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1. Introduction

Let Ω ⊂ RN(N ≥ 2) be a bounded simply connected domain, 0 < T < ∞ and QT = Ω × [0,T ]. We
study the following variation-inequality initial-boundary value problems

min{Lφ, φ − φ0} = 0, (x, t) ∈ QT ,

φ(0, x) = φ0(x), x ∈ Ω,

φ(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ),
(1)

with fourth-order p-Laplacian Kirchhoff operators,

Lφ = ∂tφ − ∆
(
(1 + λ||∆φ||

p(x)
Lp(x)(Ω))|∆φ|

p(x)−2∆φ
)

+ γφ,

γ ≥ 0 and p(x) > 2. Here Lp(x)(Ω) stands for

Lp(x)(Ω) = {u|u is mesurable real − valued function,
∫

Ω

|u|p(x)dx < ∞}.
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Our consideration of this paper is motivated by the model proposed by Chen [1] and Yi [1,2], who
studied the problem (1) with parabolic operator

Lu =
∂u
∂t
−

1
2
σ2∂

2u
∂x2 + r

∂u
∂x
− ru.

Many interesting results have been established for the variation-inequality initial-boundary value
problem, for example, [3–8] and references therein. Some papers have studied the existence of
solutions to variational inequalities [3–5]. Some scholars have studied the approximate solutions of
variational inequalitie [6,7]. Reference [8] attempted to obtain numerical solutions from the
perspective of numerical difference.

At present, there are many literatures about the initial boundary value problem of Kirchhoff

operator[9–12]. Long and Deng in [9] make use of minimax methods and invariant sets of descending
flow to study the existence and non uniqueness of solutions. Later, Chen and Zhou by the
Leray-Schauder principle study the existence of solutions for the following p-Laplacian Kirchhoff

equation[10]. Huang and Deng also prove the existence of a positive ground state solution for
Kirchhoff type problem[11,12].

The authors of this paper investigate a class of variation-inequality initial-boundary value
problems with fourth-order p(x)-Kirchhoff operators, and study the existence, uniqueness and
stability of solutions. One of the innovations of this paper is to construct a mapping based on the
Leray Schauder principle and introduce a penalty function to prove the existence of the solution.
Another innovation of this paper is to obtain the uniqueness and stability of solutions from weak
solutions by using inequality amplification techniques.

The structure of this paper is as follows: The second section gives the main results of this paper
and the application background in fresh agricultural products Section 3. The 4th section analyzes the
uniqueness and stability of the solution.

2. The main results of weak solutions and application background

Before giving the main conclusions of this paper, here we first consider an application case of the
variational inequality problem. Here we consider the ordering strategy for a fresh agricultural product
retailer. As the production lead time of fresh agricultural products is long and the sales period is short,
retailers have no chance to replenish, so they need to replenish before the sales season comes. Retailers
can consider the supplier’s call option contract: They have the right to purchase a certain amount of
fresh rural products with the agreed price of c at time 0. Then the value of the option is

exp{−rT }E[max{p(T ) + g − c, 0}]

where p is the retail price of fresh agricultural products per unit. g represents the unit penalty cost
incurred due to the retailer’s failure to meet the market demand. Assume that the retail price of fresh
products meets the following B-S equation

dp(t) = rp(t)dt + σp(t)dB(t), p(0) = p0,

where µ and σ represent the expected return and volatility respectively. {B(t), t ≥ 0} stands for standard
Brownian movement, which contains the noise of fresh agricultural product market. And r is the risk-
free interest rate.
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In [1], the value of the options provided by the supplier meets the following variational inequality
problem 

min{Lv, v −max{p + g − c, 0}} = 0, p × t ∈ R+ × [0,T ],
v(T, p) = max{p + g − c, 0}, p ∈ R+,

v(t, 0) = 0, t ∈ [0,T ].

In this paper, we consider more complex variation-inequality problems. Combining the ideas of [1–3],
we will use the following maximal monotone operators to prove the conclusions of this paper

G(x) =

{
0, x > 0,
M0, x = 0.

