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Abstract: By employing the operator theory, the Lyapunov function on time scales and the famous
Gronwall’s inequality, this paper addresses some dynamic properties of almost periodic solutions for
a class of two species co-existence delayed model on time scales with almost periodic coefficients and
Ricker, as well as the Beverton-Holt type function. First, we establish the existence and uniqueness
of the almost periodic solution with a positive infimum by transforming the initial model into an
equivalent integral equation. Second, we investigate the global exponential stability and uniformly
asymptotic stability of the positive almost periodic solution. Finally, we give two examples to illustrate
the main presented results.
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1. Introduction

In the research on population dynamics in biological applications, a recruitment-delayed model

x′(t) = B(x(t − τ)) − D(x(t)) (1.1)

is persistently used, where x(t) is the population size of mature adults at time t, B is the birth function
involving maturation delay τ and D represents the death rate [1]. In particular, the birth function has two
common forms, where one is the Ricker-type function Pxe−αx for P ∈ R+, and the other is the Beverton-
Holt function px

q+xm for m ∈ Z+ and P
q ∈ R

+. In order to model a laboratory fly population, Nicholson
considered Eq (1.1) with B(x) = Pxe−bx and D(x) = δx, which is the well-known Nicholson’s blowflies
equation [2]; here, P is the per capita daily maximum egg production rate, 1

b is the size at which the
population reproduces at its maximum rate, τ is the time generated from birth to maturity and δ ∈ R+

is adult mortality rate per capita daily.
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In recent years, there have been many researchers who have taken great interest in the investigation
of dynamic behaviors based on Eq (1.1) and its analogous equations with Ricker’s type or Beverton-
Holt type functions, such as the existence and uniqueness of periodic solutions, oscillation, persistence,
stability, etc.; see [3–8] for details. However, as far as we know, few authors have considered the
problem on both Ricker’s and Beverton-Holt type differential equations, let alone its positive almost
periodic solutions and qualitative behavior.

In many ecological dynamical systems, on the one hand, the growth rate of a population for a
natural mature adult species in the real world would not react instantaneously to changes in its own
total amount or that of an interacting species, but it certainly does after a time lag. In addition, the
different delays and variable coefficients in differential equations are much more suitable and realistic
to depict the variations in a natural environment [9,10]. On the other hand, the frequent almost periodic
varying environment has been the target of extensive analysis on evolutionary theory because of the
superiority and actuality as compared with a periodic environment; see [11–14] for details. Therefore,
investigating the dynamical behavior in delayed models with an almost periodic term is an interesting
and worthy topic.

In spite of the fact that both continuous and discrete systems have a huge amount of research
achievements, as a link between continuity and dispersion, the theory of time scales has occupied an
irreplaceable position in fields such as the application of population models, quantum physics, etc. In
recent years, there have been incremental investigations into a huge number of mathematical modelings
with time scales, such as the permanence, existence and stability of periodic and almost periodic
solutions; see [15–17] for details; this trend has become inevitable in the research on dynamical
systems. Therefore, it is valuable in the exploration of dynamic equations on time scales.

Inspired by the above discussions, in this paper, we consider the two species co-existence delayed
model with the almost periodic coefficients and Ricker- and Beverton-Holt-type functions on time
scales, as follows: 

x∆(t) = − α1(t)x(t) +
β(t)x(t)
γ(t) + x(t)

+ p1(t)x(t)e−bx(t)

+ h1(t)
∫ 0

−∞

K1(t, s)y(t + s)e−by(t+s)∆s,

y∆(t) = − α2(t)y(t) + p2(t)y(t)e−by(t)

+ h2(t)
∫ 0

−∞

K2(t, s)x(t + s)e−bx(t+s)∆s,

(1.2)

where x(t) and y(t) are the population densities of two species coexisting at time t ∈ T, respectively,
for the almost periodic time scale T; x∆(t) and y∆(t) are the delta derivatives of the functions x(t) and
y(t) respectively; αi, β, γ, pi and hi are positive almost periodic functions for i = 1, 2; β(t)x(t)

γ(t)+x(t) is the
Beverton-Holt type birth function; p1(t)x(t)e−bx(t) and p2(t)y(t)e−by(t) represent the Ricker-type birth
function; Ki(t, s) represents the transmission delay kernels for i = 1, 2. Under the suitable assumptions,
by transforming the model (1.2) into an equivalent integral equation and using the fixed point theorem
in a normal and solid cone in Banach space, we establish some sufficient conditions for the existence
and uniqueness of the positive almost periodic solution; further, we investigate the global exponential
stability and uniformly asymptotic stability of this positive solution.

The remainder of this paper is organized as follows. In Section 2, we present some necessary
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preliminaries. In Section 3, we will give the main results on the existence, uniqueness and the stability
of its positive almost periodic solutions of (1.2). In Section 4, we present two examples to illustrate the
main results.

2. Preliminaries

Assume that C = C ((−∞, 0]T,R) and H∗ ∈ R+. Let CH∗ =

{
ϕ : ϕ ∈ C, ‖ϕ‖ = sup

ϑ∈(−∞,0]T
|ϕ(ϑ)| < H∗

}
and SH∗ = {x : x ∈ R, ‖x‖ < H∗}. For convenience, throughout this work, we denote the following
nonnegative values:

α+ = sup
t∈R

α(t), α− = inf
t∈R

α(t), β+ = sup
t∈R

β(t),

γ− = inf
t∈R

γ(t), p+ = sup
t∈R

p(t), p− = inf
t∈R

p(t), h+ = sup
t∈R

h(t).

In addition, for some definitions, lemmas and preliminary results on time scales and almost periodic
functions, one can see [4,11,14,17] for more details, which are valuable in proving the main results in
Section 3.

