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Abstract: Continuous monitoring and improving the production process is a crucial step for the 
entrepreneur to maintain its position in the market. A successful process monitoring scheme depends 
upon the specification of the quality being monitored. In this paper, the monitoring of temperature is 
addressed using the specification of moving average under uncertainty. We determined the 
coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of 
indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average 
run lengths using several shift values. A real example of weather-related situation is studied for the 
practical adoption of the given technique. A comparison study shows that the proposed chart 
outperforms the existing chart in monitoring temperature-related data. 
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1. Introduction 

A control chart, a primary instrument for process monitoring, consists of a set of systematic 
procedures for observing and refining the quality of items produced through a process. The notion of 
a control chart was floated by Walter A. Shewhart, a physicist and statistician at Bell Laboratories, 
during 1920s. Since its inception, several techniques have been introduced by researchers for 
different conditions. A fast and quick indication by the chart refers to the efficient monitoring chart. 
Two types of variations are commonly threatened to the running process, first cause is negligible and 
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no harmful to the production process whereas is known as the assignable cause which is harmful to the 
process [1], reporting the process as out-of-control and required to be identified quickly and fast 
corrective actions are crucial to rectify and streamline the process [2]. Control charts are constructed 
using three lines i.e., the lower control line (LCL), the upper control line (UCL) and a central line (CL). 

In general, the control charts are presented for any monitoring phenomena consisting of a single 
observation but particular situations like interval values cannot be monitored using these techniques. 
For example, the data on the depth of water in a river cannot be expressed using the existing control 
chart techniques. To monitor the temperature variations in which the observations are collected in the 
form of intervals, Aslam [3] developed F-test to study interval data under discrete distribution.  

The traditional Shewhart chart is relatively good for spotting big process shifts and is less 
popular in literature due to the incompetency to detect small process disturbances. In order to detect 
slight process shifts the researchers have proposed the exponentially weighted moving average 
(EWMA), cumulative sum (CUSUM) and moving average (MA) charts which are significantly 
delicate for smaller process shifts in the parameters of interest and achieved significant attention of 
the quality control researchers [4]. Due to the inertia problem, the detection capability of the EWMA 
chart is abhorrent among the quality control personals [4]. The CUSUM charts are tougher to apply 
and use than other control charts for detecting smaller shifts in the parameters. The MA charts are 
easy to understand and apply because it is created using simple averages but are slightly less efficient 
as compared to the EWMA and CUSUM charts whereas its collective working is relatively the same [5]. 
Chen and Yang [6] developed an MA chart for the continuous process failure mechanism. Wong et al. [5] 
suggested a simple MA chart as well as the joint Shewhart-MA chart. Khoo [7] proposed the MA 
chart for monitoring the number of non-conforming products. Khoo and Wong [8] suggested a 
double MA chart by measuring double moving averages and showed its efficiency over the simple 
MA on the basis of the average run lengths. Lin, Chou [9] designed an economic control chart using 
MA for auto-correlated observations. Maghsoodloo, Barnes [10] discussed the MA control chart and 
discussed their conditional average run length. More details on MA control charts can be seen in [11–14]. 
Knoth et al. [15] criticized modifications made to standard exponentially weighted moving average 
(EWMA) and cumulative sum (CUSUM) control charts. Abbas et al. [16] discussed some concerns 
raised on the auxiliary information-based control charts. 

In recent years, neutrosophic statistics is being used very commonly by quality control 
researchers due to the nature of collected data which cannot be treated using traditional statistics [17]. 
The idea of neutrosophic statistics is based upon the fussy logic which considers the percentages of 
truth and falseness [18]. Several generalizations of fuzzy logic have been presented by [19–21]. 
Albassam, Khan [22] presented the application of D’Agostino test, a method used for evaluating the 
data, for neutrosophic statistics. In the real world, there are many situations in which exact, 
determined, certain, crisp or clear observations are not possible. For example, the depth of water in any 
river cannot be described in an exact figure but only the intervals of different areas can be stated. More 
references on neutrosophic can be appreciated in [17,19,23–30]. Woodall et al. [31] suggested that in the 
designing of the control charts under neutrosophic statistics, the sample size should not be imprecise. 

