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1. Introduction

Let K be a nonempty closed and convex subset of real Hilbert space H. Define § : K — K to
be a continuous mapping. A point iz € K is said to be a fixed point of S if S () = u. Also, the F(S)
represents the set of all fixed points of S. Several authors have investigated the existence of fixed points
for theorems of single-valued nonexpansive mappings (for example, [1-5]).

Mann [6] proposed the following method in 1953 for approximating the fixed point of a
nonexpansive mapping S in a Hilbert space H :

Upe1 = apty, + (1 —a,)Su,, Yn>1, (L.1)

where {a,} is a sequence in [0, 1].


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023364

7243

Ishikawa [7] generalized Mann’s iterative algorithm (1.1) in 1974 by introducing the iteration:

uy € K chosen arbitrary,
v, = (1 =-ayu, +a,Su,, (1.2)
Upy1 = (1 - bn)un + b,Svy, n >0,

where {a,} and {b,} are sequences in [0, 1].
Noor [8] introduced and generalized Ishikawa’s iterative algorithm (1.2) in 2000 by introducing the
following iterative procedure for solving the fixed point problem of a single-valued nonlinear mapping:

u; € K chosen arbitrary,
v, = —au, + a,Su,,
Pn = (1 = by)uy + bySvn,
Upr1 = (L =iy + ¢,Spn,  n 21,

(1.3)

where {a,}, {b,} and {c,} are sequences in [0, 1].
Yildirim and Ozdemir [9] introduced a new iteration process in 2009 which is an n-step for finding
the common fixed points. It is produced by the following processes:

u, € K chosen arbitrary,

v, = P((1 — ay)u, + a,,S (PS r)n_lun)’

Vas1 = P((1 - a.(r—l)n)vn + a(r—l)nSr—l(PSr—l)n_lvn)» (1.4)
Votr-2 = P((l - a2n)vn+r—3 + aZnS 2(PS2)n_1Vn+r—3)a

Up1 = P((1 = a1)Vasr—2 + @1nS 1(PS 1) 'Wyir2), n>1and r>2,

where {a,} be a sequence in [€, 1 — €] for some € € (0, 1), foreach j € {1,2, ..., r}
Sainuan [10] developed a new iteration called P-iteration in 2015. The P-iteration is defined as:

u; € K chosen arbitrary,
Vn = (1 - an)un + anS Up,
Pn = (1 - bn)vn + bnS Vi,

Uper = (I =c)Sv, + CnSpna nx1,

(1.5)

where {a,}, {b,} and {c,} are sequences in [0, 1].
The D-iteration was introduced in 2018 by Daengsaen and Khemphet [11], who used the Sainuan’s
iteration concept. It is produced by the following processes:

u, € K chosen arbitrary,

v, = -ayu, +a,Su,,

pon =10 =b)Su, + b,Svy,

Upy1 =1 =c)Sv, +¢c,Sp,, n=>1,

(1.6)
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where {a,}, {b,} and {c,} are sequences in [0, 1].

The heavy ball method, which was studied in [12, 13] for maximal monotone operators by the
proximal point algorithm, was used by Alvarez and Attouch [19]. This algorithm is known as the
inertial proximal point algorithm, and it is written as follows:

up, u; € K chosen arbitrary,
tn = Uy + An(Uty — Uy-1), (1.7)
Uns1 = (L +y,B) 'ty n 21,

where [ is the identity mapping. It was proved that if {y,} is non-decreasing and {4,} C [0, 1) with
" Al = w4l < oo, (1.8)
n=1

then algorithm (1.7) converges weakly to a zero of B.

Nakajo and Takahashi [18] proposed modifying Mann’s iteration method (1.1) to obtain a strong
convergence theorem in Hilbert spaces H :
uy € K, chosen arbitrary,
vy = (1 —ayu, + a,Su,,
Ki={x e K:|lva =l < Ilu, — I}, (1.9)
R, = {XE K: <M0 = Up, Uy, —X>},

Ups1 = Pr,ar, o, Y120,

where {a,} C [0,a] for some a € [0, 1). They proved that the sequence {u,} converges strongly to
Presyup.