Let the symbol T be a time scale, which is a closed nonempty subset of R. In fact, R and
∪k∈Z[2k, 2k + 1] are some examples of T. Assume that the forward and backward jump operators
σ, ρ: T→ T and the graininess µ: T→ R+ are respectively defined by

σ(t) = sup{s ∈ T : s > t}, ρ(t) = inf{s ∈ T : s < t}, µ(t) = σ(t) − t.

A point t ∈ T is called left-dense if ρ(t) = t and t > inf T, right-dense if σ(t) = t and t < supT,
left-scattered if ρ(t) < t and right-scattered if σ(t) > t. In addition, if T has a left-scattered maximum
m, then define Tk = T − m; otherwise, let Tk = T; if T has a right-scattered minimum m, then define
Tk = T − m; otherwise, let Tk = T.

Definition 2.1. A function f : T→ R is right-dense/left-dense continuous provided that it is continuous
at right-dense/left-dense points in T and its left-dense/right-dense limits exist (finite) at left-dense/right-
dense points in T. If f is continuous at each right-dense point and each left-dense point, then f is said
to be a continuous function on T.

Definition 2.2. Let the function f : T → R, and define f ∆(t) to be the number (if it exists) with the
property that for any given ε > 0, there exists a neighborhood U of t such that, for all s ∈ U,

| f (σ(t)) − f (s) − f ∆(t)(σ(t) − s)| < ε|σ(t) − s|.

Definition 2.3. We call f ∆(t) the delta derivative of f at t. If F∆(t) = f (t), then the delta integral is
defined by ∫ t

r
f (s)∆s = F(t) − F(r) for r, t ∈ T.

Definition 2.4. A function p: T → R is called regressive provided that 1 + µ(t)p(t) , 0 for all t ∈ T.
The set of all such regressive and rd-continuous functions will be denoted by R = R(T,R). Let the set
R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, t ∈ T}.
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Definition 2.5. If p is a regressive function, then the generalized exponential function ep is given as
the unique solution of the initial value problem y∆ = p(t)y, y(s) = 1, where s ∈ T. An explicit formula
for ep(t, s) is defined as

ep(t, s) = exp
{∫ t

s
ξµ(τ)(p(τ))∆τ

}
for all s, t ∈ T

with

ξh(z) =

 log(1+hz)
h , for h , 0,

z, for h = 0.

Definition 2.6. Let Γ be a collection of sets which is constructed by subsets of R. A time scale T is
called an almost periodic time scale with respect to Γ if

Γ∗ = {±τ ∈ ∩Λ : Λ ∈ T, t ± τ ∈ T, for t ∈ T},

and Γ∗ is called the smallest almost periodic set of T.
Definition 2.7. Let T be an almost periodic time scale with respect to Γ. A function x : T → R is
called almost periodic if, for any ε > 0, the set E(ε, x) = {τ ∈ Γ∗ : |x(t + τ) − x(t)| < ε for t ∈ T} is
relatively dense in T.
E(ε, x) and τ are called the ε-translation set and ε-translation number of x, respectively. Denote the

space of all such almost periodic functions by AP(T,R).
Definition 2.8. Let T be an almost periodic time scale with respect to Γ. A function f : T × B→ R is
called almost periodic in t ∈ T uniformly for x ∈ S if the ε-translation set of f

E (ε, f ,S) = {τ ∈ Γ∗ : | f (t + τ, x) − f (t, x)| < ε for (t, x) ∈ (T × S)}

is relatively dense in T for all ε > 0 and for each compact subset S of B.
Definition 2.9. Let Q(t) be an n × n continuous matrix defined on T. The linear system

x∆(t) = Q(t)x(t), t ∈ T, (2.1)

is said to admit exponential dichotomy if there are positive constants k̄ and ᾱ, a projection P̄ and the
fundamental solution matrix X(t) of (2.1) satisfying

‖X(t)P̄X−1(σ(s))‖ ≤ k̄e	ᾱ(t, σ(s)) for all t ≥ σ(s), s, t ∈ T,

‖X(t)(1 − P̄)X−1(σ(s))‖ ≤ k̄e	ᾱ(σ(s), t) for all t ≤ σ(s), s, t ∈ T.

Lemma 2.1. If the linear system (2.1) admits an exponential dichotomy, then the almost periodic
system

x∆(t) = Q(t)x(t) + g(t)

has a unique almost periodic solution x(t) and

x(t) =

∫ t

−∞

X(t)P̄X−1(σ(s))g(s)4s −
∫ +∞

t
X(t)(1 − P̄)X−1(σ(s))g(s)4s.
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Lemma 2.2. Let c̄i(t) be an almost periodic function on T, where c̄i(t) > 0, −c̄i(t) ∈ R+ and
min
1≤i≤n
{inf

t∈T
c̄i(t)} > 0. Then, the linear system

x∆(t) = diag(−c̄1(t),−c̄2(t), · · ·,−c̄n(t))x(t)

admits an exponential dichotomy.
Lemma 2.3. Let −C = diag(−c̄1(t),−c̄2(t), · · ·,−c̄n(t)); then, X(t) = e−C(t, t0) is a fundamental solution
matrix of the linear system

x∆(t) = diag(−c̄1(t),−c̄2(t), · · ·,−c̄n(t))x(t).

Lemma 2.4. Assume that a > 0 and −a ∈ R+; it follows that
(i) if x∆(t) ≤ b − ax(t), then lim sup

t→+∞

x(t) ≤ b
a ;

(ii) if x∆(t) ≥ b − ax(t), then lim inf
t→+∞

x(t) ≥ b
a .