However, little attention has been given to developing a control chart using the moving average 
scheme for the neutrosophic data which may attract the attention of several quality control experts. 
This paper attempts to introduce a charting scheme for dealing with neutrosophic statistic. The basic 
idea of this paper is to monitor the smaller variations in the uncertain data. The paper is arranged 
under different sections, appended below.  
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2. Materials and methods 

Let the neutrosophic random variable is defined as  𝑋ே = 𝑋௅ + 𝑋௎𝐼ே; 𝐼ே𝜖[𝐼௅ , 𝐼௎] representing 
two parts 𝑋௅ under traditional statistics and 𝑋௎𝐼ே; 𝐼ே𝜖[𝐼௅ , 𝐼௎] representing the indeterminate part. 
Then neutrosophic random variable 𝑋ே𝜖[𝑋௅, 𝑋௎] reduces to 𝑋௅  when 𝐼௅=0. Let 𝑛 presents the 
sample size. The mean of the neutrosophic 𝑖𝑡ℎ subgroup can be described as 𝑋ത௜ே𝜖[𝑋ത௜௅ , 𝑋ത௜௎]. Now 
we suppose that 𝑋௜௝ே belongs to the neutrosophic normal distribution with mean 𝜇ே𝜖[𝜇௅ , 𝜇௅] and 
variance 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ] respectively, for 𝑖 = 1,2, …, and 𝑗 = 1,2, … , 𝑛. With reference to [2], NMA 
statistic is presented as 

𝑀𝐴௜ே =
௑ത(೔)ಿା௑ത(೔షభ)ಿା⋯.ା௑ത(೔షೢశభ)ಿ

௪
.        (1) 

Note that w presents span at time 𝑖. It can be observed that the statistic given in Eq (1) is 
parallel to (EWMA) statistic. The core modification is made for MA and EWMA schemes due to 
their sensitivity. Thus EWMA generates larger loads to the current observations whereas the MA 
provides an equal load to all observations, see [32]. 

2.1. Mathematical proofs 

In this subsection, we will provide the mathematical proofs of the neutrosophic form of MA 
statistic, mean and variance of MA statistic, and control limits under neutrosophic statistics.  

Suppose that  𝑋௜ே𝜖[ 𝑋௜௅,  𝑋௜௎]  (𝑖 = 1,2, … )  be a neutrosophic random variable having 
neutrosophic normal distribution with mean 𝜇ே𝜖[𝜇௅ , 𝜇௅] and variance 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ]. Suppose that 
𝑋ത௜ே𝜖[𝑋ത௜௅ , 𝑋ത௜௎] be the neutrosophic average of 𝑖𝑡ℎ  subgroup follows the neutrosophic normal 
distribution with mean 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௅] and variance 𝜎ே

ଶ 𝑛⁄ 𝜖[𝜎௅
ଶ 𝑛⁄ , 𝜎௎

ଶ 𝑛⁄ ], where 𝑛 is a subgroup 
size. The neutrosophic form of  𝑋௜ே𝜖[ 𝑋௜௅ ,  𝑋௜௎] is expressed as 

 𝑋௜ே = 𝑋௜௅ + 𝑋௜௎𝐼ே; 𝐼ே𝜖[𝐼௅ , 𝐼௎]. 

The neutrosophic form of 𝑋ത௜ே𝜖[𝑋ത௜௅, 𝑋ത௜௎] is expressed as 

 𝑋ത௜ே = 𝑋ത௜௅ + 𝑋ത௜௎𝐼ே; 𝐼ே𝜖[𝐼௅ , 𝐼௎] 

where the first values denote the determinate part, the second values denote indeterminate part and 
𝐼ே𝜖[𝐼௅ , 𝐼௎] is a measure of indeterminacy. 

