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1. Introduction

Fractional calculus is considered to be the main research area nowadays due to its numerous
applications in applied sciences. These applications have attracted the attention of researchers.
The advanced applications in the field of applied science and technology include the nonlinear
oscillation fractional order earth quack model, fractional order airfoil model [1], fractional-order fluid
dynamic traffic model [2], financial model with fractional order [3], financial models chaos theory [4],
fractional order Zener model [5], fractional Zener model of signal processing phenomena [6], Poisson-
NerstPlanck diffusion model of fractional order [7], electrodynamics [8], fractional model of cancer
chemotherapy [9], optics [10], fractional model for the dynamics of hepatitis B virus [11], fractional
model for tuberculosis [12], fractional-order pine wilt disease model [13] and various others [14–17].

Whenever the applications attract attention, on the other side, the solution of fractional
order physical models also gains the attention of researchers. The solution has become an
important issue for researchers [18–20]. Various analytical and numerical techniques have been
introduced by researchers, such as the homotopy perturbation technique [21], Laplace Adomian
decomposition method [22], Laplace homotopy perturbation transform technique [23], Crank-
Nicholson finite difference method [24], p-homotopy analysis method [25], novel operational
matrix-based method [26], Harr wavelet collection approach [27], natural transform decomposition
method [28], dynamical system method [29], new approximate analytical method [30], new modified
decomposition method [31], new analytical technique [32], approximate analytical method [33], kernal
Method [34], fully Petrov-Galerkin spectral method [35] and various others [36–38].

In the connection of these numerical and analytical methods, we have also used two different
analytical approaches and tested for the solution of the non-linear time-fractional system of partial
differential equations (PDEs). These approaches are the new approximate analytical approach
(NAAA) and Mohand variation iteration transform approach (MVITA). The NAAA is a decomposition
procedure that uses Caputo-Riemann operators of derivatives and integration, respectively. Using
the combined property of both operators provides a series form solution with fractional order. The
obtained fractional-order series-form solution rapidly converges to the exact solution by approaching
integer order. The MVITA is a variational iteration strategy that use a new integral transform (Mohand
transform). It provides the series form solution without using any decomposition, He’s polynomial or
discretization. The series form solution provides an exact form solution for the problems by using a
specific value of summation, i.e., an integer value instead of fractional order.

We have tested both of the approaches by solving the following systems of time-fractional
differential equations [39]

Dðτζ − ζ
2ξ +

1
4

(
ζϑϑ − ζγγ

)
+ 2ζ = 0,

Dðτξ + ζ2ξ −
1
4

(
ξϑϑ − ξγγ

)
− ζ = 0,

(1.1)

where ϑ, τ ∈ R, ð ∈ (0, 1] and

Dðτζ + ζϑξϑ + ζγξγ + ζ = 0,
Dðτξ + ξϑ=ϑ − ξγ=γ − ξ = 0,

Dðτ= + =ϑζϑ + =γζγ + = = 0,
(1.2)
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where ϑ, τ ∈ R and ð ∈ (0, 1]; we can verify the obtained results with the exact solution and for
different fractional orders. We also compared the results of the NAAA and MVITA numerically and
by plotting.

The rest of the article is organized as follows. Some related basic definitions and results are
elaborated in Section 2. In Section 3, we explained the generalized procedure of the NAAA; in
Section 4, we presented the generalized procedure of the MVITA. In Section 5, we tested some
systems of PDEs based on the NAAA and MVITA. Finally, we concluded the present research results
in Section 6.

2. Preliminaries and basic concepts

In this section, we have defined some relative elementary concepts of the research work.

Definition 2.1. [40] The Riemann-Liouville fractional partial integral oðτ, where ð ∈ N and ð ≥ 0, is
defined as

oðτ ζ(ϑ, τ) =


1

Γ(ð)

∫ τ

0
ζ(ϑ, τ)dτ, if ð, τ > 0;

ζ(ϑ, τ), if ð = 0, τ > 0,
(2.1)

where ð is denotes the gamma function.

Let ð, β ∈ R \N and ð, β > 0, α > −1 then, for the function ζ(ϑ, τ), the operator oðτ has the following
properties [40]

(i) oðτζ(ϑ, τ) oβτ ζ(ϑ, τ) = oð+βτ ζ(ϑ, τ);
(ii) oðτζ(ϑ, τ) oβτ ζ(ϑ, τ) = oβτζ(ϑ, τ) oðτ ζ(ϑ, τ);

(iii) oðττ
α =

Γ(α + 1)
Γ(ð + α + 1)

tð+α.