In 2021, Chaolamjiak et al. [14] proposed modifying SP iteration method (1.4) to obtain a strong
convergence theorem in Hilbert spaces H :
up,u; €K, R =K,
tn = Uy + Ap(tty = Up-1),
vy € (1 —apt, + a,S1t,,
Pn € (1 =bp)vy + byS 2V, (1.10)
Wy € (1 = ¢u)pn + €S 30n,
Ky, = {x € Kt [lwy = xl* < Nl — xIP + 200t — s 1P = 20,Cu — X, 1 — 1)},

R,={x€R,_1 : (uy — up,u, — x) > 0},

Upe1 = Px,nr Ui,

for all n > 1, where {a,}, {b,} and {c,} C (0, 1). They proved that the sequence {u,} converges strongly
to a common fixed point of S, S, and S;.

The results [11,18,19,21] provide incentive. In order to locate a common fixed point of three quasi-
nonexpansive multivalued mappings, we introduce the D-iterative approach with the inertial technical
term. We can prove strong convergence theorems by combining shrinking projection methods with
inertial D-iteration. Finally, we compare our inertial projection method to the traditional projection
method and conduct numerical tests to support our major findings with different choices of the initial
values xy and x; in 4 case.
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2. Preliminaries

Let CB(K) and K(K) denote the families of nonempty closed bounded, and compact, respectively.
The Hausdorft metric on CB(K) is defined by:

H(C, Q) = max {sup d(u, Q), supd(v, C)} , YC,0 e CB(K),

ueC veQ

where d(u, Q) = inf,colllu — all}.
A single-valued mapping S : K — K is said to be nonexpansive if

ISu—Sv|| <|lu-vll, Yuvek
A multivalued mapping S : K — CB(K) if # € Siz and
H(Su,Su) <|lu—ul, YueKanduceF(S).

Then § 1is said to be quasi-nonexpansive.

Condition (A). Let H be a Hilbert space and K be a subset of H. A multivalued mapping
S : K — CB(K) is said to satisfy Condition (A) if |lu — it|| = d(u, Sut) forall u € Hand uz € F(S).

We now give the example of quasi-nonexpansive multivalued mapping S which satisfies Condition
(A) and the fixed point set F(S) contains more than one element.

Example. In Euclidean space R, let K = [0,2] and S : K — CB(K) be defined by

u
O,—], ifu<l,
Su:{[ 2

{21, if u>1.
It is easy to see that F(S) = {0, 2}.

Lemma 2.1. [14] Let H be a real Hilbert space. Let S : H — CB(H) be a quasi-nonexpansive
mapping with F(S) # 0. Then, F(S) is closed, and if S satisfies Condition (A), then F(S) is convex.

A multivalued mapping S : K — CB(K) is said to be hybrid if
3HS u,Sv)* < |lu —=v||* +dv,Su)* + d(u,Sv)*>, Yu,vekK.

Lemma 2.2. [15] Let K be a closed convex subset of a real Hilbert space H. Let § : K — K(K) be a
hybrid multivalued mapping. Let {u,} be a sequence in K such that u, — it and lim,,_,, ||u,, — x,|| = 0
for some x, € Su,. Then, u € S.

Lemma 2.3. [16] Let X be a Banach space satisfying Opial’s condition and let {u,} be a sequence in X.
Let x,y € X be such that lim,,_,, ||lu, — x|| and lim,_,«, ||u, — yl|| exist. If {u,, } and {u,, } are subsequences
of {u,} which converge weakly to x and y, respectively, then x = y.