The MA statistic under neutrosophic statistics when for 𝑤 = 3 and 𝑖 = 4 is expressed as 

𝑀𝐴ସே =
[𝑋തସ௅, 𝑋തସ௎] + [𝑋തଷ௅, 𝑋തଷ௎] + [𝑋തଶ௅, 𝑋തଶ௎]

3
 

or 

𝑀𝐴ସே =
[𝑋തସ௅ + 𝑋തସ௎𝐼ே] + [𝑋തଷ௅ + 𝑋തଷ௎𝐼ே] + [𝑋തଶ௅ + 𝑋തଶ௎𝐼ே]

3
; 𝐼ே𝜖[𝐼௅ , 𝐼௎] 

or 

𝑀𝐴ସே =
 ௑തరಿା ௑തయಿା ௑തమಿ

ଷ
;  𝐼ே𝜖[𝐼௅ , 𝐼௎]. 

In general, the MA statistic, say 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] under neutrosophic can be expressed as follows: 
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𝑀𝐴௜ே =
௑ത(೔)ಿା௑ത(೔షభ)ಿା⋯.ା௑ത(೔షೢశభ)ಿ

௪
. 

Using the above-mentioned information, the neutrosophic form of the statistic 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] 
can be expressed as 

𝑀𝐴௜ே = 𝑀𝐴௜௅ + 𝑀𝐴௜௎𝐼ே; 𝐼ே𝜖[𝐼௅ , 𝐼௎]. 

Hence proved. 
The mean of MA statistic under neutrosophic statistics is derived as follows: 
We know 

𝑀𝐴௜ே =
௑ത(೔)ಿା௑ത(೔షభ)ಿା⋯.ା௑ത(೔షೢశభ)ಿ

௪
. 

Applying expectation on both sides 

𝐸(𝑀𝐴௜ே) =
𝐸(𝑋ത(௜)ே) + 𝐸(𝑋ത(௜ିଵ)ே) + 𝐸(𝑋ത(௜ିଶ)ே) + ⋯ + 𝐸(𝑋ത(௜ି௪ାଵ)ே)

𝑤
 

=
𝜇଴ே + 𝜇଴ே + 𝜇଴ே + ⋯ + 𝜇଴ே

𝑤
=

𝑤𝜇଴ே

𝑤
 

𝐸(𝑀𝐴௜ே) = 𝜇଴ே;  𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎]. 

Hence proved.  
The variance of MA୧୒ is derived as follows: 
We know 

𝑀𝐴௜ே =
௑ത(೔)ಿା௑ത(೔షభ)ಿା⋯.ା௑ത(೔షೢశభ)ಿ

௪
. 

Taking variance on both sides  

𝑉ே(𝑀𝐴௜ே) = 𝑉𝑎𝑟 ቆ
𝑋ത(௜)ே + 𝑋ത(௜ିଵ)ே + 𝑋ത(௜ିଶ)ே + ⋯ + 𝑋ത(௜ି௪ାଵ)ே

𝑤
ቇ 

𝑉ே(𝑀𝐴௜ே) =
ఙಿ

మ

௡௪
; 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ]. 

Hence proved. 
By definition, the lower control limit is defined by 

𝐿𝐶𝐿ே = 𝐸(𝑀𝐴௜ே) − 𝑘ඥ𝑉ே(𝑀𝐴௜ே) 

or 

𝐿𝐶𝐿ே = 𝜇଴ே − 𝑘ටఙಿ
మ

௡௪
; 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎], 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ]. 

By definition, the upper control limit is defined by 

𝑈𝐶𝐿ே = 𝐸(𝑀𝐴௜ே) + 𝑘ඥ𝑉ே(𝑀𝐴௜ே) 

or 

𝑈𝐶𝐿ே = 𝜇଴ே + 𝑘ටఙಿ
మ

௡௪
; 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎], 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ] 
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where 𝑘 is the coefficient of control limits.  