Definition 2.2. [40] The Caputo operator of the fractional partial derivative is defined by

Dðτζ(ϑ, τ) =
∂ðζ(ϑ, τ)
∂τð

=


on−ð

[
∂ðζ(ϑ, τ)
∂τð

]
, if n − 1 < ð ≤ n, n ∈ N;

∂ðζ(ϑ, τ)
∂τð

, if n = ð.

(2.2)

Theorem 2.1. [41] Let ð, τ ∈ R, τ > 0 and m − 1 < ϑ < m ∈ N; then,

oðτ Dðτζ(ϑ, τ) = ζ(ϑ, τ) −
m−1∑
k=0

τk

k!
∂kυ(ϑ, 0+)

∂τk , (2.3)

and
Dðτ o

ð
τ ζ(ϑ, τ) = ζ(ϑ, τ). (2.4)

The Mohand transform, which is represented by M(·) for a function ζ(τ), is defined as

M {ζ(τ)} = R(υ) = υ2
∫ ∞

0
ζ(τ)e−υτdτ, k1 ≤ υ ≤ k2. (2.5)
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The Mohand transform of a function ζ(τ) is R(υ); then, ζ(τ) is called the inverse of R(υ), which is
expressed as

M−1 {R(υ)} = ζ(τ), (2.6)

where M−1 is the inverse Mohand operator.
The Mohand transform for nth derivatives is defined by [41]

M{ζn(τ)} = υnR(υ) − υn+1ζ0 − υ
nζ
′

0 − · · · − υ
2ζn−1

0 . (2.7)

3. Generalized procedure for implementation of NAAA

In this section, we extend the NAAA implementation for the analytical treatment of the general
equation of non-linear fractional order PDEs defined as [30]:

Dðτζ(ϑ, γ, τ) = £ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ), ð ∈ (0, 2) (3.1)

with the initial sources
ζ(ϑ, γ, 0) = ζ(ϑ, γ), Dðτζ(ϑ, γ, 0) = ζ(ϑ, γ),

where £ is the linear operator, ℵ is the non-linear operator and δ(ϑ, γ, τ) is a source function.
The computational work will use the following basic concepts.

Lemma 3.1. [30] For ζ(ϑ, γ, τ) =
∑∞

k=0 λ
kζk(ϑ, γ, τ), the linearity of £ζ(ϑ, γ, τ) is given the following

result:

£ζ(ϑ, γ, τ) = £

 ∞∑
k=0

λkζk(ϑ, γ, τ)

 =

∞∑
k=0

£ (ζk(ϑ, γ, τ)) . (3.2)

Theorem 3.1. [30] If the non-linear term with the η parameter ζk(ϑ, γ, τ) =
∑∞

0 λ
kζk(ϑ, γ, τ), then the

nonlinear operator ℵζ(ϑ, γ, τ) satisfies the following property:

ℵ (ζk(ϑ, γ, τ)) = ℵ

 ∞∑
0

ηkζk(ϑ, γ, τ)

 =

∞∑
0

 1
n!

dn

dηn

ℵ  ∞∑
0

ηkζk(ϑ, γ, τ)


η=0

 ηn. (3.3)

Definition 3.1. [30] The non-linear term ℵ (ζk(ϑ, γ, τ)) is uniquely expressed in summation form as
follows:

ℵ (ζk(ϑ, γ, τ)) =

∞∑
k=0

λkℵk. (3.4)

The following results verify the existence and uniqueness of the NAAM solution.

Theorem 3.2. Let δ(ϑ, γ, τ) and ζ(ϑ, γ, τ) be defined for n − 1 < ð < n in (3.1); the wave model with
variable coefficients (3.1) yields the unique solution as

ζ(ϑ, γ, τ) = δ−ðτ (ϑ, γ, τ) + ζ(ϑ, γ, 0) + Dðτζ(ϑ, γ, 0) +

∞∑
k=1

[
£−ðτ (ζ(k−1)) + ℵ−ð(k−1)τ

]
, (3.5)

where £−ðτ (ζ(k−1)) and =−ð(k−1)τ represent the Riemmen fractional order (ð) integration with the parameter
τ.
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Proof. The solution ζ(ϑ, γ, τ) of the wave model is achieved by using the expansion as

ζ(ϑ, γ, τ) =

∞∑
k=0

ζk(ϑ, γ, τ). (3.6)

Similarly, the solution is further summarized by the following procedure

ζk(ϑ, γ, τ) =

∞∑
0

λkζk(ϑ, γ, τ). (3.7)