(2)

Here, M0 is positive constant which will be chosen later. The purpose of this paper is to obtain the
existence, uniqueness and stablity of weak solutions of (1), and the weak solution is defined as
Definition 2.1. Function (φ, ξ) is called a generalized solution of the systems (1.1), if

φ ∈ L∞(0,T ; W2,p(x)(Ω)), ∂tu ∈ L2(ΩT ), ξ ∈ L∞(0,T ; L∞(Ω)),

and satisfies
(a) u(x, t) ≥ u0(x), (b) u(x, 0) = u0(x), (c) ξ ∈ G(u − u0),
(d) for each test-function ϕ ∈ C1(Q̄T ) , there holds∫ ∫

ΩT
(∂tu · ϕ + (1 + λ||∆φ||

p(x)
Lp(x)(Ω))|∆φ|

p(x)−2∆φ∆ϕ + γφϕ)dxdt

=
∫ T

0

∫
Ω
ξ · ϕ dxdt.

(3)

Let us summarize the main results as follows.
Theorem 2.1. Assume that φ0 ∈ L∞(ΩT ), then (1) has a solution φ in the sense of Definition 2.1.
Theorem 2.2. Assume that (φi, ξi) is a generalized of (1) with different initial values conditions
φ(0, x) = φ0,i(x), x ∈ Ω, i = 1, 2 . If λ = 0 , then there exists a positive constant C such that

||φ1 − φ2||L2(ΩT ) ≤ ||φ0,1(·) − φ0,2(·)||L2(Ω), (4)

||φ1 − φ2||L2(0,T ;W2,p(x)ΩT ) ≤ C||φ0,1(·) − φ0,2(·)||L2(Ω). (5)

Furthermore, the solution of (1) is unique.

3. Some estimates

Now, we try to decompose the existence of solution of problem (1). Unfortunately, we cannot deal
with the operator Lφ like the classical parabolic initial boundary value problem, because |∆φ|p(x)−2∆φ

is coupled with (1 + λ||∆φ||
p(x)
Lp(x)(Ω)) in Lφ. We also need to introduce penalty function to deal with the

inequality restriction in problem (1), so as to approximate it. To this end, we introduce the following
operator

M : L∞(0,T ; W2,p(x)
0 (Ω)) × [0, 1]→ L∞(0,T ; W2,p(x)

0 (Ω)) (6)

in such a way, that for every function ω ∈ L∞(0,T ; W2,p(x)
0 (Ω)) and θ ∈ [0, 1] , u = M(ω, θ) is a solution

of the equation 
Lθ,ωε φε = −θβε(φε − φ0), (x, t) ∈ ΩT ,

φε(x, 0) = φ0ε(x) = φ 0 + ε, x ∈ Ω,

φε(x, t) = ε, (x, t) ∈ ∂ΩT ,

(7)
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with a operator
Lθ,ωε φε = ∂tuε − ∆

(
(1 + θλ||∆ωε||

p(x)
Lp(x)(Ω))|∆φε|

p(x)−2∆φε
)

+ γφε, (8)

and a penalty function βε( · ) satisfies

ε ∈ (0, 1), βε(·) ∈ C2(R), βε(x) ≤ 0, β′ε(x) ≥ 0, β′′ε(x) ≤ 0,

βε(x) =

{
0 x ≥ ε,
−M0 x = 0,

lim
ε→0+

β(x) =

{
0, x > 0,
−M0, x = 0.

(9)

Thus, we can prove the existence of the following problem
Lφε = −βε(φε − u0), (x, t) ∈ QT ,

φε(x, 0) = φ0,ε(x), x ∈ Ω,

φε(x, t) = ε, (x, t) ∈ ∂QT ,

(10)

by showing the existence of the fixed point of operator M(·, 1) in L∞(0,T ; W2,p(x)
0 (Ω)). Then one can

use the penalty function βε( · ) to make (10) approach the solution of (1) by ε→ 0 .
Choosing t = 0 in (7), we get the following estimates

Lθ,ωε φ0,ε = −θβε(φ0,ε − φ0) = 0, Lθ,ωε φε = −θβε(φε − φ0) ≤ 0,

such that for any . In view of comparison principle [1,11],

|φ0|∞ + ε ≥ φε ≥ φ0,ε for any (x, t) ∈ QT. (11)

Here, we show some estimates of problem (1), which will be used later.
Lemma 3.1. For any (x, t) ∈ QT , the solution of problem (7) satisfies

φε ∈ L∞(0,T ; L2(Ω)) ∩ L∞(0,T ; W2,p(x)(Ω)). (12)

Proof. For any t ∈ (0,T ] , multiply the first line of (7) by φε and integrate it over Ω , such that∫ t

0

∫
Ω
∂tφε · φε + (1 + θλ||∆ω||

p(x)
Lp(x)(Ω))|∆φε|

p(x) + γ|φε|
2dxdτ

= −
∫ t

0

∫
Ω
βε(φε − φ0)φεdxdt.