2.2. Design of the proposed chart 

The neutrosophic form of 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] is given by 

𝑀𝐴௜ே = 𝑀𝐴௜௅ + 𝑀𝐴௜௎𝐼ேெ஺; 𝐼ேெ஺𝜖[𝐼௅ெ஺, 𝐼௎ெ஺].     (2) 

The neutrosophic form of 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] has two parts. The first part 𝑀𝐴௜௅ presents 
the determinate part and 𝑀𝐴௜௎𝐼ேெ஺ denote the indeterminate part and 𝐼ேெ஺𝜖[𝐼௅ெ஺, 𝐼௎ெ஺] shows 
the measure of indeterminacy associated with 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎]. Montgomery [2] presented the 
MA statistics which is the special case of 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] and this neutrosophic form tends to 
𝑀𝐴௜௅  statistic if 𝐼௅ெ஺ =0. Then the mean and variance of the neutrosophic statistics 
𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎] for the in-control process i ≥ w; are given as  

𝐸ே(𝑀𝐴௜ே) = 𝜇଴ே; 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎], 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎]   (3) 

and 

𝑉ே(𝑀𝐴௜ே) =
ఙಿ

మ

௡௪
; 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ].       (4) 

Under the above-stated process, the steps of suggested chart may be written as:  
Step 1: Choose a sample having size 𝑛 and 𝑤 and calculate 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎].  
Step 2: State the process in-control if 𝐿𝐶𝐿ே ≤ 𝑀𝐴௜ே ≤ 𝑈𝐶𝐿ே. 
The functioning of the proposed control chart relay on the following pair of two neutrosophic control 
limits, given as  

𝐿𝐶𝐿ே = 𝜇଴ே − 𝑘ටఙಿ
మ

௡௪
; 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎], 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ]     (5) 

𝑈𝐶𝐿ே = 𝜇଴ே + 𝑘ටఙಿ
మ

௡௪
; 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎], 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ].    (6) 

3. Monte Carlo simulation of the proposed neutrosophic statistic 

In this section, the neutrosophic Monte Carlo (NMC) simulation of the neutrosophic MA chart 
has been presented. Let the mean of the in-control process be 𝜇ଵே = 𝜇଴ே + 𝑐𝜎ே; 𝜇ଵே𝜖[𝜇ଵ௅, 𝜇ଵ௎], 
here 𝑐 is the introduced shift. The pre-specified average run length (ARL) for the smooth process is 
𝑟଴ே, further literature can be seen in [33]. The NMC simulation may be listed in the following steps, as:  
Step-1: Generate neutrosophic observations of size 𝑛  from the neutrosophic standard normal 
distribution with mean 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎] and variance 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ]. Compute 𝑋ത௜ே𝜖[𝑋ത௜௅, 𝑋ത௜௎] for 𝑖𝑡ℎ 
subgroup.  
Step-2: Calculate the statistic 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎]  and show it on 𝐿𝐶𝐿ே𝜖[𝐿𝐶𝐿௅ , 𝐿𝐶𝐿௎]  and 
𝑈𝐶𝐿ே𝜖[𝑈𝐶𝐿௅ , 𝑈𝐶𝐿௎]. Observe the first out-of-control number and note it as the run length. 
Step-3: Run these steps 10,000 times and calculate ARL, say 𝐴𝑅𝐿଴ே and neutrosophic standard 
deviation (NSD) of run-length. Select 𝑘 with the condition that 𝐴𝑅𝐿଴ே ≥ 𝑟଴ே.  
Step-4: Generate neutrosophic observations of size 𝑛  from the neutrosophic standard normal 
distribution with mean 𝜇଴ே𝜖[𝜇଴௅, 𝜇଴௎] and variance 𝜎ே