To evaluate the solution of the wave model (3.1), we compute as

Dðτζ(ϑ, γ, τ) = λ[£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + δ(ϑ, γ, τ)], ð ∈ (0, 2) (3.8)

with the initial conditions

ζ(ϑ, γ, 0) = ζ(ϑ, γ), Dðτζ(ϑ, γ, 0) = ϕ(ϑ, γ); (3.9)

by using the Riemann integral operator (2.1), with respect to τ, and by applying the basic property, we
have

ζλζ(ϑ, γ) = ζ(ϑ, γ, 0) + Dðτζ(ϑ, γ, 0) + λ oðτ
[
£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + δ(ϑ, γ, τ)

]
. (3.10)

Now, by substituting the initial conditions and (3.5) in (3.8), we get

∞∑
k=0

λkζλ(ϑ, γ, τ) = ζ(ϑ, γ) + ϕ(ϑ, γ) + λ oðτ
[
δ(ϑ, γ, τ)

]
+ λ oðτ

£  ∞∑
k=0

λkζ(ϑ, γ, τ)

 + ℵ

 ∞∑
k=0

λkζ(ϑ, γ, τ)

 , (3.11)

with using Lemma 3.1 and Definition 3.1, (3.11) becomes

∞∑
k=0

λkζk(ϑ, γ, τ) = ζ(ϑ, γ)+ϕ(ϑ, γ)+λoðτ
[
δ(ϑ, γ, τ)

]
+λoðτ

£  ∞∑
k=0

λkζk(ϑ, γ, τ)

+λoðτ ∞∑
0

λkℵk

 . (3.12)

By equating the identical power of (λ), the iterative scheme becomes

ζ0(ϑ, γ, τ) = ζ(ϑ, γ) + ϕ(ϑ, γ),
ζ1(ϑ, γ, τ) = δ(ϑ, γ, τ) + £−ðτ ζ0 + ℵ−ðτ0 ,

and
ζk(ϑ, γ, τ) = £−ðτ ζ(k−1) + ℵ−ðτ(k−1)

for k = 2, 3, . . . . �
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4. Generalized procedure for implementation of MVITA

Consider the general equation defined by (3.1) with the initial condition

ζ(ϑ, γ, 0) = ζ(ϑ, γ).

Now, by applying the Mohand transform to (3.1), we get

M
{
Dðτζ(ϑ, γ, τ)

}
= M {£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ)} . (4.1)

Using the iteration property of transformation, we obtain

M {ζ(ϑ, γ, τ)} −
m−1∑
k=0

υϑ−k−1∂
kψ(χ, y, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

= M {£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ)} . (4.2)

And, by using the iterative technique with the Lagrange multiplier (−λ(υ)), we have

M {ζn+1(ϑ, γ, τ)
]
} = M {ζn(ϑ, γ, τ)} − λ(υ)

M{ζn(ϑ, γ, τ)} −
m−1∑
k=0

υϑ−k−1∂
kζ(ϑ, γ, 0)
∂τk

 , (4.3)

where λ(υ) = − 1
υð
. Putting (4.3) in (4.2), we get

M {ζn+1(ϑ, γ, τ)} = M {ζn(ϑ, γ, τ)}

− λ(υ)

M{ζn(ϑ, γ, τ)} −
m−1∑
k=0

υϑ−k−1∂
kζ(ϑ, γ, 0)
∂τk + M {£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ)}

 . (4.4)

By applying the inverse Mohand transform to (4.4), we obtain

ζn+1(ϑ, γ, τ) = ζn(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ

∂τk

∣∣∣∣∣∣∣
τ=0

+ M {£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ)}


 .

The initial condition becomes

ζ0(ϑ, γ, τ) = M−1

 1
υð

m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, 0)
∂τk

 .
The recursive scheme becomes

ζn+1(ϑ, γ, τ) = ζn(ϑ, γ, τ)

+ M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

M {£ζ(ϑ, γ, τ) + ℵζ(ϑ, γ, τ) + g(ϑ, γ, τ)}


 .
(4.5)

The approximate solution is obtained through the recursive scheme defined by (4.5).
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5. NAAA and MVITA testing analysis

In this section, we test the NAAA approach for the solution of the time fractional time system of
PDEs [29].

Example 5.1. Consider a non-linear time fractional time system of PDEs in the form of

Dðτζ = ζ2ξ +
1
4

(
ζϑϑ + ζγγ

)
− 2ζ,

Dðτξ = −ζ2ξ +
1
4

(
ξϑϑ + ξγγ

)
+ ζ,

(5.1)

where ϑ, τ ∈ R and ð ∈ (0, 1] and we have the following conditions:

ζ(ϑ, γ, 0) = e−ϑ−γ,

ξ(ϑ, γ, 0) = eϑ+γ;

the exact solution for integer order is

ζ(ϑ, γ, τ) = e−ϑ−γ−τ,

ξ(ϑ, γ, τ) = eϑ+γ+τ.