Definition 2.10. Let X be a Banach space and P be a closed nonempty subset of X; P is called a cone
if (i) x ∈ P, λ ≥ 0 implies λx ∈ P and (ii) x ∈ P, −x ∈ P implies x = θ.
Definition 2.11. A cone P of X is called a normal cone if there exists a positive constant ε such that
‖x + y‖ ≥ ε for any x, y ∈ P, ‖x‖ = ‖y‖ = 1.
Lemma 2.5. Let C be a normal and solid cone in a real Banach space X and Φ: C0 → C0 be a
nondecreasing operator, where C0 is the interior of C. Suppose further that there exists a function φ:
(0, 1) × C0 → (0,+∞) such that for each λ ∈ (0, 1) and x ∈ C0, φ(λ, x) > λ, φ(λ, ·) is nondecreasing in
C0 and

Φ(λx) ≥ φ(λ, x)Φ(x).

In addition, assume that there exists z ∈ C0 such that Φ(z) ≥ z. Then, Φ has a unique fixed point x∗ in
C0. Moreover, for any initial x0 ∈ C0, the iterative sequence

xn = Φ(xn−1), n ∈ N,

satisfies
‖xn − x∗‖ → 0 as n→ +∞.

Consider the system
x∆ = f (t, x), (2.2)

where f (t, φ) is continuous in (R,C), and almost periodic in t uniformly for φ ∈ CH∗ ⊆ C; for any
κ > 0, there exists L(κ) > 0 such that | f (t, φ)| ≤ L(κ). For the purpose of investigating the uniformly
asymptotic stability of the almost periodic solution of System (1.2), the next conclusion is needed.
Lemma 2.6. Assume that there exists a Lyapunov function V(t, x, y) defined on T+×SH∗×SH∗ satisfying
the following conditions:
(i) a1(|x − y|) ≤ V(t, x, y) ≤ a2(|x − y|), where ai: R+ → R+ are continuous and increasing and ai(0) = 0
for i = 1, 2;
(ii) |V(t, x1, y1) − V(t, x2, y2)| ≤ L(|x1 − x2| + |y1 − y2|), where L > 0 is a constant;
(iii) D+V∆(t, x, y) ≤ −cV(t, x, y), where c > 0 and −c ∈ R+.

Moreover, if there exists a solution x(t) ∈ S of System (2.2) for t ∈ T +, where S ⊂ SH∗ is a compact
set, then System (2.2) has a unique almost periodic solution in S, which is uniformly asymptotically
stable.

AIMS Mathematics Volume 8, Issue 3, 7292–7309.



7297

3. Existence, uniqueness and stability

Before establishing the main results, we list the following assumptions.
(H1) p−i > α

+
i and −α−i ∈ R

+ for i = 1, 2.
(H2) Ki(t, s) ≤ kie−mi(t−s) for ki, mi ∈ R

+.

(H3)
(
p+

1 +
h+

1 k1

m1

)
e

β+

γ−α−1
−1
< α−1 and

(
p+

2 +
h+

2 k2

m2

)
< eα−2 .

(H4) β+

γ−
+ e−2 p+

1 +
2e−2h+

1 k1

m1
< α−1 and e−2 p+

2 +
2e−2h+

2 k2

m2
< α−2 .

From Lemma 2.4, it is not difficult to deduce the next result.

Lemma 3.1. Assume that (H1) and (H2) hold. Then, System (1.2) is permanent, that is, there exist
constants x∗, y∗, x∗, y∗ ∈ R+ that are independent of the solutions of System (1.2), satisfying

x∗ ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ x∗ and y∗ ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ y∗

for any positive solution (x(t), y(t)) of (1.2).
In order to use the fixed-point theorem directly, we first transform System (1.2) into an equivalent

equation because of its not nondecreasing nonlinear term.

Lemma 3.2. Assume that (H2) and (H3) hold. Then, System (1.2) is equivalent to the following
integral equation in the sense of an almost periodic nonnegative solution:

x(t) =

∫ t

−∞

e−α1(t, σ(s))
[
f1(x(s)) + p1(s) f2(x(s))

+h1(s)
∫ 0

−∞

K1(s, u) f3(y(s + u))∆u
]
∆s,

y(t) =

∫ t

−∞

e−α2(t, σ(s))
[
p2(s)g1(y(s))

+h2(s)
∫ 0

−∞

K2(s, u)g2(x(s + u))∆u
]
∆s,

(3.1)

where

f1(x) =


β(t)x
γ(t) + x

, 0 ≤ x ≤
1
b
,

β(t)
bγ(t) + 1

, x >
1
b
,

f2(x) = g2(x) =


xe−bx, 0 ≤ x ≤

1
b
,

1
be
, x >

1
b
,

f3(y) = g1(y) =


ye−by, 0 ≤ y ≤

1
b
,

1
be
, y >

1
b
.

Proof. Let (ψ(t), η(t)) be a nonnegative almost periodic solution of (1.2); then, from the almost
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periodicity of α−i > 0 for i = 1, 2 and Lemmas 2.1 and 2.2, it is not difficult to obtain that

ψ(t) =

∫ t

−∞

e−α1(t, σ(s))
[
β(s)ψ(s)
γ(s) + ψ(s)

+ p1(s)ψ(s)e−bψ(s)

+h1(s)
∫ 0

−∞

K1(s, u)η(s + u)e−bη(s+u)∆u
]
∆s,

η(t) =

∫ t

−∞

e−α2(t, σ(s))
[
p2(s)η(s)e−bη(s)

+h2(s)
∫ 0

−∞

K2(s, u)ψ(s + u)e−bψ(s+u)∆u
]
∆s.

By using the fact that

sup
t∈R

f1(t) =
β(t)

bγ(t) + 1
, sup

t∈R
f2(t) = sup

t∈R
f3(t) = sup

t∈R
g1(t) = sup

t∈R
g2(t) =

1
be
,

it follows from (H2) that

ψ(t) ≤
∫ t

−∞

e−α−1 (t, σ(s))
[
β+ψ(s)
γ−

+
p+

1

be
+

h+
1

be

∫ 0

−∞

K1(s, u)∆u
]
∆s

≤

∫ t

−∞

e−α−1 (t, σ(s))
[
β+ψ(s)
γ−

+
p+

1

be
+

h+
1 k1

be

∫ 0

−∞

e−m1(s−u)∆u
]
∆s

≤
β+

γ−

∫ t

−∞

e−α−1 (t, σ(s))ψ(s)ds +
1

beα−1

(
p+

1 +
h+

1 k1

m1

)
.