ଶ𝜖[𝜎௅
ଶ, 𝜎௎

ଶ] at a specified shift 𝑐. Compute 
𝑋ത௜ே𝜖[𝑋ത௜௅ , 𝑋ത௜௎] for 𝑖𝑡ℎ subgroup.  
Step-5: Calculate the value 𝑀𝐴௜ே𝜖[𝑀𝐴௜௅ , 𝑀𝐴௜௎]  and show it on 𝐿𝐶𝐿ே𝜖[𝐿𝐶𝐿௅ , 𝐿𝐶𝐿௎]  and 
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𝑈𝐶𝐿ே𝜖[𝑈𝐶𝐿௅ , 𝑈𝐶𝐿௎]. Observe the first out-of-control value which is known as the run length for the 
out-of-control process. 
Step-6: Run the steps 10,000 spells and calculate 𝐴𝑅𝐿ଵே and NSD for various values of 𝑐. Using 
the simulation process, 𝐴𝑅𝐿ଵே and NSD for different values of 𝑐, 𝑛, 𝐼ே and 𝑤 are computed and 
given in Tables 1–6. From Tables 1–6, the following findings related to 𝐴𝑅𝐿ଵே are observed. 
(1) The values of 𝐴𝑅𝐿ଵே decreases as 𝑛 increases when 𝑤 is the same. 
(2) The values of 𝐴𝑅𝐿ଵே increases as 𝑟଴ே increases from 300 to 370. 

Table 1. The values of ARL when 𝑟଴ே = 200, 𝑛 = 5, 𝑤 = 3. 

𝑐 
𝑘=2.742 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 200.46 196.06 172.90 172.37 141.53 140.77 99.89 95.75 
0.1 129.68 129.02 111.52 108.54 92.79 90.17 70.73 67.82 
0.2 58.23 56.69 51.86 49.90 44.14 42.19 35.60 33.73 
0.3 28.10 26.03 25.15 23.38 22.23 20.33 18.50 16.74 
0.4 15.14 13.47 14.22 12.28 13.08 11.06 11.13 9.26 
0.5 9.43 7.55 9.00 7.13 8.28 6.38 7.35 5.44 
0.6 6.49 4.53 6.16 4.27 5.86 3.91 5.36 3.37 
0.7 4.86 2.79 4.71 2.70 4.51 2.44 4.26 2.18 
0.8 3.99 1.86 3.91 1.71 3.80 1.61 3.64 1.36 
0.9 3.50 1.17 3.46 1.13 3.40 1.04 3.29 0.86 
1 3.24 0.74 3.21 0.67 3.18 0.62 3.13 0.53 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 

Table 2. The values of ARL when 𝑟଴ே = 200, 𝑛 = 10, 𝑤 = 3. 

𝑐 
𝑘 =2.74 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 200.13 197.78 170.84 170.34 136.36 132.77 99.28 98.11 
0.1 93.91 91.18 80.48 78.34 68.87 66.55 53.34 49.85 
0.2 30.96 28.46 28.83 26.96 25.00 23.33 20.55 18.33 
0.3 13.39 11.37 12.61 10.67 11.24 9.21 9.80 7.84 
0.4 7.34 5.34 7.01 5.10 6.48 4.57 5.84 3.81 
0.5 4.77 2.77 4.61 2.53 4.45 2.37 4.19 2.03 
0.6 3.73 1.54 3.64 1.38 3.57 1.30 3.47 1.13 
0.7 3.26 0.78 3.23 0.73 3.19 0.66 3.15 0.58 
0.8 3.08 0.40 3.07 0.35 3.06 0.32 3.04 0.26 
0.9 3.02 0.19 3.01 0.14 3.01 0.15 3.01 0.12 
1 3.00 0.07 3.00 0.06 3.00 0.05 3.00 0.04 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 
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Table 3. The values of ARL when 𝑟଴ே = 300, 𝑛 = 5, 𝑤 = 3. 

𝑐 
𝑘 =2.879 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 302.90 293.75 253.53 248.34 200.54 197.20 140.70 137.32 
0.1 184.48 184.07 159.40 157.93 130.94 129.59 95.52 94.19 
0.2 78.14 75.84 70.22 68.19 57.82 54.70 45.02 42.92 
0.3 36.40 34.61 32.83 30.77 28.12 26.45 22.53 20.53 
0.4 18.63 16.58 17.12 15.00 15.25 13.38 12.97 11.14 
0.5 10.92 9.01 10.27 8.22 9.48 7.59 8.44 6.57 
0.6 7.31 5.45 7.01 5.15 6.50 4.63 5.89 3.93 
0.7 5.37 3.35 5.12 3.12 4.89 2.89 4.52 2.41 
0.8 4.22 2.11 4.15 2.00 3.98 1.82 3.77 1.54 
0.9 3.65 1.38 3.57 1.27 3.49 1.15 3.41 1.02 
1 3.30 0.86 3.29 0.83 3.22 0.70 3.17 0.62 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 

Table 4. The values of ARL when 𝑟଴ே = 300, 𝑛 = 10, 𝑤 = 3. 