5.1. Testing Problem 5.1 by using the NAAA

For the solution of (5.1), we assume the final procedure described by (3.10) and the final recursive
scheme becomes

ζ0(ϑ, γ, τ) = ζ(ϑ, γ),
ξ0(ϑ, γ, τ) = ξ(ϑ, γ),

(5.2)

ζ1(ϑ, γ, τ) = o−ðτ

(
1
4

(
ζ0ϑϑ + ζ0γγ

)
− 2ζ0

)
+ ℵ−ð0τ ,

ξ1(ϑ, γ, τ) = o−ðτ

(
1
4

(
ξ0ϑϑ + ξ0γγ

)
+ ζ0

)
+ ℵ−ð0τ

(5.3)

and

ζk(ϑ, γ, τ) = o−ðτ

(
1
4

(
ζ(k−1)ϑϑ + ζ(k−1)γγ

)
− 2ζ(k−1)

)
+ ℵ−ð(k−1)τ,

ξk(ϑ, γ, τ) = o−ðτ

(
1
4

(
ξ(k−1)ϑϑ + ξ(k−1)γγ

)
+ ζ(k−1)

)
+ ℵ−ð(k−1)τ

(5.4)

for k = 2, 3, . . . . Consequently, we obtain

ζ0(ϑ, γ, τ) = e−ϑ−γ,

ξ0(ϑ, γ, τ) = eϑ+γ
(5.5)
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and by using

ζ1(ϑ, γ, τ) = o−ðτ

(
1
4

(
ζ0ϑϑ + ζ0γγ

)
− 2ζ0

)
+ ℵ−ð0τ ,

ξ1(ϑ, γ, τ) = o−ðτ

(
1
4

(
ξ0ϑϑ + ξ0γγ

)
+ ζ0

)
+ ℵ−ð0τ ,

(5.6)

we get the second approximation as

ζ1(ϑ, γ, τ) = −e−ϑ−γ
τð

ð!
,

ξ1(ϑ, γ, τ) = eϑ+γ τ
ð

ð!
.

(5.7)

Now, we apply the general recursive scheme as follows:

ζk(ϑ, γ, τ) = o−ðτ

(
1
4

(
ζ(k−1)ϑϑ + ζ(k−1)γγ

)
− 2ζ(k−1)

)
+ ℵ−ð(k−1)τ,

ξk(ϑ, γ, τ) = o−ðτ

(
1
4

(
ξ(k−1)ϑϑ + ξ(k−1)γγ

)
+ ζ(k−1)

)
+ ℵ−ð(k−1)τ.

(5.8)

ζ2(ϑ, γ, τ) = e−ϑ−γ
τ2ð

(2ð)!
,

ξ2(ϑ, γ, τ) = eϑ+γ τ2ð

(2ð)!
,

ζ3(ϑ, γ, τ) = −e−ϑ−γ
τ3ð

(3ð)!
,

ξ3(ϑ, γ, τ) = eϑ+γ τ3ð

(3ð)!
,

....

(5.9)

The NAAM becomes

ζ(ϑ, γ, τ) = ζ0 + ζ1 + ζ2 + ζ3 + · · · ,

ξ(ϑ, γ, τ) = ξ0 + ξ1 + ξ2 + ξ3 + · · · ;
(5.10)

by substituting the values of (5.5), (5.7) and (5.9) in (5.10), we obtain

ζ(ϑ, γ, τ) = e−ϑ−γ − e−ϑ−γ
τð

ð!
+ e−ϑ−γ

τ2ð

(2ð)!
− e−ϑ−γ

τ3ð

(3ð)!
+ · · · ,

ξ(ϑ, γ, τ) = eϑ+γ + eϑ+γ τ
ð

ð!
+ eeϑ+γ τ2ð

(2ð)!
+ eϑ+γ τ3ð

(3ð)!
+ · · · .

(5.11)

For the special case γ = 1, the NAAA solution in series form becomes

ζ(ϑ, γ, τ) = e−ϑ−γ
(
1 −

τ

1!
+

τ2

(2)!
−

τ3

(3)!
+ · · ·

)
,

ξ(ϑ, γ, τ) = eϑ+γ

(
1 +

τ

1!
+

τ2

(2)!
+

τ3

(3)!
+ · · ·

)
;

(5.12)

AIMS Mathematics Volume 8, Issue 3, 7142–7162.