(13)

It follows by differential transformation technique that∫ t

0

∫
Ω

∂τφε · φεdxdτ =
1
2

∫ t

0

∫
Ω

∂τ(φε)2dxdτ =
1
2

∫
Ω

φ2
ε(·, t) − φ

2
ε(·, 0)dx. (14)

From (9), (11) and θ ∈ [0, 1] , we use Holder and Young inequalities to infer that

θ

∣∣∣∣∣∣
∫ t

0

∫
Q
βε(φε − φ0) · φεdxdt

∣∣∣∣∣∣ ≤ 1
2

M2
0θ

2 |Ω|T +
1
2

∫ t

0
‖φε(·, τ)‖2L2(Ω) dτ. (15)

Combining (13)–(15), and dropping the nonnegative term (1 + θλ||∇ω||
p(x)
Lp(x)(Ω)) ·|∇φε|

p(x) in (13),

1
2
‖φε(·, t)‖2L2(Ω) +

(
γ −

1
2

) ∫ t

0
‖φε(·, τ)‖2L2(Ω) dτ ≤

1
2

M2
0θ

2 |Ω|T +
1
2
‖φε(·, 0)‖2L2(Ω) . (16)
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Next we will discuss (16) in two case: γ− 1
2 ≤ 0 and γ− 1

2 > 0. In case of γ− 1
2 ≤ 0, φε ∈ L∞(0,T ; L2(Ω))

is an immediate result of (16). If γ − 1
2 > 0, using Gronwall inequality,

‖φε(·, t)‖2L2(Ω) ≤
(
M2

0θ
2 |Ω|T + ‖φε(·, 0)‖2L2(Ω)

)
exp{(2γ − 1)T }. (17)

Thus φε ∈ L∞(0,T ; L2(Ω)) is still valid.
Combining (13)–(15), and dropping the nonnegative term 1

2 ‖φε(·, t)‖
2
L2(Ω), we get the following

estimate ∫ t

0
(1 + θλ||∆ω||

p(x)
Lp(x)(Ω))

∫
Ω
|∆φε|

p(x)dxdτ +
(
γ − 1

2

) ∫ t

0
‖φε(·, τ)‖2L2(Ω) dτ

≤ 1
2 M2

0θ
2 |Ω|T + 1

2 ‖φε(·, 0)‖2L2(Ω) .
(18)

Now we also analyze (18) in two case: γ − 1
2 ≤ 0 and γ − 1

2 > 0. In case of γ − 1
2 > 0, we drop(

γ − 1
2

) ∫ t

0
‖φε(·, τ)‖2L2(Ω) dτ to arrive at∫ t

0
(1 + θλ||∆ω||

p(x)
Lp(x)(Ω))

∫
Ω

|∆φε|
p(x)dxdτ ≤

1
2

M2
0θ

2 |Ω|T +
1
2
‖φε(·, 0)‖2L2(Ω) . (19)

When γ − 1
2 ≤ 0, it follows from (17) that∫ t

0
(1 + θλ||∆ω||

p(x)
Lp(x)(Ω))

∫
Ω
|∆φε|

p(x)dxdτ
≤ 1

2 M2
0θ

2 |Ω|T + 1
2 ‖φε(·, 0)‖2L2(Ω)

+ γ
(
M2

0θ
2 |Ω|T + ‖φε(·, 0)‖2L2(Ω)

)
exp{(2γ − 1)T }.

(20)

This and (19), combined with ω ∈ L∞(0,T ; W2,p(x)(Ω)), imply∫ t

0

∫
Ω

|∆φε|
p(x)dxdτ ≤ C(T, |Ω| , ‖φε(·, 0)‖2L2(Ω)).