𝑐 
𝑘 =2.881 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 301.05 298.57 256.61 252.31 201.36 202.95 141.11 139.41 
0.1 128.99 126.94 116.62 113.55 92.68 90.83 69.30 66.10 
0.2 41.04 38.76 36.73 34.13 32.02 29.46 25.68 23.59 
0.3 16.53 14.67 15.09 13.26 13.51 11.75 11.49 9.68 
0.4 8.43 6.52 7.93 6.02 7.41 5.53 6.61 4.71 
0.5 5.27 3.27 5.09 3.12 4.83 2.83 4.47 2.42 
0.6 3.92 1.74 3.85 1.67 3.71 1.48 3.58 1.28 
0.7 3.33 0.90 3.30 0.86 3.25 0.75 3.21 0.67 
0.8 3.10 0.45 3.09 0.40 3.08 0.39 3.06 0.32 
0.9 3.02 0.19 3.03 0.22 3.02 0.16 3.01 0.15 
1 3.00 0.08 3.01 0.10 3.00 0.07 3.00 0.06 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 
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Table 5. The values of ARL when 𝑟଴ே = 370, 𝑛 = 5, 𝑤 = 3. 

𝑐 
𝑘=2.948 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 369.58 357.26 312.20 307.10 247.69 246.41 167.04 164.08 
0.1 219.99 215.32 187.81 183.44 153.03 151.02 110.04 109.85 
0.2 90.94 89.49 81.11 78.02 67.33 65.26 51.51 49.77 
0.3 39.91 37.63 36.50 34.17 30.94 28.92 25.16 23.18 
0.4 20.90 19.04 18.75 16.93 16.89 14.95 14.21 12.17 
0.5 11.92 9.97 11.15 9.24 10.06 8.19 8.80 6.97 
0.6 7.88 5.96 7.49 5.51 6.90 4.98 6.12 4.22 
0.7 5.63 3.65 5.36 3.35 5.07 3.07 4.71 2.69 
0.8 4.39 2.32 4.29 2.23 4.07 1.93 3.91 1.72 
0.9 3.73 1.51 3.66 1.40 3.57 1.28 3.46 1.14 
1 3.37 0.97 3.32 0.89 3.28 0.80 3.21 0.69 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 

Table 6. The values of ARL when 𝑟଴ே = 370, 𝑛 = 10, 𝑤 = 3. 

𝑐 
𝑘=2.951 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 370.63 362.87 319.80 311.31 246.25 237.14 170.50 171.00 
0.1 155.62 154.43 134.55 133.51 111.49 108.85 80.30 78.41 
0.2 46.67 44.58 41.35 39.39 35.52 33.47 28.28 26.28 
0.3 18.44 16.52 16.81 14.80 14.74 12.82 12.46 10.48 
0.4 9.00 7.04 8.38 6.50 7.76 5.84 6.87 4.85 
0.5 5.55 3.58 5.30 3.28 5.01 3.04 4.67 2.64 
0.6 4.04 1.89 3.93 1.76 3.83 1.64 3.64 1.37 
0.7 3.38 0.98 3.36 0.96 3.30 0.85 3.24 0.74 
0.8 3.12 0.51 3.12 0.48 3.10 0.44 3.07 0.38 
0.9 3.03 0.23 3.03 0.23 3.02 0.19 3.02 0.16 
1 3.01 0.11 3.01 0.09 3.00 0.08 3.00 0.07 
2 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 

4. Results and discussion 

In this section, ARL evaluation of the suggested NMA chart has been given with the parallel 
prevailing chart discussed by [2] under the classical statistics using the same parameters in terms 
of 𝐴𝑅𝐿ଵே. For the fair comparison, we used similar values of 𝑟଴ே, 𝑐, 𝑤 and 𝑛. 