7150

this series form solution directly converges to the exact solution of the problem:

ζ(ϑ, γ, τ) = e−ϑ−γ−τ,

ξ(ϑ, γ, τ) = eϑ+γ+τ.
(5.13)

5.2. Testing Problem 5.1 by using the MVITA

Consider the same non-linear system of time-fractional PDEs defined by (5.1) with the initial
conditions

ζ(ϑ, γ, 0) = e−ϑ−γ,

ξ(ϑ, γ, 0) = eϑ+γ.

By using the general recursive scheme (4.5), we get

ζn+1(ϑ, γ, τ) = ζn(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
ζ2

nξn +
1
4

(
ζnϑϑ + ζnγγ

)
− 2ζn

}
 ,

ξn+1(ϑ, γ, τ) = ξn(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζ2

nξn +
1
4

(
ξnϑϑ + ξnγγ

)
+ ζn

}
 .

So, the initial condition becomes

ζ0(ϑ, γ, τ) = e−ϑ−γ,

ξ0(ϑ, γ, τ) = eϑ+γ.

Now, for different values of n (n = 0, 1, 2, . . .), we have

ζ1(ϑ, γ, τ) = ζ0(ϑ, γ, τ) + M−1

 1
υð

m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
ζ2

0ξ0 +
1
4

(
ζ0ϑϑ + ζ0γγ

)
− 2ζ0

}
 ,

ξ1(ϑ, γ, τ) = ξ0(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζ2

0ξ0 +
1
4

(
ξ0ϑϑ + ξ0γγ

)
+ ζ0

}
 .

By simplifying with the initial condition, we get

ζ1(ϑ, γ, τ) = e−ϑ−γ + e−ϑ−γ
τð

ð!
,

ξ1(ϑ, γ, τ) = eϑ+γ + eϑ+γ τ
ð

ð!
.

(5.14)

Consequently, we get

ζ2(ϑ, γ, τ) = ζ1(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
ζ2

1ξ0 +
1
4

(ζ1ϑϑ + ζ1γγ) − 2ζ1

}
 ,

ξ2(ϑ, γ, τ) = ξ1(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζ2

1ξ1 +
1
4

(ξ1ϑϑ + ξ1γγ) + ζ1

}
 .
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The series form solution, we get

ζ2(ϑ, γ, τ) = e−ϑ−γ + e−ϑ−γ
τð

ð!
+ e−ϑ−γ

τ2ð

(2ð)!
,

ξ2(ϑ, γ, τ) = eϑ+γ + eϑ+γ τ
ð

ð!
+ eϑ+γ τ2ð

(2ð)!
,

ζ3(ϑ, γ, τ) = e−ϑ−γ + e−ϑ−γ
τð

ð!
+ e−ϑ−γ

τ2ð

(2ð)!
+ e−ϑ−γ

τ3ð

(3ð)!
,

ξ3(ϑ, γ, τ) = eϑ+γ + eϑ+γ τ
ð

ð!
+ eϑ+γ τ2ð

(2ð)!
+ eϑ+γ τ3ð

(3ð)!
,

....

Thus, the solution becomes

ζ(ϑ, γ, τ) =

∞∑
n=0

ζn(ϑ, γ, τ) = e−ϑ−γ
 ∞∑

n=0

(−1)nτnð

(nð)!

 ,
ξ(ϑ, γ, τ) =

∞∑
n=0

ξn(ϑ, γ, τ) = eϑ+γ

 ∞∑
n=0

τnð

(nð)!

 . (5.15)

For a specific integer value ð = 1, the MVITA solution becomes

ζ(ϑ, γ, τ) = e−ϑ−γ−τ,

ξ(ϑ, γ, τ) = eϑ+γ−τ,

which is the exact solution of the problem.
In Figure 1, the approximate solution of ζ(ϑ, γ, τ) is obtained by using the NAAA for Example 5.1.

Figure 2, the approximate solution of ζ(ϑ, γ, τ) is obtained by using the MVITA for Example 5.1.
Figure 3, the approximate solution of ξ(ϑ, γ, τ) is obtained by using the NAAA for Example 5.1. And
Figure 4, the approximate solution of ξ(ϑ, γ, τ) is obtained by using the MVITA for Example 5.1.

Figure 1. The approximate solution of ζ(ϑ, γ, τ) as obtained by using the NAAA for
Example 5.1.
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Figure 2. The approximate solution of ζ(ϑ, γ, τ) as obtained by using the MVITA for
Example 5.1.

Figure 3. The approximate solution of ξ(ϑ, γ, τ) as obtained by using the NAAA for
Example 5.1.

Figure 4. The approximate solution of ξ(ϑ, γ, τ) as obtained by using the MVITA for
Example 5.1.