Lemma 2.4. [17] Let K be a nonempty closed convex subset of a real Hilbert space H. For each
x,y € Hand v € R, the set

D={uek:|y—ull® <l|x—ull®+(z,uy+v},

is closed and convex.
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Lemma 2.5. [18] Let K be a nonempty closed convex subset of a real Hilbert space H and Py : H — K
be the metric projection from H onto K. Then

2 2 2
v = Prull” + [lu = Pgull” < |lu - VI,

forallu e Handv e K.

Lemma 2.6. [19] Let {a,}, {8,} and {y,} be the sequences in [0, o) such that
(07788 < ap +,8n(an - an—l) + Yns

foralln > 1, Y7 v, < oo, and there exists a real number B with 0 < 8, < B < 1 foralln > 1. Then,
the followings hold

(@) Ysila, — an-ils < oo, where [t], = max{t,0};
(b) there exists a* € [0, 00) such that lim,_,. a, = a".

Lemma 2.7. [20] Let H be a real Hilbert space. Then, for each u,v € Hand t € [0, 1]

(@) Il = VI < Qlull® + IVIP = 2(u, v);
(b) lltw — (1 = o> = tllull® + (1 = IVI* = 2(1 = D)llu — vII*;
(¢) If {u,} is a sequence in H such that u, — u, then

lim sup [, — vI* = lim sup (|lu, — ull® + [lu = v|[*).

n—o0 n—o00

3. Main results

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space Hand S, S,,S3 : H — CB(K)
be quasi-nonexpansive multivalued mappings with Y = F(S1) N F(S,) N F(S3) # O and I - S; is
demiclosed at O for all i € {1,2,3}. Let {u,} be a sequence generated by

uop, uy; € K chosen arbitrary,

Iy = Un + Ay(Uty — Up-1),

vp € (1 —at, + a,S1t,, 3.1
Pn € (1 =b,)S 1ty + byS2vy,

Upi1 € (1 - Cn)SZVn + CnS3pna

foralln > 1, where {a,}, {b,} and {c,} C (0, 1). Assume that the following conditions hold

((1) Zflozl ﬂn”un - un—l” < 00;

(b) 0 <liminf, . a, < limsup,_, a, < 1;
(¢) 0 <liminf, . b, < limsup,_,., b, < 1;
(d) 0 < liminf, . ¢, <limsup,_, ¢, < 1.

If Sy, S, and S5 satisfy Condition (A), then the sequence {u,} converges weakly to a common fixed
point of S1, S, and S ;.
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Proof. Letu € Y. From S, S, and S; satisfy Condition (A), for x,, € S1t,, y» € Sovn, 2, € S30, and

using (3.1), we obtain
”tn - ﬁ” = ”un + /ln(un - un—l) - 17t||

< ”un - ﬁ” + ﬂnllun - un—l”a

Ve = alll = 1I(1 = an)ty + anx, — ull
= 11 = au)(ty — ) + an(x, — Wl
< (I =apllity — all + ayllx, — all
= (1 = aplity — all + and(x,, S 1)
< (I =ality — all + a,H(S 11, S 11t)
< (I =aplity — all + anllt, — Wi
= [ty — ull = ayllt, — all + aullt, — Wl

= [[t, — all,

llon = all = (1 = bu)xy + buy, — ll
= 11 = Dp)(xp — @) + by(yn — W]
< (1 = bp)llxy — all + bully, — ull
= (1 = bp)d(x,, S110) + byd(yy, S2it)
< (1 =b)H(S 1ty, S11) + b,H(S 2y, S 2it)
< (1= b)lity — all + byllv, — all
< (1 = bty — all + byllt, — ull
= Ity — all = bullt, — all + byllt, — all

= |1t — ll

and
letnsr — @l = I(1 = c)yn + €z — dll
= I(L = ¢)(n — ) + culzn — D)l
< (I =cllyn — all + cullz, — all
= (1 = c)d(yn, S2i) + ¢,d(2n, S 310)
< (1 = c)H(S2vn, Soit) + ¢, H(S 3p,, S 300)
< (I =cllvy — all + callo, — all
< (1 =ce)llty — all + callt, — all
= Ity — all = callt, — @l + c,llt, — all
= [It, — all

<l = #ll + Anllty — ]

(3.2)

(3.3)

(3.4)

(3.5)

Using Lemma 2.6, (3.5) and the assumption (a), we have lim,,_,, ||, — i1|| exists. Thus, {u,} is bounded

and also {p,}, {v,} and {t,}. From Lemma 2.7(b), we get

AIMS Mathematics Volume 8, Issue 3, 7242-7257.