Based on the well known Gronwall’s inequality and (H3), it follows that

ψ(t) ≤
1

bα−1

(
p+

1 +
h+

1 k1

m1

)
e

β+

γ−α−1
−1
<

1
b
.

Similarly, it deduces

η(t) ≤
∫ t

−∞

e−α−2 (t, σ(s))
[

p+
2

be
+

h+
2

be

∫ 0

−∞

K2(s, u)∆u
]
∆s

≤
1

beα−2

(
p+

2 +
h+

2 k2

m2

)
<

1
b
.

Therefore, we have

f1(ψ(s)) =
β(s)ψ(s)
γ(s) + ψ(s)

, f2(ψ(s)) = ψ(s)e−bψ(s), f3(η(s + u)) = η(s + u)e−bη(s+u),

g1(η(s)) = η(s)e−bη(s), g2(ψ(s + u)) = ψ(s + u)e−bψ(s+u) for t ∈ T.
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Further, it follows for t ∈ T that

ψ(t) =

∫ t

−∞

e−α1(t, σ(s))
[
f1(ψ(s)) + p1(s) f2(ψ(s))

+h1(s)
∫ 0

−∞

K1(s, u) f3(η(s + u))du
]
∆s,

η(t) =

∫ t

−∞

e−α2(t, σ(s))
[
p2(s)g1(η(s − τ(s)))

+h2(s)
∫ 0

−∞

K2(s, u)g2(ψ(s + u))∆u
]
∆s.

Therefore, it follows that (ψ, η) is an almost periodic solution of System (3.1). Analogously, for every
nonnegative almost periodic solution (ψ, η) of System (3.1), it yields that (ψ, η) is an almost periodic
solution of System (1.2).
Theorem 3.1. Assume that (H1)–(H3) hold. Then, System (1.2) exists as exactly one almost periodic
solution (x∗, y∗) with a positive infimum. Moreover, for any almost periodic initial (x0, y0) with a
positive infimum, the iterative sequence

xn(t) =

∫ t

−∞

e−α1(t, σ(s))
[
β(s)xn−1(s)
γ(s) + xn−1(s)

+ p1(s)xn−1(s)e−bxn−1(s)

+h1(s)
∫ 0

−∞

K1(s, u)yn−1(s + u)e−byn−1(s+u)∆u
]
∆s,

yn(t) =

∫ t

−∞

e−α2(t, σ(s))
[
p2(s)yn−1(s)e−byn−1(s)

+h2(s)
∫ 0

−∞

K2(s, u)xn−1(s + u)e−bxn−1(s+u)∆u
]
∆s, n = 1, 2, · · ·

satisfies ‖(xn, yn) − (x∗, y∗)‖ → 0 as n→ +∞.
Proof. Define

C = {(x, y) ∈ AP(T,R) : x(t) ≥ 0, y(t) ≥ 0,∀ t ∈ T},

C0 = {(x, y) ∈ AP(T,R) : ∃ ε > 0 such that x(t) > ε, y(t) > ε,∀ t ∈ T},

it is obvious that C is a normal and solid cone in Banach space AP(T,R), and that C0 is the interior of
C. From Lemma 3.2, define the operator (Ψ1,Ψ2) on C0 ×C0 as follows:

Ψ1(x, y)(t) =

∫ t

−∞

e−α1(t, σ(s))
[
f1(x(s)) + p1(s) f2(x(s))

+h1(s)
∫ 0

−∞

K1(s, u) f3(y(s + u))∆u
]
∆s,

Ψ2(x, y)(t) =

∫ t

−∞

e−α2(t, σ(s))
[
p2(s)g1(y(s))

+h2(s)
∫ 0

−∞

K2(s, u)g2(x(s + u))∆u
]
∆s.
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Next, we will complete the proof in three steps.
Step 1. Ψi: C0 ×C0 → C0 ×C0 is set as a nondecreasing operator.
Due to the fact that fi and g j are both nondecreasing on (0,+∞) for i = 1, 2, 3, j = 1, 2, it follows

that Ψi is also nondecreasing. In view of the bounded properties of fi and g j, it is not difficult to derive
that fi and g j satisfies the Lipschitz condition. Based on the composition theorem and the invariance of
convolution for the almost periodic functions, it is not difficult to deduce that Ψi is a self-map operator
on AP(T,R). Moreover, we have

Ψ1(x, y)(t) ≥ p−1

∫ t

−∞

e−α+
1
(t, σ(s)) min

s∈R
f2(x(s))∆s > 0,

Ψ2(x, y)(t) ≥ p−2

∫ t

−∞

e−α+
2
(t, σ(s)) min

s∈R
g1(y(s))∆s > 0,

which yields that there exists a suitable ε1 > 0 such that Ψi(x, y)(t) > ε1 for any t ∈ R and i = 1, 2.
Step 2. There exists a function ψi: (0, 1) × C0 × C0 → (0,+∞) such that for each λ ∈ (0, 1) and

x, y ∈ C0 ×C0, ψi(λ, x, y) > λ, ψi(λ, x, y) is nondecreasing in C0 ×C0 and

Ψi(λx, λy) ≥ ψi(λ, x, y)Ψi(x, y) where i = 1, 2.