Thus, using Sobolev embedding, that is,∫
Ω

φ2
εdx ≤ C

∫
Ω

|∇φε|
p(x)dx ≤ C

∫
Ω

|∆φε|
p(x)dx,

φε ∈ L∞(0,T ; W2,p(x)(Ω)) follows. �
Lemma 3.2. Assume φε is the solution of problem (7), such that

∂tφε ∈ L∞(0,T ; L2(Ω)). (21)

Proof. For any t ∈ (0,T ] , multiplying the first line of (7) by ∂tφε and integrating the resulting relation
over Ωt , we have that ∫ t

0
‖∂τφε(·, τ)‖2L2(Ω) dτ = −A1 + A2 + A3, (22)

where

A1 =

∫ t

0

∫
Ω

(1 + θλ||∇ω||
p(x)
Lp(x)(Ω))|∆φε|

p(x)∆φε∆∂tφεdxdτ,

A2 = γ

∫ t

0

∫
Ω

φε · ∂τφεdxdτ, A3 = θ

∫ t

0

∫
Ω

βε(φε − φ0)φεdxdτ.
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Using some differential transforms obtains

A1 = −1
2

∫ ∫
QT
ρα

(
|∆φε|

2 + ε
) p(x)−2

2
∂t

(
|∆φε|

2+ε
)

dxdt

= − 1
p

∫ ∫
QT
∂t

(
|∆φε|

2 + ε
) p(x)

2 dxdt.

Since u0ε(x) = u0 + ε, then

A1 =
∫ t

0

∫
Ω

(1 + θλ||∆ω||
p(x)
Lp(x)(Ω))∂t|∆φε|

p(x)dxdτ
≤ sup

x∈[0,T ]
(1 + λ||∆ω||

p(x)
Lp(x)(Ω))

(
||∆φε(·, t)||

p(x)
Lp(x)(Ω) + ||∆φε(·, 0)||p(x)

Lp(x)(Ω)

)
. (23)

Applying Holder and Young inequalities, we have that

|A2| ≤ 2γ2
∫ t

0
||φε(·, τ)||2L2(Ω)dτ +

1
8

∫ t

0
||∂τφε(·, τ)||2L2(Ω)dτ, (24)

A3 ≤ 2M2
0θ

2|Ω|T +
1
8

∫ t

0
||∂τφε(·, τ)||2L2(Ω)dτ. (25)

Then, submitting (23)–(25) into (22), we infer that

3
4

∫ t

0
‖∂τφε(·, τ)‖2L2(Ω) dτ

≤ sup
x∈[0,T ]

(1 + λ||∆ω||
p(x)
Lp(x)(Ω))

(
||∆φε(·, t)||

p(x)
Lp(x)(Ω) + ||∆φε(·, 0)||p(x)

Lp(x)(Ω)

)
+2γ2

∫ t

0
||φε(·, τ)||2L2(Ω)dτ + 2M2

0θ
2|Ω|T,

(26)

which, combining (12) and ω ∈ L∞(0,T ; W2,p(x)(Ω)) implies that (21) follows. �
Lemma 3.3. For any t ∈ (0,T ], it holds

∆(|∆φε|p(x)−2∆φε) ∈ L2(Ω). (27)

Proof. Replace ∂tφε with −∆
(
|∆φε|

p(x)−2∆φε
)

in (22), and (22) becomes∫
Ω

(1 + λθ||∆ω||
p(x)
Lp(x)(Ω))|∆(|∆φε|p(x)−2∆φε)|2dx = A4 + A5 + A6, (28)

where
A4 =

∫
Ω

∂tφε∆(|∆φε|p(x)−2∆φε)dx, A5 = γ

∫
Ω

φε∆(|∆φε|p(x)−2∆φε)dx,

A6 = θ

∫
Ω

βε(φε − φ0)∆(|∆φε|p(x)−2∆φε)dx.

Using Holder and Young inequalities, we infer that

|A4| ≤ 2
∫

Ω

|∂tφε|
2dx +

1
8

∫
Ω

∣∣∣∆(|∆φε|p(x)−2∆φε)
∣∣∣2dx, (29)

|A5| ≤ 2γ2
∫

Ω

|φε|
2dx +

1
8

∫
Ω

∣∣∣∆(|∆φε|p(x)−2∆φε)
∣∣∣2dx, (30)
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|A6| ≤
∫

Ω
M0θ

∣∣∣∆(|∆φε|p(x)−2∆φε)
∣∣∣ dx

≤ 2M2
0θ

2|Ω| + 1
8

∫
Ω

∣∣∣∆(|∆φε|p(x)−2∆φε)
∣∣∣2dx.