7248

v, = all> = [I(1 = @t + anx, — all*
=11 = an)(t, — @) + an(x, — DI
= (1 = ality — ill* + aullx, — @ll* = a,(1 = a,)llt, — x|
= (1 = ality — @ll* + a,d(x,, S 17 — a,(1 = a,)llty — xalI* (3.6)
< (1= ality — @ll* + a,H(S 11y, S 1i1)* = a,(1 = ay)lty — x|
< (1= ality — ll* + aylit, — @ll* — a,(1 — a,)llt, — x|

=112 2
= ”tn - I/t” - an(l - an)”tn - xn” s

llow = @l = 111 = by)x, + buy, — @l
= (1 = b))%y = @) + by, — DI
= (1 = by)llx, = @ll* + bylly, = a@ll* = bu(1 = by)llx, — yull”
= (1 = by)d(x,, S 1) + byd (Y, S 28)” = bu(1 = by)llx, = yull?

2 2 5 3.7
< (1 - bn)H(Sltnaslu) + an(SZVn’ SZ”) - bn(l - bn)“xn - yn”
< (1= b)llty = #ll* + byllvy — tll* = bu(1 = by)llxy = yul
< (1 - bn)“tn - ﬁllz + bn”tn - ﬁllz - an(l - an)bn”tn - anZ - bn(l - bn)”xn - yn”2
= ”tn - ﬁllz - an(l - an)bn”tn - Xn||2 - bn(l - bn)”xn - yn||2
and
”un+l - 17‘”2 = ”(1 - Cn)yn + CnZp — 12”2
= I(1 = c)n — i) + a2 — DI
= (1 - Cn)”yn - I/_t”z + Cn”Zn - ﬁllz - Cn(l - Cn)”yn - Zn”2 (3 8)
= (1 - cn)d(yn, 5211)2 + Cnd(zm S3ﬁ)2 - Cn(l - Cn)”yn - Zn”2 .
< (1 = c)H(S 2vy, S200)* + ¢uH(S 304, S3i8)” = ca(l = c)llyn — zull?
< (1 - Cn)”Vn - ﬁllz + Cn”pn - IZHZ - Cn(l - Cn)”yn - Zn||2-
Combination (3.6)—(3.8), we get
-2 -2 2 2
||un+1 - Ll” < (1 - Cn)”tn - Llll - an(l - an)(l - Cn)”tn - xn” - Cn(l - Cn)”yn - Zn”
+ Cn”ln - b_t||2 - an(l - an)bncn”ln - xn||2 - bn(l - bn)cn”xn - yn”2
< ”tn - 171”2 - an(l - an)bn(l - cn)”tn - xn”z
- Cn(l - Cn)”yn - anlz - an(l - an)bncn”tn - -xn”2
_bn 1_bn CullXn = Yn 2
( )CnllXn = Yall (3.9)

<y = @l + 22, — U1ty — ) — an(1 = @)bu(1 = Ity — X,
— a1 = ellyn = zall® = an(1 = a)bucallty — xlI°
= by(1 = by)cyllx, — yull®