Let

φ1(λ, x) =


λ, 0 ≤ x ≤

1
bλ
,

1, x >
1

bλ
,

φ2(λ, x) = ϕ2(λ, x) =



λeb(1−λ)x, 0 ≤ x ≤
1
b
,

bλxe1−bλx,
1
b
< x ≤

1
bλ
,

1, x >
1

bλ
,

φ3(λ, y) = ϕ1(λ, y) =



λeb(1−λ)y, 0 ≤ y ≤
1
b
,

bλye1−bλy,
1
b
< y ≤

1
bλ
,

1, y >
1

bλ
;

therefore, for each λ ∈ (0, 1) and (x, y) ∈ (C0 × C0), there exist functions φi, ϕ j: (0, 1) × C0 → (0,+∞)
for i = 1, 2, 3, j = 1, 2 such that

(1) φi(λ, ·) > λ and ϕ j(λ, ·) > λ.
(2) φi(λ, ·), ϕ j(λ, ·) is nondecreasing in C0.
(3) fi(λ, ·) ≥ φi(λ, ·) fi(·) and g j(λ, ·) ≥ ϕi(λ, ·)g j(·).
Let

ψ1(λ, x, y) = min{φ1(λ, x), φ2(λ, x), φ3(λ, y)}

and
ψ2(λ, x, y) = min{ϕ1(λ, y), ϕ2(λ, x)};
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then, it follows that ψi(λ, x, y) > λ and nondecreasing in C0 ×C0 for i = 1, 2. Moreover, it follows that

Ψ1(λx, λy)(t) =

∫ t

−∞

e−α1(t, σ(s))
[
f1(λx(s)) + p1(s) f2(λx(s))

+h1(s)
∫ 0

−τ

K1(s, u) f3(λy(s + u))∆u
]
∆s

≥

∫ t

−∞

e−α1(t, σ(s))
[
φ1(λ, x) f1(x(s)) + p1(s)φ2(λ, x) f2(x(s))

+h1(s)
∫ 0

−τ

K1(s, u)φ3(λ, y) f3(y(s + u))∆u
]
∆s

≥ψ1(λ, x, y)Ψ1(x, y)(t).

Similarly, one obtains that Ψ2(λx, λy)(t) ≥ ψ2(λ, x, y)Ψ2(x, y)(t).
Step 3. There exists (z, z) ∈ C0 ×C0 such that (Ψ1(z, z),Ψ2(z, z)) ≥ (z, z).
Choose an appropriate ε ∈

(
0, 1

b

)
; from (H1), it deduces that

Ψ1(ε, ε)(t) ≥ p−1

∫ t

−∞

e−α+
1
(t, σ(s)) f2(ε(s))∆s ≥

p−1εe−bε

α+
1
≥ ε,

Ψ2(ε, ε)(t) ≥ p−2

∫ t

−∞

e−α+
2
(t, σ(s))g1(ε(s))∆s ≥

p−2εe−bε

α+
2
≥ ε.

Based on the above discussion and Lemma 2.5, it follows that (Ψ1,Ψ2) has a unique fixed point
(x∗, y∗) ∈ C0 ×C0. Moreover, for any initial (x0, y0) ∈ C0 ×C0, the iterative sequence

(xn, yn) =
(
Ψ1(xn−1, yn−1),Ψ2(xn−1, yn−1)

)
, n ∈ N,

satisfies ‖(xn, yn) − (x∗, y∗)‖ → 0 as n→ +∞.
Remark 3.1. Based on the conditions (H1)–(H3), Theorem 3.1 implies the existence and uniqueness
of the positive almost periodic solution (x∗, y∗) of System (1.2). If we attach another condition (H4), is
the unique solution (x∗, y∗) globally stable? Even more generally, is it uniformly asymptotically stable?
The next conclusions will give the answer.
Theorem 3.2. Assume that (H1)–(H4) hold. Then the solution (x(t; t0, ξ1), y(t; t0, ξ2)) of System (1.2)
converges exponentially to the positive almost periodic solution (x∗, y∗) as t → +∞.
Proof. Let x(t) = x(t; t0, ξ1), y(t) = y(t; t0, ξ2) and z1(t) = x(t) − x∗(t), z2(t) = y(t) − y∗(t); then, one has

z∆
1 (t) =β(t)

[
x(t)

γ(t) + x(t)
−

x∗(t)
γ(t) + x∗(t)

]
+ p1(t)

[
x(t)e−bx(t) − x∗(t)e−bx∗(t)

]
+ h1(t)

∫ 0

−∞

K1(t, s)
[
y(t + s)e−by(t+s) − y∗(t + s)e−by∗(t+s)

]
∆s

− α1(t)z1(t),

z∆
2 (t) =h2(t)

∫ 0

−∞

K2(t, s)
[
y(t + s)e−by(t+s) − y∗(t + s)e−by∗(t+s)

]
∆s

− α2(t)z2(t) + p2(t)
[
x(t)e−bx(t) − x∗(t)e−bx∗(t)

]
.
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Let ζi ∈ [0, 1] for i = 1, 2 and

Φ1(ζ1) = − α−1 + ζ1(1 + µ+α+
1 ) +

β+

γ−
(1 + ζ1µ

+) + (1 + ζ1µ
+)e−2 p+

1

+
2(1 + ζ1µ

+)eζ1−2h+
1 k1

m1
,

Φ2(ζ2) = − α−2 + ζ2(1 + µ+α+
2 ) + (1 + ζ2µ

+)e−2 p+
2 +

2(1 + ζ2µ
+)eζ2−2h+

2 k2

m2
;

in view of (H4), one obtains
Φ1(0) = − α−1 +

β+

γ−
+ e−2 p+

1 +
2e−2h+

1 k1

m1
< 0,

Φ2(0) = − α−2 + e−2 p+
2 +

2e−2h+
2 k2

m2
< 0,

which yields that there exist constants λi ∈ (0, 1], i = 1, 2, satisfying

Φi(λi) < 0. (3.2)

