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Abstract: In this paper, we study the complete convergence and the complete integration convergence
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1. Introduction

In the era of information modernization, limit theorems are widely used in real-life economics,
information, and risk measurement. Limit theory of classical probability space considers that additive
probability and additive expectation, which is suitable for the condition of model certainty. But the
problems of financial and economic have different degrees of uncertainty. In order to analyze and
calculate the problems under uncertainty, Peng [1,2] came up with a new conception of the sub-linear
expectations, and constructed the basic structure of the sub-linear expectations. Sub-linear expectations
relaxes the additivity of probability and expectation of the classical probability. Hence, the theory of
sub-linear expectations is more complex and challenging. Under the sub-linear expectations, Peng [3]
established the central limit theorem. Enlightened by Peng’s main articles, many researchers try
to explore the results of sub-linear expectations. Chen and Gan [4] obtained the limiting behavior
of weighted sums of independent and identically distributed sequences. Hu and Zhou [5] mainly
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demonstrated some multi-dimensional central limit theorems and laws of large numbers. Zhang [6-8]
gained a series of important inequalities under sub-linear expectations. In addition, Zhang and Lin [9]
also studied the Kolmogorov’s strong law of large numbers. Lan and Zhang [10] proved the several
moment inequalities, including Bernstein’s inequalities, Kolmogorov’s inequalities and Rademacher’s
inequalities. Guo and Zhang [11] obtained moderate deviation principle for m-dependent random
variables under the sub-linear expectation.

In 1947, the notion of complete convergence was raised by Hsu and Robbins [12] as follows. Let
{X,,n > 1} be a sequence of independent and identically distributed random variables in a probability

space (Q,F, P) with EX; = 0 and EX] < o0, S, = ), X;,
k=1

SRS, > ne) < o, foralle > 0.

n=1

In 1988, Chow [13] established the complete moment convergence. The complete moment
convergence is stronger than the complete convergence. In the classical probability space, the complete
convergence and the complete moment convergence for different sequences have been relatively
mature. For example, Yu et al. [14] proved the complete convergence for weighted sums of arrays
of rowwise m-END random variables. Wu et al. [16, 17] and Wang et al. [18] did a series of
studies about extended negatively dependent (END) random variables. Meng et al. [15] and Ding
et al. [19] respectively demonstrated the complete convergence and the complete moment convergence
for END random variables and widely orthant dependent (WOD) random variables. Based on the basic
framework of sub-linear expectations, researchers extended the theories and properties of classical
probability space to the sub-linear expectations. For instance, Feng et al. [20] researched the complete
convergence and the complete moment convergence for weighted sums of arrays of rowwise negatively
dependent (ND) random variables. Zhong and Wu [21], Jia and Wu [22], Lu and Meng [23] , their
recent papers had new results about complete convergence and complete integral convergence.

This paper aims to prove the complete convergence and the complete integral convergence for
weighted sums of arrays of rowwise m-END under sub-linear expectations space. The rest of the paper
is organized as follows. In section 2, we generally recall some basic notations and definitions, related
properties under sub-linear expectations and preliminary lemmas that are useful to prove the main
theorems. In section 3, the complete convergence, complete integral convergence and Marcinkiewicz-
Zygmund type strong law of large numbers under sub-linear expectations space are established. In the
last section, the proofs of these theorems are stated.

2. Preliminaries

We use the framework and notions of Peng [1,2]. Let (2, ¥) be a given measurable space and H be a
linear space of real functions defined on (Q, ¥) such thatif X;, X;, ---, X,, € H then (X1, -+, X,,) € H for
each ¢ € C;1;,(R,,), where C;1;,(R,) denotes the linear space of (local Lipschitz) functions ¢ satisfying

lo(x) =l < e(X + X" + Yl =y, Vx,y €R,,

for some ¢ > 0, m € N depending on ¢. H is considered as a space of random variables. In this case
we denote X € H.
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Definition 2.1. A sub-linear expectation £ on H is a function E : H — R satisfying the following
properties: for all X,Y € H, we have

(a) Monotonicity: if X > Y then E[Xx] > B[Y];

(b) Constant preserving: Blc] = c;

(c) Sub-additivity: E[X + Y] < B[X] + E[Y];

(d) Positive homogeneity: E[AX] = AE[X], 1 > 0.
Here R = [—o0, 00]. The triple (Q, H, ) is called a sub-linear expectation space. Given a sub-linear
expectation E, let us denote the conjugate expectation & of E by

8[X] = -B[-X], VX e H.
From the definition, it is easily shown that for all X, Y € H
2[X] < B[X], E[X+c]=E[X]+c,
BIX - Y] <BX-Y, B[X-Y]>E[X]-E[Y].