<ty — #ll® + 20, Sty — 1, 1y — iy — an(1 = a)byllty — X,

- cn(l - cn)”yn - Zn||2 - bn(l - bn)cn”xn - yn”2
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The inequality (3.9) implies that

an(l - an)bn”tn - xnllz + Cn(l - Cn)”yn - anlz + bn(l - bn)cn”xn - yn”2

< et = 1l = letner = 8l + 22, = 1, 5 = ). G10)
Using conditions (a)—(d), lim,, ||u, — i exists and (3.10), we obtain
lim [|z, — 2./l = lim [lx, —y,ll = lim [y, -z, = 0. (3.11)
This implies that
lim [lt, = [l = A, im [ty = 4] = 0. (3.12)
lim [lv, = 5]l = a, lim [it, — x,|| = 0. (3.13)
lim flo, = x,ll = b, lim [lx, =yl = 0. (3.14)

Because {u,} is bounded, there exists a subsequence {u,,} of {u,} such that u,, — % some u € K.
From (3.12), we have #,, — u. Because I — S is demiclosed at 0 and (3.11), we obtain it € S ii.
From (3.13), we have v,, — u. Because I — S, is demiclosed at 0 and (3.11), we obtain & € S,u. It
follows from (3.14) that p,, — it. Again, because I —S 5 is demiclosed at 0 and (3.11), we have it € S 3.
This implies that #z € Y. Now, we show that {u,} converges weakly to . We take another subsequence
{t,, } of {u,} converging weakly to some u* € Y. Because lim,,_,, |[u, — it]| exists and Lemma 2.3.Thus,
we have it = u*. O

Theorem 3.2. Let K be a nonempty closed convex subset of a real Hilbert space H and S+, S,, S3 :
K — CB(K) be quasi-nonexpansive multivalued mappings with Y := F(S1) N F(S,) N F(S3) # 0 and
I — S, is demiclosed at O for all i € {1,2,3}. Let {u,} be a sequence generated by

up,u; €K, K; = K,

by = Un + Ay(Uy — Uy-1),

Vi € (1 = ap)ty + anS 11y,

Pn € (1 =b,)S 11, + b,S vy, (3.15)
Wy € (1 = ¢2)S2vi + ¢S 300,

IKn+l = {)C € Kn : ”Wn - .X||2 < ”un - .X||2 + 215””n - un—l”2 - 2/ln<un — X, Up-1 — un>},

Uy = Py,

n+1

up,

foralln > 1, where {a,}, {b,} and {c,} C (0, 1). Assume that the following conditions hold

(Cl) 220:1 /ln”un - Mn—l” < 00;

(b) 0 < liminf, . a, <limsup,_, a, < 1;
(¢) 0 <liminf, . b, < limsup,_,. b, < 1;
(d) 0 <liminf, . c, <limsup, . c, < 1.

If S1, S, and S5 satisfy Condition (A), then the sequence {u,} converges strongly to a common fixed
point of S1, S, and S ;.
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Proof. Step 1. Show that {u,} is well defined. Using S, S, and S5 satisfy Condition (A), Lemma 2.1,
T is closed and convex. Firstly, we show that K, is closed and convex for all n > 1. Since induction
on n that K, is closed and convex. For n = 1, K; = K is closed and convex. Suppose that K, is closed
and convex for some n > 1. Using the definition K,,;; and Lemma 2.4, we have that K, is closed and
convex. Thus, K, is closed and convex for all n > 1. Next, we show that T C K, for each n > 1. From
Lemma 2.6(b) and S, S, and S satisfy Condition (A), let # € Y for x,, € Sy, Yo € S2Vi, 20 € S30n
and using (3.15), we obtain

v, = a@ll* = I(1 = @)ty + apx, — all*
=11 = an)(ty — i) + an(x, — W
= (1 = a)lity — @ll® + ayllx, — @ll* = a,(1 = a,)llt, — x|’
< (1= ayllt, — all* + ayllx, — all®
= (1 = a)lity — #ll* + a,d(x,, S 1)’
< (1 = a)lity — all* + a,H(S 1t,, S 1i1)*
< (1 = a)lity — all® + aylit, — all’