Example 5.2. Consider a non-linear time-fractional system of PDEs in the form of

Dðτζ = −ζϑξϑ − ζγξγ − ζ,

Dðτξ = −ξϑ=ϑ + ξγ=γ + ξ,

Dðτ= = −=ϑζϑ − =γζγ − =,

(5.16)
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where ϑ, τ ∈ R and ð ∈ (0, 1] with the conditions

ζ(ϑ, γ, 0) = eϑ+γ,

ξ(ϑ, γ, 0) = eϑ−γ,

=(ϑ, γ, 0) = e−ϑ+γ;

the exact solution for integer order is

ζ(ϑ, γ, τ) = eϑ+γ−τ,

ξ(ϑ, γ, τ) = eϑ−γ+τ,

=(ϑ, γ, τ) = e−ϑ+γ−τ.

5.3. Testing Problem 5.2 by using the NAAA

For the solution of (5.16), we assume the final procedure described by (3.10), and the final recursive
scheme becomes

ζ0(ϑ, γ, τ) = ζ(ϑ, γ),
ξ0(ϑ, γ, τ) = ξ(ϑ, γ),
=0(ϑ, γ, τ) = =(ϑ, γ),

(5.17)

ζ1(ϑ, γ, τ) = − o−ðτ (ζ0) − ℵ−ð10τ − ℵ
−ð
20τ,

ξ1(ϑ, γ, τ) = o−ðτ (ξ0) − ℵ−ð30τ + ℵ−ð40τ,

=1(ϑ, γ, τ) = − o−ðτ
(
=0

)
− ℵ−ð50τ + ℵ−ð60τ

(5.18)

and

ζk(ϑ, γ, τ) = − o−ðτ
(
ζ(k−1)

)
− ℵ−ð1(k−1)τ − ℵ

−ð
2(k−1)τ,

ξk(ϑ, γ, τ) = o−ðτ
(
ξ(k−1)

)
− ℵ−ð3(k−1)τ + ℵ−ð4(k−1)τ,

=k(ϑ, γ, τ) = − o−ðτ
(
=(k−1)

)
− ℵ−ð5(k−1)τ + ℵ−ð6(k−1)τ,

(5.19)

where ℵ1 = −ζϑξϑ,ℵ2 = −ζγξγ,ℵ3 = −ξϑ=ϑ,ℵ4 = ξγ=γ,ℵ5 = −=ϑζϑ and ℵ6 = −=γζγ are the non-
linear terms of the given problem.

Consequently, we can obtain the approximated terms as

ζ0(ϑ, γ, τ) = eϑ+γ,

ξ0(ϑ, γ, τ) = eϑ−γ,

=0(ϑ, γ, τ) = e−ϑ+γ.

(5.20)

Now, by using

ζ1(ϑ, γ, τ) = − o−ðτ (ζ0) − ℵ−ð10τ − ℵ
−ð
20τ,

ξ1(ϑ, γ, τ) = o−ðτ (ξ0) − ℵ−ð30τ + ℵ−ð40τ,

=1(ϑ, γ, τ) = − o−ðτ
(
=0

)
− ℵ−ð50τ + ℵ−ð60τ,

(5.21)
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we obtain the second approximation as

ζ1(ϑ, γ, τ) = −eϑ+γ τ
ð

ð!
,

ξ1(ϑ, γ, τ) = eϑ−γ
τð

ð!
,

=1(ϑ, γ, τ) = −e−ϑ+γ τ
ð

ð!
.

(5.22)

The other approximated terms by obtained by using

ζk(ϑ, γ, τ) = − o−ðτ
(
ζ(k−1)

)
− ℵ−ð1(k−1)τ − ℵ

−ð
2(k−1)τ,

ξk(ϑ, γ, τ) = o−ðτ
(
ξ(k−1)

)
− ℵ−ð3(k−1)τ + ℵ−ð4(k−1)τ,

=k(ϑ, γ, τ) = − o−ðτ
(
=(k−1)

)
− ℵ−ð5(k−1)τ + ℵ−ð6(k−1)τ.

(5.23)

For different values of k, we get

ζ2(ϑ, γ, τ) = e−ϑ−γ
τ2ð

(2ð)!
,

ξ2(ϑ, γ, τ) = eϑ+γ τ2ð

(2ð)!
,

=2(ϑ, γ, τ) = e−ϑ+γ τ2ð

(2ð)!
,

ζ3(ϑ, γ, τ) = −e−ϑ−γ
τ3ð

(3ð)!
,

ξ3(ϑ, γ, τ) = eϑ+γ τ3ð

(3ð)!
,

=3(ϑ, γ, τ) = −e−ϑ+γ τ3ð

(3ð)!
,

....