Choose the appropriate Lyapunov functional

V(t, z1(t), z2(t)) = |z1(t)(t)|eλ1t + |z2(t)(t)|eλ2t, where λ1, λ2 ∈ (0, 1], (3.3)

and calculate its upper right derivative D+V∆ along the solution of Eq (3.3); it follows for t > t0 that

D+V∆(t, z1(t), z2(t))
≤sgn(z1(t))z∆

1 (t)eλ1t + λ1|z1(t)|eλ1t + sgn(z2(t))z∆
2 (t)eλ2t + λ2|z2(t)|eλ2t

≤

7∑
i=1

Vi(t, z1(t), z2(t)), (3.4)

where

V1 =eλ1t[−α−1 + λ1(1 + µ+α+
1 )]|z1(t)|,

V2 =eλ2t[−α−2 + λ2(1 + µ+α+
2 )]|z2(t)|,

V3 =eλ1t(1 + λ1µ
+)β(t)

∣∣∣∣∣ x(t)
γ(t) + x(t)

−
x∗(t)

γ(t) + x∗(t)

∣∣∣∣∣ ,
V4 =eλ1t(1 + λ1µ

+)p1(t)
∣∣∣x(t)e−bx(t) − x∗(t)e−bx∗(t)

∣∣∣ ,
V5 =eλ1t(1 + λ1µ

+)h1(t)
∫ 0

−∞

K1(t, s)
∣∣∣y(t + s)e−by(t+s) − y∗(t + s)e−by∗(t+s)

∣∣∣ ∆s,

V6 =eλ2t(1 + λ2µ
+)p2(t)

∣∣∣y(t)e−by(t) − y∗(t)e−by∗(t)
∣∣∣ ,

V7 =eλ2t(1 + λ2µ
+)h2(t)

∫ 0

−∞

K2(t, s)
∣∣∣x(t + s)e−bx(t+s) − x∗(t + s)e−bx∗(t+s)

∣∣∣ ∆s.
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It follows that there exists a constant M that satisfies V(t, z1(t), z2(t)) < M for t > t0; otherwise, there
exists t∗ > t0 such that

V(t∗, z1(t), z2(t)) − M = 0 and V(t, z1(t), z2(t)) − M < 0 for − r ≤ t < t∗. (3.5)

Consider (3.5) with the inequalities∣∣∣ϑe−a1ϑ − %e−a1%
∣∣∣ ≤ e−2 |ϑ − %| and

∣∣∣∣∣ ϑ

a2 + ϑ
−

%

a2 + %

∣∣∣∣∣ ≤ 1
a2
|ϑ − %| , (3.6)

for ϑ, % ∈ C0 and a1, a2 ∈ R
+; it follows that

V3(t∗, z1(t∗), z2(t∗)) ≤
β(t∗)
γ(t∗)

(1 + λ1µ
+)|z1(t∗)|eλt∗ <

β+

γ−
(1 + λ1µ

+)M, (3.7)

V4(t∗, z1(t∗), z2(t∗)) ≤(1 + λ1µ
+)p1(t∗)e−2|z1(t∗)|eλ1(t∗)

<
(1 + λ1µ

+)p+
1 M

e2 , (3.8)

V6(t∗, z1(t∗), z2(t∗)) ≤(1 + λ2µ
+)p2(t∗)e−2|z2(t∗)|eλ2(t∗)

<
(1 + λ2µ

+)p+
2 M

e2 . (3.9)

In addition, consider ∫ 0

−∞

K1(t, s)
∣∣∣y(t + s)e−by(t+s) − y∗(t + s)e−by∗(t+s)

∣∣∣ ∆s

≤e−2
∫ 0

−∞

K1(t, s)

∣∣∣∣∣∣
∫ t+s

t

(
y∆(m) − y∗∆(m)

)
∆m + y(t) − y∗(t)

∣∣∣∣∣∣ ∆s

≤
2e−2k1

m1
|y(t) − y∗(t)|;

one further deduces that

V5(t∗, z1(t∗), z2(t∗)) ≤
2(1 + λ1µ

+)eλ1−2h+
1 k1M

m1
, (3.10)

V7(t∗, z1(t∗), z2(t∗)) ≤
2(1 + λ2µ

+)eλ2−2h+
2 k2M

m2
. (3.11)

Substituting (3.7)–(3.11) into (3.4), then

0 ≤D+(V(t∗, z1(t), z2(t)) − M)

≤

{
[−α−1 + λ1(1 + µ+α+

1 )] + [−α−2 + λ2(1 + µ+α+
2 )] +

β+

γ−
(1 + λ1µ

+)

+
(1 + λ1µ

+)
e2

(
p+

1 +
2eλ1h+

1 k1

m1

)
+

(1 + λ2µ
+)

e2

(
p+

2 +
2eλ2h+

2 k2

m2

)}
M,

which contradicts (3.2). Therefore, V(t, z1(t), z2(t)) < M for t > t0; choose λ = min
t∈T
{λ1, λ2}, that is

|(z1(t), z2(t))| < Me−λt for t > t0.
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Theorem 3.3. Assume that (H1)–(H3) hold. Then there exists a unique uniformly asymptotically stable
positive almost periodic solution of System (1.2) provided that Θ = min{Θ1,Θ2} > 0 and −Θ ∈ R+,
where

Θ1 =α−1

[
(2 − µ−α−1 ) +

(µ+ + µ−)β+

γ−
+

(µ+ + µ−)
e2

(
p+

1 +
k1h+

1

m1

)]
−

(
2 +

µ+β+

γ−
+
µ+ p+

1

e2

) (
β+

γ−
+

p+
1

e2 +
k1h+

1

m1e2

)
−

k1µ
+h+

1

m1e2

(
β+

γ−
+

p+
1

e2

)
,

−

[
2 +

µ+

e2

(
2p+

2 +
4k2h+

2

m2

)
− (µ− + µ+)α−2

]
k2h+

2

m2e2 ,

Θ2 =α−2

[
(2 − µ−α−2 ) +

(µ+ + µ−)
e2

(
p+

2 +
k2h+

2

m2

)]
−

1
e2

(
2 +

µ+ p+
2

e2

) (
p+

2 +
k2h+

2

m2

)
−

k2µ
+h+

2 p+
2

m2e4 ,

−

[
2 + µ+

(
2β+

γ−
+

2p+
1

e2 +
4k1h+

1

m1e2

)
− (µ− + µ+)α−1

]
k1h+

1

m1e2 .