(31)

Here we use −1
2 ≤ βε(φε − φ0) ≤ 0 in (31) which is obtained by (11). Thus combining (28)–(31), one

can drop the nonnegative term ||∆ω||p(x)
Lp(x)(Ω) to arrive at

5
8

∫
Ω
|∆(|∆φε|p(x)−2∆φε)|2dx

≤ 2γ2
∫

Ω
|φε|

2dx + 2M2
0θ

2|Ω| + 2
∫

Ω
|∂tφε|

2dx,
(32)

which, from (12) and (21),implies that (27) follows.�
Now, we analyze the continuity of M(·, θ) for fixed θ. Define

φ1,ε := M(ω1, θ)andφ2,ε := M(ω2, θ)

are the solution of (7) with different parameter ω1 and ω2, that is,

∂tφ1,ε − ∇

(
(1 + θλ||∆ω1||

p(x)
Lp(x)(Ω))

∣∣∣∆φ1,ε

∣∣∣p(x)−2
∆φ1,ε

)
− γφ1,ε = −θβε(φ1,ε − u0),

∂tφ2,ε − ∆

(
(1 + θλ||∆ω2||

p(x)
Lp(x)(Ω))

∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε

)
− γφ2,ε = −θβε(φ2,ε − φ0).

From (11), βε(φ1,ε − φ0) = 0 and βε(φ2,ε − φ0) = 0, then defining φε := φ1,ε − φ2,ε implies

∂tφε − (1 + θλ||∆ω1||
p(x)
Lp(Ω))∇

(
|∆φε|

p(x)−2∆φε
)

+ γφε

≤ θλ
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε · ||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)),
(33)

with φε(x, 0) = 0 in Ω .
Lemma 3.4. Letting ||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)) → 0, there is

||φ1,ε − φ2,ε||L∞(0,T ;W2,p(x)
0 (Ω)) → 0. (34)

Proof. First, multiplying (33) by φε and integrating over Ω ,

1
2

d
dt

∫
Ω
|φε|

2dx + (1 + θλ||∆ω1||
p(x)
Lp(x)(Ω))

∫
Ω
|∆φε|

p(x)dx + γ
∫

Ω
φ2
εdx

≤ ||ω1 − ω2||L∞(0,T ;W2,p(x)
0 (Ω))

∫
Ω

∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)φεdx.

(35)

Using Holder and young inequalities with parameter (1
2 ,

1
2 ) , we have the following estimate∫

Ω
∆(

∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)φεdx

≤ 1
2

∥∥∥∥∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)

∥∥∥∥2

L2(Ω)
+ 1

2

∫
Ω
|φε|

2dx.
(36)

Using Sobolev embedding and Holder inequalities∫
Ω

φ2
εdx ≤ C

∫
Ω

|∆φε|
2dx ≤ C

∫
Ω

|∆φε|
p(x)dx. (37)
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For any fixed t ∈ (0,T ] , integrating (35) over [0, t] , and substituting (36) and (37) into (35),

1
2

∫
Ω
|φε|

2dx + A7

∫ t

0

∫
Ω
φ2
εdx

≤ 1
2T ||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω))

∥∥∥∥∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)

∥∥∥∥2

L2(Ω)
,

(38)

where
A7 = 1 + γ + θλ||∆ω1||

p(x)
Lp(x)(Ω) −

1
2
||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)),

A8 = γ −
1
2
||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)).

By Gronwall inequality and φ(0, x) = 0, we have∫
Ω
|φε|

2dx ≤ T ||ω1 − ω2||L∞(0,T ;W2,p(x)
0 (Ω))

× sup
t∈[0,T ]

∥∥∥∥∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∇φ2,ε)

∥∥∥∥2

L2(Ω)
exp{A8T }.

(39)

Second, replacing φε with ∂tφε and (35) becomes∫
Ω
|∂tφε|

2dx + (1 + θλ||∆ω1||
p(x)
Lp(x)(Ω))

∫
Ω

∆(|∆φε|p(x)−2∆φε)∂t∆φεdx

≤ λ
∫ T

0
||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω))

∫
Ω

∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)∂tφεdx

− γ
∫

Ω
φε∂tφεdx.

