos [1] have been further generalized. The kurtosis measures and first fourth-order moments of
skew-elliptical distributions with a concise structure were obtained in a more understandable way. By
comparing Mardia’s and Song measures for specific members of the skew-elliptical distribution family,
it was found that Song’s measure should be mainly used to describe the movement of the probability
mass from the shoulders into the tails and 3, , should be used mainly to describe the similar movement
from the shoulders into the centre of the distribution. We should consider both together when studying
the kurtosis of the distribution, which will better help us understand the shape of the distribution.

For Song’s kurtosis measure, we have used the delta method to give the approximate expression,
which is not an accurate expression. How to accurately calculate Song’s kurtosis measure of skew-
elliptical distribution as well as the generalized skew-elliptical distribution (see, for instance, Zuo and
Yin [33]) is the goal of further research, since at this moment we are not able to give a formal proof of
such a problem.
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Appendix

Proof of Example 3.1. From Lemma 3.2,

2n% (p+1) (,2) _ ZF(V+§+1) P2\
e )

lett = é, J = 3 /%, then we obtain

hg(r) =

VF(V+p+1) © g
r(!’Tl)zr(z)fo 1T (4077 de
VF(VH;H) p+1 v vip+1)
_F(%”)F(g)B( > +1§—1)— 5 2.
Similarly, the following analogy can be obtained:
E(R) = v%r+(1%) (3 ca vl 1) _ vir (5! :11 r(z +2)’ s
rE)r) 2o 2 r()r()

and

>4,

p+1 % _vz(p+3)(p+l)
' 2)‘ v-o-9
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and

4.

E(R) (V)%F(%—l) . E(F) v

r ) ER) 0-20-4"""
O
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