Definition 2.2. Let G C F, a function V : G — [0, 1] is called a capacity if
(HV(@)=0,V(Q) =1;
2)V(A)< V(B),YACB,A,BegG.
It is called to be sub-additive if A, Be G, AUBe G, VAUB)< V(A)+ V(B).

V(A) = inf{B[£] : I(A) < & E€H), V(A) =1-V(A)VAeF,
where A¢ is the complement set of A. It is obvious that V is sub-additive and

V(A) < V(A), YAeF,
V(A) := B[L4], V(A):=&[l,], if I, €H,

ELf1 < VA) <Blgl, 8lf1<VA)<élgl, if f<Ii<gfgeH.

Forall Xe H,p>0and x >0,

X|P X|P
I(1X] > x) < uI(|X| > X) < —l
xP xP

Definition 2.3. We define the Choquet integrals (Cv, C-y) by

00 0
CylX] = f V(X > t)dt +f [V(X > 1) — 1]dt,
0 _

[Se]

with V being replaced by V and “V respectively.
Definition 2.4. [3] (Identical distribution) Let X; and X, be two n-dimensional random vectors defined
respectively in the sub-linear expectations spaces (Q;, Hj, El) and (Q,, H,, Ez). They are called

identically distributed, denoted by X; 4 X, if

Ei (¢(X)) = Ex(¢(X)), V¢ € CipipR),
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whenever the sub-linear expectations are finite. A sequence {X,,,n > 1} of random variables is said to

be identically distributed if X; < X, for eachi > 1.

Definition 2.5. [7] (END) In a sub-linear expectation space (Q, H, ), random variables {X,,n > 1}
are called to be upper (resp. lower) extended negatively dependent if there is some dominating constant
K > 1 such that

E (]_l @i(X;)
i=1

whenever the non-negative functions ¢; € C;z;,(R),i = 1,2, - - - are all non-decreasing (resp. all non-
increasing). They are called END if they are both upper extended negatively dependent and lower
extended negatively dependent.

Definition 2.6. (m-END) Let m > 1 be a fixed positive integer. In a sub-linear expectation space
(Q,H, E), random variables {X,,,n > 1} is said to be m-END if forany n > 2 and any iy, i,, - ,i, such
that iy —i;| > mforall 1 <k # j<n,wehave that X; , X;,,--- , X;, are END, i.e.

<K[[Bwxn, n>1,
i=1

E(]—[ %(Xik)) <Kk|[Bex), n>1,
k=1 k=1
lix —ijl >m, 1<k#j<n,

where K > 1 is some dominating constant, the non-negative functions ¢; € C;;;,(R),i = 1,2,--- are all
non-decreasing or non-increasing. An array of random variables {X,;,n > 1,i > 1} is called rowwise
m-END random variables if for every n > 1, {X,;,i > 1} is a sequence of m-END random variables,
with a dominating sequence {K,, > 1}.

It is distinct that if {X,,n > 1} is a sequence of m-END random variables and fi(x), f2(x),--- €
C,1ip(R) are all non-decreasing (or non-increasing), then {f,(X,),n > 1} is also a sequence of m-END
random variables.

In the following, let {X,,n > 1} be a sequence of random variables in (Q, H, E). The symbol C
is on behalf of a generic positive constant which may differ from one place to another; /(-) denote an
indicator function. The following five lemmas are needed in the proofs of our theorems.

Lemma 2.1. [20] (i) Markov inequality: for all X € H,

V(X > x) < B(X|P)/x?, VYx>0,p>0.
(ii) Holder inequality: for all X,Y € H and p, q > 1 satisfying p~! + g7 '=1,
B(XYD) < BAXIP)" P @YD),
(iii) Jensen inequality: forall X € H and 0 < r < s,
EQXI' < EXPD'.