(40)

Using Holder and Young inequalities,

γ

∫
Ω

φε∂tφεdx ≤ 2γ2
∫

Ω

φ2
εdx +

1
8

∫
Ω

|∂tφε|
2dx, (41)

∫
Ω

∆(
∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)∂tφεdx

≤ 2
∥∥∥∥∆(

∣∣∣∆u2,ε

∣∣∣p(x)−2
∆u2,ε)

∥∥∥∥2

L2(Ω)
+ 1

8

∫
Ω
|∂tφε|

2dx.
(42)

Combining (40) and (41) to (42) , we infer that

A9

∫
Ω
|∂tφε|

2dx + (1 + θλ||∆ω1||
p(x)
Lp(x)(Ω))

d
dt

∫
Ω
|∆φε|

p(x)dx
≤ A10(t) + 2γ2

∫
Ω
|φε|

2dx,
(43)

where
A9 =

7
8
−

1
8
λ||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)),

A10 = 2λ
∥∥∥∥∆(

∣∣∣∆φ2,ε

∣∣∣p(x)−2
∆φ2,ε)

∥∥∥∥2

L2(Ω)
||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)).

It is noteworthy that A9

∫
Ω
|∂tφε|

2dx > 0 if ||ω1 − ω2||L∞(0,T ;W2,p(x)
0 (Ω)) is small enough. Thus we drop the

nonnegative term A9

∫
Ω
|∂tφε|

2dx and ||∆ω1||
p(x)
Lp(x)(Ω) to have∫

Ω

|∇φε|
p(x)dx ≤ A10T + 2γ2T

∫
Ω

|φε|
2dx. (44)
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From (39) and Lemma 3.3, A10 → 0 ,
∫

Ω
|φε|

2dx → 0 ( ||ω1 − ω2||L∞(0,T ;W2,p(x)
0 (Ω)) → 0 ), such that using

Poincars inequality gives∫
Ω

|φε|
p(x)dx ≤ C

∫
Ω

|∆φε|
p(x)dx→ 0 as ||ω1 − ω2||L∞(0,T ;W2,p(x)

0 (Ω)) → 0.

Hence, the proof is completed. �
We can also consider the continuity of M(ω, ·) for fixed ω . For any fixed ω ∈ L∞(0,T ; W2,p(x)(Ω)),

let
φ1,ε := M(ω, θ1), φ2,ε := M(ω, θ2)

be the solution of (7) with different θ1 and θ2 , and define φε := φ1,ε − φ2,ε. Following a similar way
of (33), we have that

∂tφε − (1 + θ2λ||∆ω||
p(x)
Lp(x)(Ω))∆

(
|∆φε|

p(x)−2∆φε
)

+ γφε

≤ |θ1 − θ2| ·
∣∣∣∆φ1,ε

∣∣∣p(x)−2
∆φ1,ε · ||∆ω||Lp(x)(Ω).

(45)

Thus, the continuity of M(ω, ·) with respect to θ , that is,∫
Ω

|φε|
p(x)dx ≤ C

∫
Ω

|∆φε|
p(x)dx→ 0 as |θ1 − θ2| → 0

will be verified in a similar way as in Lemma 3.4.
Lemma 3.5. For any fixed θ, the operator M(·, θ) is compact.
Proof. Assume B is a bounded domain in L∞(0,T ; W2,p(x)

0 (Ω)). From Lemma 3.1, we have that
M(B, θ) is bounded in L∞(0,T ; W2,p(x)

0 (Ω)). Lemma 3.2 implies that ∂tφε is bounded in
L∞(0,T ; L2(Ω)). Lemmas 3.1 and 3.4 show that M(B, θ) is compact in L∞(0,T ; W2,p(x)

0 (Ω)). Hence,
the operator M(·, θ), by Aubin-Lions lemma [14], is compact.�

By the same argument as in [6,12], we can get that equation

∂tφε − ∆(|∆φε|p(x)−2∆φε) + γφε + x = 0 (46)

with Dirichlet boundary condition has a unique solution in L∞(0,T ; W2,p(x)
0 (Ω)) for any

x ∈ L∞(0,T ; W2,p(x)
0 (Ω)). Thus, combining Lemma 3.4, Lemma 3.5, (46), according to

Leray-Schauder principle [11], problem (10) admits a solution

φε ∈ L∞(0,T ; W2,p(x)
0 (Ω)), ∂tφε ∈ L2(ΩT ). (47)