4.1. Comparison of charts using ARL 

Montgomery [2] discussed the MA chart under classical statistics. As mentioned earlier, the 
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proposed control chart is the generalization of the existing MA chart. It is important to note that the 
proposed control chart reduces to the existing MA chart if no uncertainty is found in the observations. 
The ARLs are used for the evaluation and comparison of any proposed study [2]. It is worth 
mentioning here that a control chart having the least number of ARLs is considered the better or 
more capable chart as compared to a chart having larger ARLs. The values of ARL and NSD of the 
existing control chart mentioned by [2] when 𝐼ே = 0 are shown in the first column of Tables 1–6. 
From Tables 1–6, it can be seen that as the values of 𝐼ே increases, there is a decreasing trend in the 
values of ARL and NSD. For example, when 𝐼ே = 0 and 𝑐=0.2, from Table 5, the values of ARL 
and NSD are 90 and 89 and when 𝐼ே = 0.02 and 𝑐=0.2, from Table 5, the values of ARL and NSD 
are 81 and 80, respectively. This comparison shows that the proposed control chart gives smaller 
values of ARL and NSD as compared to the MA chart under classical statistics. Based on this 
information, it is concluded that the proposed control chart is more efficient than the control chart 
proposed by [2] under classical statistics.  

4.2. Comparison using simulation data 

Now, we compare the efficiency of the proposed chart with the existing control chart discussed 
by [2] under classical statistics using the simulated data. The data is generated from the neutrosophic 
normal distribution with 𝜇ே𝜖[0,0] and 𝜎ே

ଶ𝜖[1,1]. Forty neutrosophic observations are generated 
such that the first 20 neutrosophic observations are generated from the in-control process and the 
remaining neutrosophic observations are generated by considering 𝑐=0.4 and 𝐼ே=0.1. The values of 
𝑀𝐴௜௅is computed and plotted on the control chart in Figure 1 (left) and the values 𝑀𝐴௜௎ are 
computed and plotted on the control chart in Figure 1 (right). By comparing both figures in Figure 1, 
it can be noted that the values of 𝑀𝐴௜௅fall within the control limits that indicate that the process is 
in-control. On the other hand, the proposed control chart shows that the values of 𝑀𝐴௜௎ go out the 
upper control limit at the 34th sample. Under an uncertain environment, the proposed control chart 
detects shift earlier than the control chart under classical statistics. The simulation study also shows 
the superiority of the proposed control chart over the existing control chart under classical statistics. 

 

Figure 1. The existing and proposed control charts for simulated data. 
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5. Real world example 

The study of the practical execution of the anticipated chart using the temperature data is 
included in the paper. For this purpose, the temperature data from the meteorological department of 
the Kingdom of Saudi Arabia have been collected and given in Table 7. The determinate (lower) 
values of temperature data of three times as morning, afternoon and evening of Jeddah city for the 
month of October 2019 have been collected from https://www.timeanddate.com/ 
weather/saudi-arabia/jeddah/historic. The uncertainty/indeterminacy is always present in measuring 
the temperature data; see [34–36]. The upper value of the temperature data is calculated by 
supposing a measure of intermediacy, say 𝐼ே = 0.1. Under indeterminacy, the use of the existing 
control chart under classical statistics may mislead decision-makers. Therefore, the proposed control 
chart under indeterminacy should be designed for monitoring the temperature. The values of ARL 
and NAS for the real data are shown in Table 8. The values of neutrosophic statistic 𝑀𝐴௜ே are 
computed and plotted on the control chart in Figure 2. The left- hand side figure shows the MA 
control chart under classical statistics and the right-hand side figure shows the plot of the proposed 
control chart. On noticing Figure 2, it can be seen that all values of the statistic 𝑀𝐴௜௅ falls within 
the control limit and indicate that the temperature is in-control. But the proposed control chart shows 
the shift in the temperature. We may conclude that the proposed chart displays some concerns about 
the temperature of the city as some points fall close to the upper control limit and the meteorologist 
should be alert whereas the classical chart shows fully in-control observations.  

Table 7. The temperature data. 