Proof. Consider the Lyapunov function defined on T × C × C by

V(t, X(t),Y(t)) = [x(t) − x1(t)]2 + [y(t) − y1(t)]2, (3.12)

where X(t) = (x(t), y(t))T and Y(t) = (x1(t), y1(t))T are the almost periodic solutions of (1.2). Based on
Theorem 4.2 in [15], it follows that the condition (i) in Lemma 2.6 holds. By using the fact that

(s1 − s2)2 − (s3 − s4)2 ≤ 4 max{|s1|, |s2|, |s3|, |s4|} (|s1 − s3| + |s2 − s4|) for si ∈ R,

it follows for X′(t) = (x′(t), y′(t))T and Y ′(t) = (x′1(t), y′1(t))T that

|V(t, X(t),Y(t)) − V(t, X′(t),Y ′(t))| ≤ M∗ (|X(t) − X′(t)| + |Y(t) − Y ′(t)|
)
,

with M∗ = 4 max{|x∗|, |x∗|, |y∗|, |y∗|}. Further, the condition (ii) in Lemma 2.6 holds.
Calculating the right derivative D+V∆ of V along the solution of (3.12) yields

D+V∆(t, X(t),Y(t))

=
[
2(x(t) − x1(t)) + µ(t)(x(t) − x1(t))∆

]
(x(t) − x1(t))∆

+
[
2(y(t) − y1(t)) + µ(t)(y(t) − y1(t))∆

]
(y(t) − y1(t))∆

= : Π1(t) + Π2(t), (3.13)

where 

(x − x1)∆(t) =β(t)
[

x(t)
γ(t) + x(t)

−
x1(t)

γ(t) + x1(t)

]
+ p1(t)

[
x(t)e−bx(t) − x1(t)e−bx1(t)

]
− α1(t)[x(t) − x1(t)]

+ h1(t)
∫ 0

−∞

K1(t, s)
[
y(t + s)e−by(t+s) − y1(t + s)e−by1(t+s)

]
∆s,

(y − y1)∆(t) = − α2(t)[y(t) − y1(t)] + p2(t)
[
y(t)e−by(t) − y1(t)e−by1(t)

]
+ h2(t)

∫ 0

−∞

K2(t, s)
[
x(t + s)e−bx(t+s) − x1(t + s)e−bx1(t+s)

]
∆s.
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Based on the inequalities of (3.6), and for any z ∈ C satisfying∫ 0

−∞

K1(t, s)
[
z(t + s)e−bz(t+s) − z1(t + s)e−bz1(t+s)

]
∆s ≤

2k1

m1e2 [z(t) − z1(t)],

one can deduce

Π1(t) ≤
{(

2 − µ−α−1 +
µ+β+

γ−
+
µ+ p+

1

e2

)
[x(t) − x1(t)] +

2k1µ
+h+

1

m1e2 [y(t) − y1(t)]
}
·{(

−α−1 +
β+

γ−
+

p+
1

e2

)
[x(t) − x1(t)] +

2k1h+
1

m1e2 [y(t) − y1(t)]
}

≤

(
2 − µ−α−1 +

µ+β+

γ−
+
µ+ p+

1

e2

) (
−α−1 +

β+

γ−
+

p+
1

e2

)
[x(t) − x1(t)]2

+

[
2 − (µ− + µ+)α−1 +

2µ+β+

γ−
+

2µ+ p+
1

e2

]
2k1h+

1

m1e2 [x(t) − x1(t)][y(t) − y1(t)]

+ µ+

(
2k1h+

1

m1e2

)2

[y(t) − y1(t)]2

≤(A1 − B1)[x(t) − x1(t)]2 + (A2 − B2)[y(t) − y1(t)]2, (3.14)

where

A1 =

(
2 +

µ+β+

γ−
+
µ+ p+

1

e2

) (
β+

γ−
+

p+
1

e2 +
k1h+

1

m1e2

)
+

k1µ
+h+

1

m1e2

(
β+

γ−
+

p+
1

e2

)
+ µ−

(
α−1

)2
,

B1 =α−1

[
2 +

µ+β+

γ−
+
µ+

e2

(
p+

1 +
k1h+

1

m1

)
+ µ−

(
β+

γ−
+

p+
1

e2 +
k1h+

1

m1e2

)]
,

A2 =

[
2 + µ+

(
2β+

γ−
+

2p+
1

e2 +
4k1h+

1

m1e2

)]
k1h+

1

m1e2 ,

B2 =
(µ− + µ+)α−1 k1h+

1

m1e2 ,

and

Π2(t) ≤
{(

2 − µ−α−2 +
µ+ p+

2

e2

)
[y(t) − y1(t)] +

2k2µ
+h+

2

m2e2 [x(t) − x1(t)]
}
·{(

−α−2 +
p+

2

e2

)
[y(t) − y1(t)] +

2k2h+
2

m2e2 [x(t) − x1(t)]
}

≤(A3 − B3)[x(t) − x1(t)]2 + (A4 − B4)[y(t) − y1(t)]2, (3.15)

where

A3 =

[
2 +

µ+

e2

(
2p+

2 +
4k2h+

2

m2

)]
k2h+

2

m2e2 ,
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B3 =
(µ− + µ+)α−2 k2h+

2

m2e2 ,

A4 =
1
e2

(
2 +

µ+ p+
2

e2

) (
p+

2 +
k2h+

2

m2

)
+

k2µ
+h+

2 p+
2

m2e4 + µ−(α−2 )2,

B4 =α−2

[
2 +

(µ+ + µ−)
e2

(
p+

2 +
k2h+

2

m2

)]
.