Using integral by part, the solution of problem (10) satisfies∫ ∫
ΩT

(∂tφε · ϕ + (1 + λ||∆φε||
p(x)
Lp(x)(Ω))|∆φε|

p(x)−2∆φε∆ϕ + γφεϕ)dxdt
= −

∫ ∫
Ω
βε(φε − φ0)ϕ dxdt

(48)

with ϕ ∈ C1(Ω̄T ).
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4. Proof of the Theorem 2.1

This section plan to prove Theorem 1.1. By (12), (21) and (27), there exist a ubsequence of {φε}
(still use the same notation) and a function

φ ∈ L∞(0,T ; W2,p(x)
0 (Ω))

such that as ε→ 0 ,

φε
weak
→ φ in L∞(0,T ; W2,p(x)

0 (Ω)), (49)

∂tφε
weak
→ ∂tφ in L2(ΩT ), (50)

(1 + λ||∆φε||
p(x)
Lp(x)(Ω))|∆φε|

p(x)−2φε
weak
→ (1 + λ||∆φ||

p(x)
Lp(x)(Ω))|∆φ|

p(x)φ in L1(QT ), (51)

where
weak
→ stands for weak convergence. To have (51), we need some proofs similar to those in [3].

Lemma 4.1. Assume that φε is a solution of (10). One has the following limit formula

−βε(φε − φ0)→ ξ ∈ G(φ − φ0) as ε→ 0. (52)

Proof. Using (11) and the definition of βε, give

−βε(φε − φ0)→ ξ as ε→ 0.

Now, we prove ξ ∈ G(u − u0) and only need to prove that

ξ(x0, t0) = 0 if φ(x0, t0) > φ0(x0).

In deed, when φ(x0, t0) > φ0(x0), there exist a constant h > 0 and a δ-neighborhood Bδ(x0, t0) such that

φε(x, t) ≥ φ0 + ε + h,∀(x, t) ∈ Bδ(x0, t0).

If ε is small enough, one has

0 ≥ βε(φε − φ0) ≥ βε(h) = 0,∀(x, t) ∈ Bδ(x0, t0).

Let ε→ 0 , then the following limit results will be obtained

ξ(x, t) = 0,∀(x, t) ∈ QT .

Hence, (52) follows. �
Combining (10), (11), and Lemma 4.1,

φ(x, 0) = φ0(x) in Ω, φ(x, t) ≥ φ0(x) in ΩT , ξ ∈ G(φ − φ0),

such that (a)–(c) of Definition 2.1 follows. Therefore, the classic theory of parabolic problems (for
details, see [3]) ensures the remainder arguments of Theorem 2.1.
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5. Proof of the Theorem 2.2

In this section, we first prove the stability of solution in Theorem 2.2 by using two generalized
solution (u1, ξ1) and (u2, ξ2) of (1) with two different initial conditions

φ(0, x) = φ0,i(x), x ∈ Ω, i = 1, 2. (53)

Recall that λ = 0 in this section such that for any ϕ ∈ L∞(0,T ; W2,p(x)(Ω)) ,∫ t

0

∫
Ω

(∂tφ1 · ϕ + |∆φ1|
p(x)−2∆φ1∆ϕ + γφ1ϕ)dx =

∫ t

0

∫
Ω

ξ1 · ϕ dxdt, (54)

∫ t

0

∫
ΩT

(∂tφ2 · ϕ + |∆φ2|
p(x)−2∆φ2∆ϕ + γφ2ϕ)dxdt =

∫ t

0

∫
Ω

ξ2 · ϕ dxdt. (55)

Defining ϕ = φ1 − φ2 , so one gets∫ t

0

∫
ΩT
∂tϕ · ϕ +

(
|∆φ1|

p(x)−2∆φ1 − |∆φ2|
p(x)−2∆φ2

)
∆ϕ + γϕ2dxdτ

=
∫ t

0

∫
Ω

(ξ1 − ξ2) · ϕ dxdt.
(56)

From [11], one gets the following inequalities(
|∆φ1|

p(x)−2∆φ1 − |∆φ2|
p(x)−2∆φ2

)
∆ϕ ≥ 2−p+

|∆φ1 − ∆φ2|
p(x)
≥ 0. (57)