Weeks Sample AT 6 AM 12:00 PM 18 PM 𝑀𝐴௜ே 

Week 1 October 1 

1 30 33 31 [31.33,34.47] 
2 30 33 31 [31.33,34.47] 
3 30 32 32 [31.33,34.47] 
4 30 32 30 [30.67,34.22] 
5 29 32 30 [30.33,33.86] 
6 29 33 32 [31.33,33.86] 
7 31 33 33 [32.33,34.47] 

Week 2 October 8 

1 31 35 31 [32.33,35.2] 
2 30 33 31 [31.33,35.2] 
3 31 32 31 [31.33,34.83] 
4 28 31 30 [29.67,33.86] 
5 29 32 31 [30.67,33.61] 
6 29 35 32 [32,33.86] 
7 30 32 31 [31,34.34] 

Week 3 October 15 

1 29 31 31 [30.33,34.22] 
2 28 33 30 [30.33,33.61] 
3 26 34 30 [30,33.24] 
4 27 32 31 [30,33.12] 
5 29 32 31 [30.67,33.24] 
6 28 31 29 [29.33,33] 
7 26 32 30 [29.33,32.76] 

Continued on next page 
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Weeks Sample AT 6 AM 12:00 PM 18 PM 𝑀𝐴௜ே 

Week 4 October 22 

1 28 31 29 [29.33,32.27] 
2 27 32 30 [29.67,32.39] 
3 27 32 30 [29.67,32.51] 
4 28 32 30 [30,32.76] 
5 29 32 29 [30,32.88] 
6 28 30 28 [28.67,32.51] 
7 26 30 28 [28,31.78] 

Table 8. The values of ARL when 𝑟଴ே = 370, 𝑛 = 3, 𝑤 = 3. 

𝑐 
𝑘=2.953 
𝐼ே=0 𝐼ே=0.02 𝐼ே=0.05 𝐼ே=0.10 
ARL NSD ARL NSD ARL NSD ARL NSD 

0 376.62 361.32 314.64 316.91 249.86 247.79 173.02 170.47 
0.1 271.34 272.20 227.28 221.92 183.66 182.27 130.58 128.73 
0.2 138.52 135.57 120.25 116.65 97.15 94.45 73.19 71.99 
0.3 69.60 68.09 62.33 59.99 52.19 50.24 40.57 38.47 
0.4 38.11 36.40 34.60 33.04 29.67 27.57 24.29 22.14 
0.5 22.91 20.88 20.73 18.76 18.21 16.16 15.16 13.19 
0.6 14.36 12.19 13.49 11.55 12.09 10.25 10.25 8.36 
0.7 9.92 7.89 9.32 7.43 8.54 6.66 7.41 5.49 
0.8 7.14 5.16 6.93 4.98 6.49 4.53 5.82 3.80 
0.9 5.67 3.69 5.47 3.56 5.13 3.13 4.78 2.73 
1 4.69 2.69 4.52 2.44 4.29 2.20 4.08 1.91 
2 3.00 0.04 3.00 0.05 3.00 0.03 3.00 0.01 

 

Figure 2. The existing and proposed control charts for temperature data. 
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By comparing the control charts in Figures 1 and 2, it can be seen that the control chart using 
simulated data in Figure 1 shows the out-of-control at the 34th sample and the control chart using real 
data in Figure 2 shows the out-of-control at the 8th sample. 

6. Conclusions 

In this paper, the neutrosophic moving average chart has been presented under the neutrosophic 
statistics. The coefficients of the charts have been computed for altered process situations. The 
average run length values have been calculated which show the better discovering ability of the 
suggested chart. The practical application of the suggested chart has been included by constructing 
the control chart under the proposed methodology for the temperature data. It has been concluded 
that the suggested chart is an effective chart using simulated and real data. The proposed control 
chart has the ability to detect shift earlier than the control chart using classical statistics. It has also 
been concluded that the suggested chart is a significant addition to the toolkit of the meteorologist. 
The suggested chart can be extended for the exponentially weighted moving averages using a 
resampling scheme for future research.  
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