=112

(3.16)

llow — #ll® = 11(1 = by)x, + by, — illl?
= [I(1 = B)(xy — i) + bu(yn — DI
= (1 = bllx, — itll* + bully, — ll* = ba(1 = by)llx, — yull?
< (1 = byl — all* + bylly, — all?
= (1 = b)d(x,, S171)* + b,d(y,, S»i1) (3.17)
< (1 = b)H(S 11, S 1) + bH(S 2v,, S »i1)>
< (1= b)llty — ll* + byllv,, — atll?
< (1 = bty — itll* + byllt, — all®
= ||t — all*

and

lIwn = all* = I(1 = ¢)yn + cazn — il
=11 = c)n — i) + Calz, — WP
= (1 = co)llyn — #ll® + callen — #ll* = cu(1 = c)llyn — zall®
< (1= ellyn — @l + cullz, — all®
= (1 = c)d(y, S2i0)* + €,d(2,, S 300)°
< (1 = ¢)H(S 2V, S201)* + o H(S 300, S 3ii)* (3.18)
< (1= e)lve = all* + cullo, — all®
< (1= cpllty — @l + cullt, — all®
= |ty — ll?
=ty + ity — tp—y) — il

=112 2 2 —
<l = all” + 2l = w1 |I” = 22, Cutyy = 12,y — 11 )
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Therefore, from (3.18), it € K,,, n > 1. This implies that T C K, for each n > 1, and hence, K,, # 0.
Thus, {u,} is well defined.

Step II. Show that u, — u € K as n — oo. Since u, € Px u;, K1 € K,, and u,,; € K,,, we obtain
oty — il < Nty —wall, Vn=1. (3.19)

Since T C K,,, we obtain
oty —will < llx—wyll, Yn=1, (3.20)

for all x € T. The inequalities (3.19) and (3.20) imply that the sequence {u, — u;} is bounded and
non-decreasing. Therefore, lim,, . |1, — ;]| exists.
For m > n, from the definition of K,,, we obtain u,, € Px u;, € K,, € K,,. Using Lemma 2.5, we have

2 2 2
Nt = wall™ < ety = wa|I” = ety — was[”. (3.21)

From lim,,_,, ||u, — u;|| exists and follows (3.21), we have that lim,,_,., ||it, — u,,|| = 0. Therefore, {u,} is
a Cauchy sequence in K, and so u, - u € Kasn — oo.

Step III. Show that lim,, . ||, — x,|| = lim,, 0 ||X, = Yull = limy—eo [V — 24l = 0, where x,, € S 12, y, €
Sov, and z, € S3p,. From Step II, we obtain lim,,_,, ||u,+1 — u,|| = 0. Because u,,; € K,,, we have that

”Wn - un” < ”Wn - un+1|| + ||un+1 - un”

(3.22)
< \/”un - un+1||2 + 21,21”1/[” - un—l”2 - 2/1n<un — Upt+1, Up—1 — un> + ||un+1 - un”
Using the assumption (a) and (3.22), we have
lim ||w, — u,|| = 0. (3.23)
Because §; satisfies condition (A) and using Lemma 2.7, we obtain
lIwn = a@ll> < (1 = c)llve = @ll* + callon — > = ca(l = c)llyn — zall*- (3.24)
Using (3.6), (3.7) and (3.24), we have
”Wn - Ijt”2 < (1 - Cn)”tn - 17t||2 - an(l - an)(l - Cn)”tn - xnllz
+ cn”tn - ﬁ”2 - an(l - an)bncn”tn - xn”2 - bn(l - bn)cn”xn - yn||2
= ca(1 = c)llyn — 2l
< (1 - Cn)”tn - ﬁ”Z - an(l - an)bn(l - Cn)”tn - Xn”2
+ ety = @l)? = an(1 = ay)bucallty = XlI* = b1 = by)cnllx, = yall?
I I ( bycll l ( )CnllXn = Yull (3.25)

= ca(1 = cp)llyn — 2l
= ”tn - ﬁ”2 - an(l - an)bn”tn - xn||2 - bn(l - bn)cn”xn - yn”2