Now, we give the following result before proving,∫ t

0

∫
Ω

(ξ1 − ξ2) · ϕ dxdt ≤ 0,∀t ∈ [0,T ]. (58)

In deed, we may analyze it in two cases: φ1(x, t) < φ2(x, t) and φ1(x, t) > φ2(x, t) . In case of φ1(x, t) >
φ2(x, t) , one gets φ1(x, t) > φ1,0(x) . It follows from (52) that

ξ1 = 0 ≤ ξ2, (ξ1 − ξ2) · ϕ = (ξ1 − ξ2) · (φ1 − φ2) ≤ 0. (59)

When φ1(x, t) < φ2(x, t) , ξi ≥ 0 = ζi , such that (58) still holds.
On the one hand, dropping the nonnegative term (57) and

∫ t

0

∫
Ω
ϕ2dx and removing non positive

term (58) in (56), ∫ t

0

∫
ΩT

∂tϕ · ϕdxdt ≤ 0. (60)

This finishes the proof of (4).
On the other hand, if (57) is not deleted, (58) becomes∫ T

0

∫
Ω

∂τϕ · ϕ +
(
|∆φ1|

p(x)−2∆φ1 − |∆φ2|
p(x)−2∆φ2

)
∆ϕdxdt ≤ 0. (61)

It is easy to verify that∫ T

0

∫
Ω

∂tϕ · ϕdxdt =
1
2

∫ T

0

∫
ΩT

∂tϕ
2dxdt =

∫
Ω

ϕ(x,T )2dx −
∫

Ω

ϕ(x, 0)2dx,
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which, combined with (61) and
∫

Ω
ϕ2dx ≥ 0 , implies∫ ∫

ΩT

(
|∆φ1|

p(x)−2∆φ1 − |∆φ2|
p(x)−2∆φ2

)
∆ϕdxdt

≤ 1
2

∫
Ω
|φ0,1(x) − φ0,2(x)|2dx.

(62)

Thus, from (57), we have∫ ∫
ΩT

|∆φ1 − ∆φ2|
p(x)dxdt ≤ C

∫
Ω

|φ0,1(x) − φ0,2(x)|2dx. (63)

It follows by Poincarés inequality that∫ ∫
ΩT
|φ1 − φ2|

p(x)dxdt
≤ C

∫ ∫
ΩT
|∇φ1 − ∇φ2|

p(x)dxdt ≤ C
∫ ∫

ΩT
|∆φ1 − ∆φ2|

p(x)dxdt.
(64)

It gives (5) in Theorem2.2 by combining (63) and (64).
Final, we consider the uniqueness of solution in Theorem 2.2. Assume that (φ1, ξ1) and (φ2, ξ2) are

weak solutions of (1). Because they have the same initial value condition, that is

φ1(0, x) = φ2(0, x) = φ0(x), x ∈ Ω,

uniqueness of solution can be obtained by choosing φ0,1(x) = φ0,2(x) in (4) or (5).

6. Conclusions

This paper study the following variation-inequality initial-boundary value problems
min{Lφ, φ − φ0} = 0, (x, t) ∈ QT ,

φ(0, x) = φ0(x), x ∈ Ω,

φ(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ),

with fourth-order p-Laplacian Kirchhoff operators,

Lφ = ∂tφ − ∆
(
(1 + λ||∆φ||

p(x)
Lp(x)(Ω))|∆φ|

p(x)−2∆φ
)

+ γφ,

γ ≥ 0 and p(x) > 2. Here we construct a mapping based on the Leray Schauder principle and introduce
a penalty function to prove the existence of the solution. Further, this paper is to obtain the uniqueness
and stability of solutions from weak solutions by using inequality amplification techniques.

At present, this paper has the following shortcomings: Lemma 3.1 is not valid when 1 < p(x) < 2,
because Sobolev embedding theorem cannot be used at this time. In Lemma 3.4, we use the condition
γ > 0 to prove (40) Lemma 3.4 is valid only if γ is not greater than 0 or at least γ is greater than -1. In
view of these problems, we will continue to study.

Compared with [8–12], this paper extends equality to inequality and studies the initial boundary
value problem in the case of variational inequality. The advantage of this paper compared with [1–3]
is to analyze the variation-inequality problem under the more general fourth order Kirchhoff operator.
Reference [4] only studies the existence of solutions, while this paper continues to study the stability
and uniqueness of solutions.
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