(5.24)

The NAAM becomes

ζ(ϑ, γ, τ) = ζ0 + ζ1 + ζ2 + ζ3 + · · · ,

ξ(ϑ, γ, τ) = ξ0 + ξ1 + ξ2 + ξ3 + · · · ,

=(ϑ, γ, τ) = =0 + =1 + =2 + =3 + · · · .

(5.25)

By substituting the values of (5.20), (5.22) and (5.24) in (5.25), we obtain

ζ(ϑ, γ, τ) = eϑ+γ − eϑ+γ τ
ð

ð!
+ eϑ+γ τ2ð

(2ð)!
− eϑ+γ τ3ð

(3ð)!
+ · · · ,

ξ(ϑ, γ, τ) = eϑ−γ + eϑ−γ
τð

ð!
+ eϑ−γ

τ2ð

(2ð)!
+ eϑ−γ

τ3ð

(3ð)!
+ · · · ,

=(ϑ, γ, τ) = e−ϑ+γ − e−ϑ+γ τ
ð

ð!
+ e−ϑ+γ τ2ð

(2ð)!
− e−ϑ+γ τ3ð

(3ð)!
+ · · · .

(5.26)
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For the special case γ = 1, the NAAA solution in series form becomes

ζ(ϑ, γ, τ) = eϑ+γ

(
1 −

τ

1!
+

τ2

(2)!
−

τ3

(3)!
+ · · ·

)
,

ξ(ϑ, γ, τ) = eϑ+γ

(
1 +

τ

1!
+

τ2

(2)!
+

τ3

(3)!
+ · · ·

)
,

=(ϑ, γ, τ) = e−ϑ+γ

(
1 −

τ

1!
+

τ2

(2)!
−

τ3

(3)!
+ · · ·

)
,

this series form solution directly converges to the exact solution of the problem:

ζ(ϑ, γ, τ) = eϑ+γ−τ,

ξ(ϑ, γ, τ) = eϑ+γ+τ,

=(ϑ, γ, τ) = e−ϑ+γ−τ.

(5.27)

5.4. Testing Problem 5.2 by using the MVITA

Consider the same non-linear system of time-fractional PDEs defined by (5.16) with the initial
conditions

ζ(ϑ, γ, 0) = eϑ+γ,

ξ(ϑ, γ, 0) = eϑ−γ,

=(ϑ, γ, 0) = e−ϑ+γ.

By using the general recursive scheme (4.5), we get

ζn+1(ϑ, γ, τ) = ζn(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζnϑξnϑ − ζnγξnγ − ζn

}
 ,

ξn+1(ϑ, γ, τ) = ξn(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ξnϑ=nϑ + ξnγ=nγ + ξn

}
 ,

=n+1(ϑ, γ, τ) = =n(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
k=(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−=nϑζnϑ − =nγζnγ − =n

}
 .

So, the initial guess becomes

ζ0(ϑ, γ, τ) = eϑ+γ,

ξ0(ϑ, γ, τ) = eϑ−γ,

=0(ϑ, γ, τ) = e−ϑ+γ.

AIMS Mathematics Volume 8, Issue 3, 7142–7162.



7156

Now, for different values of n (n = 0, 1, 2, . . .), we have

ζ1(ϑ, γ, τ) = ζ0(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζ0ϑξ0ϑ − ζ0γξ0γ − ζ0

}
 ,

ξ1(ϑ, γ, τ) = ξ0(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ξ0ϑ=0ϑ + ξ0γ=0γ + ξ0

}
 ,

=1(ϑ, γ, τ) = =0(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
k=(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−=0ϑζ0ϑ − =0γζ0γ − =0

}
 .

By simplifying with the initial conditions, we get

ζ1(ϑ, γ, τ) = eϑ+γ − eϑ+γ τ
ð

(ð)!
,

ξ1(ϑ, γ, τ) = eϑ−γ + eϑ−γ
τð

(ð)!
,

=1(ϑ, γ, τ) = e−ϑ+γ − e−ϑ+γ τ
ð

(ð)!
.

Consequently, we get

ζ2(ϑ, γ, τ) = ζ1(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kζ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ζ1ϑξ0ϑ − ζ0γξ1γ − ζ1

}
 ,

ξ2(ϑ, γ, τ) = ξ1(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
kξ(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−ξ1ϑ=1ϑ + ξ1γ=1γ + ξ1

}
 ,

=2(ϑ, γ, τ) = =1(ϑ, γ, τ) + M−1

 1
υð

 m−1∑
k=0

υð−k−1∂
k=(ϑ, γ, τ)
∂τk

∣∣∣∣∣∣∣
τ=0

+ M
{
−=1ϑζ1ϑ − =1γζ1γ − =1

}
 .