- Cn(l - Cn)”yn - Zn”2
< ”un - ﬁllz + 2/ln<un —Up-1,; — ﬁ> - an(l - an)bn”tn - xnllz

— bp(1 = by)eallxn = yall* = (1 = ellyn = zall*
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The inequality (3.25) implies that

an(l - an)bn”tn - -xn”2 + bn(l - bn)Cn”xn - yn||2 + Cn(l - Cn)”yn - Zn||2

=112 —112 _
< ”un - I/t|| - ”Wn - I/t” + 2/1,1(”” —Up—1, 1l — l/t>

(3.26)

From conditions (a)—(d), (3.23) and (3.25), we have (3.11). From (3.13), (3.14) and the same proof in
Theorem 3.1, we have

lim (|7, — u,[| = lim ||y, — ]| = lim [|p, — x,|| = 0. (3.27)

From Step II, we know that u, — u € K. It follows (3.27), we obtain that t, — u. Because I — S is
demiclosed at 0, we have u € F(S ). In the same way, we have that u € F(S,) and u € F(S3). This
implies that u € .

Step I'V. Show that u = Pyu,. From u € (" and (3.19), we obtain

lu —wmll <llx—wll, YxeT.
Using the definition of the projection operator, we can conclude that u = Pyu;. O

Theorem 3.3. Let K be a nonempty closed convex subset of a real Hilbert space H and S+, S, S5 :
K — CB(K) be quasi-nonexpansive multivalued mappings with (' := F(S1) N F(S,) N F(S3) # 0 and
I —S;is demiclosed at O for all i € {1,2,3}. Let {u,} be a sequence generated by

up,u; €K, Ry = K,

tn = Uy + (U — Up1),

v, €1 —apt, + a,St,,

Pon € (1 =b,)S 11, + b,S vy,

Wy € (1 = ¢2)S2vi + ¢S 300,

Ky = {x € K:[lw, = xII* < [l = xI1* + 222l — sty > = 2, Cutyy — X, 4y — un)},

Rn = {X € Rn—l . <I/t] - Up, Uy — x> > 0},

(3.28)

Upy1 = PKnmRnula
foralln > 1, where {a,}, {b,} and {c,} C (0, 1). Assume that the following conditions hold

(Cl) Z;.lozl /ln”un - un—l” < 0905

(b) 0 <liminf,,«a, < limsup,_, a, <1;
(¢) 0 <liminf, o b, <limsup,_, b, < 1;
(d) 0 <liminf, . ¢, <limsup, , c, < 1.

If S1, S, and S5 satisfy Condition (A), then the sequence {u,} converges strongly to a common fixed
point of S1, S, and S ;.

Proof. From the same method of Theorem 3.2 step by step, we can conclude the proof by replacing
K,+1 by K, expect in Step 1. Showing that ' C K, for each n > 1. Next, we show that T C R, for all
n > 1. Indeed, by mathematical induction, for n = 1, we obtain T C K = R;. Suppose that 1" C R, for
all n > 1. Because u,,,; is the projection of u; onto K,, N R, we obtain

<Lt1 — Up+1, Upt1 — X> 2 O’ Yxe Kn N Rn
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Therefore, T € K,,,1. Hence, Y € K, N R,. This implies that {u,} is well defined.
Next, we show that u, — g € K as n — oco. Using the definition of R,, we obtain u, = Pg u;.
Because u,,; € R,, we have the inequality (3.19) and

oty — uill < llg —will, VgeT. (3.29)

From (3.19) and (3.29) we have the sequence {u, — u;} is bounded and non-decreasing, and so
lim,_,o |[u, — uy|| exists. For m > n, by definition of R,, we have u,, = Pg u; € R, € R,. Using
Lemma 2.5, we have (3.21). Because lim,,_,, |1, — 11| exists, it follows (3.21), we obtain lim,,_,.. ||¢,, —
u,|| = 0. Therefore, {u,} is a Cauchy sequence in K, and hence u, — g € K as n — oco. In fact, we have
lim,,_, ||ty+1 —u,]| = 0. Using the same proof of Steps 3 and 4 in Theorem 3.2, we obtain ¢ = Pyu;. O