Lemma 2.2. [21] (i) Suppose X € H,a > 0, p > 0, for any ¢ > 0,

Cy(IXIP) < 00 & Z R V(IX| > en®) < oo. 2.1)

n=1
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(1) If Cy(|X|?) < oo, then for any # > 1 and ¢ > 0,

[ee)

Z FrPV(X| > ) < oo. (2.2)
k=1

Lemma 2.3. [7] (Rosenthal’s inequalities) Let {X,,,n > 1} be a sequence of END random variables in

(Q, H,B) with EX, < 0. And set S, = i X, B, = z M,, = z |X,|7. For any p > 2 and for all
k=1 k=1 k=1
x > 0, then
B,
V(S, > x) < (1+Ke)—, (2.3)
X

there K is some dominating constant and exists a constant C,, > 1, such that forall x > 0and 0 < 6 < 1,

V(S, > x) < Cpd~ 21’1<M e Kexpo—© (2.4)
n X . .
P\72B,(1 +0)

With Lemma 2.3 in hand, we can get the following Rosenthal’s inequalities for m-END random
variables.
Lemma 2.4. (Rosenthal’s 1nequaht1es) Let {X,,n > 1} be a sequence of m-END random variables in

(Q, H,E) with EX, < 0. And set S, 2 X, B, = Z BX2, M, Z B|X,|?. For any p > 2 and for all
k=1
x > 0, then

B,
V(S > x) <m*(1 + Ke)—, (2.5)
X
there K is some dominating constant and exists a constant C,, > 1, such that forall x > 0and 0 <6 < 1,
V(S, > x) < Cp6m PKM + mKex © (2.6)
m e .
P17 2m2B,(1 + o)

Proof. Let r = [Z], define

<
Il
—_——
2
[
A
N
3

NotethatSmHJ 2 X ml+],] 1,2,---,m, then
=0

forallx>0andn >m

X

’ .x ’ .x " ’
(Sn2x) C (Smr+l > E) U---u (Smr+m > a) = u(smr+j > —). (2.7)
j=

m
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It follows by the definition of m-END random variables that X X ..., X . are END random

m+j’ mr+j

variables for each j = 1,2,--- ,m. Hence, by (2.3) and (2.7) that for all x > 0 and n > m, we have

VS, >2x)<V

B,
= m*(1 + Ke)—,
X

which implies (2.5).
By (2.4) and (2.7) that for all x > 0,n > m and p > 2, we get

VS, >0< Y V(S;mj > f)
m
=

m Z ElX l+] x2

Z Cp5 Z‘D z()x—p + Kexp - B
p= G 2m2 S E(X,,, (1 + )

i=0

< C,0Km p M + mKex x—Z

X P U 2miB,(1+ o))
which implies (2.6).
This finishes the proof of Lemma 2.4. O

Lemma 2.5. [7] (Borel-Cantelli Lemma) {A,,n > 1} is a sequence of events in ¥ . Suppose that Visa
countably sub-additive capacity. If ] V(A,) < oo, then V(A,,i.0.) = 0, where{A,,1.0.} ﬂ U A,
n=1

n=1i=n

3. Main results
Theorem 3.1. Let {X, X,;,n > 1,1 < i < n} be an array of rowwise m-END and identically distributed

random variables under sub-linear expectations. B(X,) = &X,;) = 0 and {a,;,n > 1,1 < n} is an
array of real numbers, suppose @ > 3/2, p > 1/a, and g > max{2, p},

Dl = 0, (3.1)
i=1

and

EIXIP < Cv(IXIP) < oo, (3.2)
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then for any &£ > 0,

Zam ni

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold, and O < r < p, then for any & > 0,

n=1

S5

n=1

> 811"} < 0. (3.3)

n

Z i Xni

i=1

— ena} < 0. (3.4)

.
Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold, and ap = 2, then for any & > 0,

n

n~2/p Z a,i X, — 0,a.5.V,n — oo, 3.5

i=1

Remark 3.1. Theorems 3.1 and Theorem 3.3 extend the corresponding results of Yu et al. [14] from
the classical probability space to sub-linear expectations space.

Remark 3.2. Under sub-linear expectations, the main purpose of our paper is to improve the result of
Zhong and Wu [21] from END random variables to arrays of rowwise m-END random variables, and
extend the range of p.

Remark 3.3. According to Definition 2.6, we can see that if m = 1, then the concept of m-END
random variables reduces to END random variables under sub-linear expectations. Hence, the concept
of m-END random variables is a natural extension of END random variables, m-END random variables
include END random variables and ND random variables. So Theorem 3.1, Theorem 3.2 and Theorem
3.3 also hold for the arrays of END random variables and ND random variables under sub-linear
expectations.