ζ2(ϑ, γ, τ) = eϑ+γ − eϑ+γ τ
ð

(ð)!
+ eϑ+γ τ2ð

(2ð)!
,

ξ2(ϑ, γ, τ) = eϑ−γ + eϑ−γ
τð

(ð)!
+ eϑ−γ

τ2ð

(2ð)!
,

=2(ϑ, γ, τ) = e−ϑ+γ − e−ϑ+γ τ
ð

(ð)!
+ e−ϑ+γ τ2ð

(2ð)!
,

similarly, we get

ζ3(ϑ, γ, τ) = eϑ+γ − eϑ+γ τ
ð

(ð)!
+ eϑ+γ τ2ð

(2ð)!
− eϑ+γ τ3ð

(3ð)!
,

ξ3(ϑ, γ, τ) = eϑ−γ + eϑ−γ
τð

(ð)!
+ eϑ−γ

τ2ð

(2ð)!
+ eϑ−γ

τ3ð

(3ð)!
,

=3(ϑ, γ, τ) = e−ϑ+γ − e−ϑ+γ τ
ð

(ð)!
+ e−ϑ+γ τ2ð

(2ð)!
− e−ϑ+γ τ3ð

(3ð)!
,

....
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Thus the solution becomes

ζ(ϑ, γ, τ) =

∞∑
n=0

ζn(ϑ, γ, τ) = eϑ+γ

 ∞∑
n=0

(−1)nτnð

(nð)!

 ,
ξ(ϑ, γ, τ) =

∞∑
n=0

ξn(ϑ, γ, τ) = eϑ−γ
 ∞∑

n=0

τnð

(nð)!

 ,
=(ϑ, γ, τ) =

∞∑
n=0

=n(ϑ, γ, τ) = e−ϑ+γ

 ∞∑
n=0

(−1)nτnð

(nð)!

 .
(5.28)

For a specific integer value ð = 1, the MVITA solution becomes

ζ(ϑ, γ, τ) = eϑ+γ−τ,

ξ(ϑ, γ, τ) = eϑ−γ+τ,

=(ϑ, γ, τ) = e−ϑ+γ−τ,

which is the exact solution of Example 5.2.

In Figure 5, the approximate solution of ζ(ϑ, γ, τ) is obtained by using the NAAA for Example 5.2.
Figure 6, the approximate solution of ξ(ϑ, γ, τ) is obtained by using the NAAA for Example 5.2.
Figure 7, the approximate solution of =(ϑ, γ, τ) is obtained by using the NAAA for Example 5.2.
Figure 8, the approximate solution of ζ(ϑ, γ, τ) is obtained by using the MVITA for Example 5.2.
Figure 9, the approximate solution of ξ(ϑ, γ, τ) is obtained by using the MVITA for Example 5.2.
Figure 10, the approximate solution of =(ϑ, γ, τ) is obtained by using the MVITA for Example 5.2.

Figure 5. The approximate solution of ζ(ϑ, γ, τ) as obtained by using the NAAA for
Example 5.2.
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Figure 6. The approximate solution of ξ(ϑ, γ, τ) as obtained by using the NAAA for
Example 5.2.

Figure 7. The approximate solution of =(ϑ, γ, τ) as obtained by using the NAAA for
Example 5.2.

Figure 8. The approximate solution of ζ(ϑ, γ, τ) as obtained by using the MVITA for
Example 5.2.
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Figure 9. The approximate solution of ξ(ϑ, γ, τ) as obtained by using the MVITA for
Example 5.2.

Figure 10. The approximate solution of =(ϑ, γ, τ) as obtained by using the MVITA for
Example 5.2.

6. Conclusions

The current article has introduced two analytical approaches, the NAAA and MVITA, to solve
PDEs. Their validity and applicability were checked by solving time-fractional systems of PDEs. For
Example 5.1, the approximations defined by (5.11) and (5.15) have shown that the MVITA has rapid
convergence to the exact solution for the problem for integer order; this was also demonstrated by
plotting. Similarly, for Example 5.2, the approximated results represented by (5.26) and (5.28) have
shown that the MVITA has a series-form solution which quickly converges to the exact solution for
the problem; this was checked by plotting. Overall, it has been demonstrated that the MVITA has less
computational work and rapid convergence without decomposition, He’s polynomial or discretization,
while, in the case of the NAAA, the non-linearity is decomposed by an Adomian decomposition
procedure, and it has a slow rate of convergence for non-linear problems. The MVITA can easily
be extended to high order non-linear physical models.
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