4. Numerical results

It is commonly known that computing the projection of a point on an intersection is quite difficult.
However, this can also be stated as the following optimization problem for computing purposes

Py := min ||x — ul|?, 4.1)
xeK*

where K* = K,,NR,,. See [22] for a list of several more approaches to handle projection onto intersection
of sets computationally.
The set K,,;; can be found by K,, N R,, where

Ry ={x € H: |wy = xI* < lluy = xIP + 25 luty — 1> = 22, (= X, 1ty — 1)} (4.2)
The projection can be thought of as the following optimization problem by point (4.2):

= min ||x — ul%, (4.3)
XERK 41

Py

n+1

where K,.,; = K, NR,.

Example. Let H = R3and K = [2, 5]°.
Let K, = {u = (Ui, uy,u3) € R3 : \/(l/tl - 5)2 + (up — 5)2 + (uz — 5)2 < 2}. We defined S, S5, S3 :
R3 — CB(R?) as:

{(5,5,5)} if u e Ky,
= {fv=,m,r)ek: \/(vl —52+ (v, =5%+(v;=5)2< ﬁ} otherwise,

{(5,5,5)} if uek,,
N 2 5o S) €Kt vm € [ + 5)(arCta‘n(1z”‘2 =) 51} otherwise,
and

{(5,5,5)} ifuek,,
Sa= {{v = (5,5,v3) €K : vs € [(un - 5)(@) 1,51} otherwise.
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We see that S, S, and S; are quasi-nonexpansive and F(S;) N F(S,) N F(S3) = {(5,5,5)}. Leta, =

+4 _ n+2 _ In+7
S50 bn = 753, & = 5 and
1
min ,0.035F if u, # u,_1,
Ay = {(l’l + 1)2””” — U1l } " "
0.035 otherwise.

We compare a numerical test between our inertial method defined in Theorem 3.3 and method (1.10).
The stopping criterion is defined by ||u,,; — u,|| < 107'°. We make different choices of the initial values
xo and x; as follows (see Figure 1 and Table 1)

Casel: x) =(2.6816,2.4389,2.8891) and x; = (2.7733,2.2146, 2.2555).

Case 2 : xo = (3.9587,4.6121,2.9779) and x; = (3.7123,3.4894,4.8867).

Case 3 : xo = (4.9401,3.9274,2.8475) and x; = (3.8675,3.7185,4.7133).

Case 4 : xo = (3.9933,4.9899,4.2187) and x; = (3.7722,3.6190,2.9152).

4.5 : ;
method (1.10)
4 our inertial method | |
35+
3 -
f 25+
I
3
1.5¢
1 L
0.5+
0 ‘ | i
0 2 4 6 8 10 12
Number of iterations
Case 1

——method (1.10)
our inertial method

0.5r

2 4 6 8 10
Number of iterations

Case 2
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——method (1.10)
our inertial method | |

4

6 8

Number of iterations

Case 3

l|tns1 — ]

——method (1.10)

——our inertial method| |

4

6 8

Number of iterations

Case 4

Figure 1. Valued of ||u,,; — u,|| in Cases 1-4.

Table 1. Numerical results.

Case our inertial method method (1.10)
| CPU time (sec) 0.01 0.03
Number of Iterations 2 12
) CPU time (sec) 0.04 0.12
Number of Iterations 2 11
3 CPU time (sec) 0.03 0.09
Number of Iterations 2 11
4 CPU time (sec) 0.01 0.08
Number of Iterations 2 11
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5. Conclusions

In this paper, we proved convergence theorems in Hilbert spaces using a modified D-iteration.We
proved the weak and strong convergence of the iterative algorithms to the common fixed point under
some suitable assumptions.
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