Substituting (3.14) and (3.15) into (3.13), it follows that

D+V∆(t, X(t),Y(t)) ≤ −ΘV(t, X(t),Y(t)),

where
Θ = min{(B1 + B3) − (A1 + A3), (B2 + B4) − (A2 + A4)} > 0.

Combine Lemma 2.6 with Theorem 3.1; it follows that the unique positive almost periodic solution of
System (1.2) is uniformly asymptotically stable.

4. Examples

In this section, we introduce some suitable examples to support the main results.

Example 4.1. Let us illustrate that System (1.2) exists as exactly one almost periodic solution with a
positive infimum. Assume that

α1(t) = 0.79 + 0.001 sin(
√

5t), α2(t) = 0.84 + 0.002 sin(
√

3t),

β(t) = 0.592 − sin2(πt) − sin2 t, γ(t) = 1.001 − 0.001 sin(
√

3t),

p1(t) = 0.8 + 0.005 cos(
√

3t), p2(t) = 0.85 + 0.005 cos(
√

2t),

h1(t) = 0.1 + 0.04 sin(
√

2t), h2(t) = 0.2 + 0.06 sin(
√

6t),
K1(t, s) = K2(t, s) = e−2(t−s);

then,

α+
1 = 0.791, α−1 = 0.789, α+

2 = 0.842, α−2 = 0.838,
β+ = 0.592, γ− = 1, p+

1 = 0.805, p−1 = 0.795,
p+

2 = 0.855, p−2 = 0.845, h+
1 = 0.14, h+

2 = 0.26,
k1 = k2 = 1, m1 = m2 = 2.

Obviously, p−1 > α
+
1 and p−2 > α

+
2 ; further, one chooses e = 2.718 and calculates that(

p+
1 +

h+
1 k1

m1

)
e

β+

γ−α−1
−1
≈ 0.681 < 0.789 = α−1 ,

(
p+

2 +
h+

2 k2

m2

)
= 0.985 < 2.278 = eα−2 ,

which indicates that (H1)–(H3) hold. Therefore, according to Theorem 3.1, it follows that System
(1.2) exists with exactly one almost periodic solution (x∗, y∗) with a positive infimum.
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Example 4.2. Let us illustrate the stability of the positive almost periodic solution of System (1.2).
Assume that the conditions in Example 4.1 hold; then,

β+

γ−
+ e−2 p+

1 +
2e−2h+

1 k1

m1
≈ 0.72 < 0.789 = α−1 , e−2 p+

2 +
2e−2h+

2 k2

m2
≈ 0.151 < 0.838 = α−2 ,

that is, (H4) is satisfied. Therefore, from Theorem 3.2, it obtains that the unique almost periodic
solution is exponentially stable.

Let µ+ = µ− = 1; then,

Θ1 =α−1

[
(2 − µ−α−1 ) +

(µ+ + µ−)β+

γ−
+

(µ+ + µ−)
e2

(
p+

1 +
k1h+

1

m1

)]
−

k1µ
+h+

1

m1e2

(
β+

γ−
+

p+
1

e2

)
−

(
2 +

µ+β+

γ−
+
µ+ p+

1

e2

) (
β+

γ−
+

p+
1

e2 +
k1h+

1

m1e2

)
−

[
2 +

µ+

e2

(
2p+

2 +
4k2h+

2

m2

)
− (µ− + µ+)α−2

]
k2h+

2

m2e2

≈0.141 > 0,

and

Θ2 =α−2

[
(2 − µ−α−2 ) +

(µ+ + µ−)
e2

(
p+

2 +
k2h+

2

m2

)]
−

1
e2

(
2 +

µ+ p+
2

e2

) (
p+

2 +
k2h+

2

m2

)
−

k2µ
+h+

2 p+
2

m2e4

−

[
2 + µ+

(
2β+

γ−
+

2p+
1

e2 +
4k1h+

1

m1e2

)
− (µ− + µ+)α−1

]
k1h+

1

m1e2

≈0.896 > 0.

Moreover, Θ = min{0.141, 0.896} = 0.141 > 0 and −Θ = −0.141 ∈ R+. From Example 4.1, it
follows that (H1)–(H3) hold; hence, Theorem 3.3 implies that System (1.2) has a unique uniformly
asymptotically stable positive almost periodic solution.

5. Conclusions

In this paper, we introduced a class of two species co-existence delayed model with the almost
periodic coefficients on time scales defined as System (1.2). Based on the operator theory, Lyapunov
function and Gronwall’s inequality, by choosing an appropriate Lyapunov function, this paper
addresses some dynamic properties of almost periodic solutions of this model. First, we presented
System (1.2) is permanent and further established the existence and uniqueness of the almost periodic
solution with a positive infimum by transforming the initial model into an equivalent integral equation.
Second, we investigated the global exponential stability and uniformly asymptotic stability of the
positive almost periodic solution. In some existing works, for example, the work in [4,8], for a class of
continuous system, which is a particular case of systems on time, the authors only studied the existence
and uniqueness of the positive almost periodic solution, but did not further verify whether the obtained
solution is stable or not. In addition, in [17], although the authors explored a class of high-order neural
networks model with variable delays on time scales and showed some sufficient conditions to prove
the existence and uniqueness of the almost periodic solution, the results were obtained based on the
Lipschitz condition. Compared to these existing works on almost periodic solutions, our conclusions
are valuable in the exploration of dynamic equations on time scales.
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