4. Proof

Proof of Theorem 3.1. According to

then for any € > 0,

§ am ni

n=1

| > ﬁ} 4.1)

Without loss of generality, we can assume a,; > O forall n > 1 and 1 < i < n, which implies that

n=1 i=1

AIMS Mathematics Volume 8, Issue 3, 6705-6724.
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Because of considering {—X,;,n > 1,i > 1} still satisfies the conditions in Theorem 3.1, we have

gL

naP-2y {Z a, X, < —8?1“} <00, VYe> 0. (4.3)

Hence, we can imply (3.3) by (4.2) and (4.3).
In the following, we prove (4.2). For alln > 1 and 1 < i < n, denote that

X,y = = n (X < =n) + Xl (Xl < 1) + n1(X, > n%),
X' =X — X, = Xy + n)I( X, < —n%) + (X — n)I(X,; > n%). (4.4)
By Definition 2.6, we know that {X n>1,1<i<n}and {amX =1L 1< n} are still arrays

of rowwise m-END random variables. For any 0 < ,8 < ¢, by Holder inequality and (3.1), we obtain
that

Bit)<(Sief () <on

For any € > 0,

{Zn: AniXi > 871“} {U(IX,,ZI >n )} U {Z aniX;”- > sn“},

i=1 i=1
it is easy to see that
-2y
e [ S 4k > ]

n=1 i=1

<inf’l’ 2y {U(lel >n)| [Z X, > 811")}
n=1
i ZV(IX,,,l >n%) + Z ap-2y Z am-X,;i > 811")
i=1
:Hll + Hz.

Hence, we need to prove H; < oo and H, < oo.
For 0 < u < 1, let g(x) be a decreasing function when x > 0 and g(x) € C;1;,(R), 0 < g(x) < 1 for
all x e R, g(x) = 1, if |x|] < u; g(x) = 0if |x] > 1. Then

I(xl <) < gUxD) < I(xI < D), I(x > 1) < 1= g(xl) < I(1x| > p). (4.6)

By (4.6) and Lemma 2.2 (2.1),

AIMS Mathematics Volume 8, Issue 3, 6705-6724.
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Next we estimate H, < co. For any g > 0, by ¢, inequality, (4.4) and (4.6), which implies that

X1 <Xl 11Xl < 1) + n1(|X,] > n®)

Xni Xni
<IX.l'g (%) +n (1 - g(lna|)) ,

furthermore,

A ~ X ~ X
s <o () o)
n® n®

) X
<E(|qug (“' ')) + IV (X| > un®).

e
Case A;: O0< p< 1.
By (4.5), (4.7), Markov inequality and ap > 1, we get

n

Z am-EX;”-

i=1

n

<" anfiX,,|

i=1

- T Xni - 2 Xni
<n—a/ Z amE(lxnllg (IULZ(Z |)) + Z aniE (1 - g(lna |))

i=1 i=1

n—(}’

. 1

<n'"BIX|I(1X] < =n) + nV(X]| > un®)
M

<Cn'""EXPP -0, n— oo.

Case Ay: p > 1.
By (4.5), FEX, = 0 and ap > 1, one can get that

n

Z a,,,»IAEX;ﬂ-

i=1

n
<™ )" auBlX,i - X,

i=1

n—(}’

n

=™ " anfiX|
i=1
n

<> @ BI1Xl ~ 1)Kl > 1)
i=1

Y 0t [|xm-| (1 -8 (l),ffl ))]

i=1

4.7)
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<cn g (1-¢( %))

<Cn'"PE|IXIP - 0, n— oo.

It follows that for all n large enough,

which implies that

Hy<C Y n?v {Z a(X, — BX.) > %} = H;.
i=1

n=1

By Definition 2.6, we know that {a,,,(X ]EX D.n>1,1< n} are still arrays of rowwise m-END
random variables, and E(am(Xm ]EXm)) =0. In order to prove H2 < o0, we need to show Hz < oo.

Case B;: p < 2.

By ¢, inequality, Jensen inequality, and (2.5) in Lemma 2.4, combine with (4.5), (4.9), (4.10) and
(4.13), we get

o Y Blau(X,, - BX,)*
H; <C Z nP2(4(1 + Ke)ym* =,

(en)?

Cin“p > 2“ZE(am( - BX,))°

<C i N aB(X,,)?

n=1 i=1

<C Y vt 2“[ (|X| (“' |))+;12W(|)(|> un )]
N ap-1-2a7 2 (HIX] ap-1
<CZn” E(leg(n ))+CZ PV (X] > un®)

n=1 n=1

By (2.1), which implies that H3, < co. Next we prove H3; < oco.
For 0 < u < 1, let gi(x) € Cy1;p(R), k > 1 such that 0 < gi(x) < 1 forall x € R, and gx(55) = 1 if
20D < 1X| < 2’“’, 8(G5z) = 0if [x] < 2% or |x| > (1 + p)2**. Then

x| ’ a
(zka) 129707 < X < (1 + )2,

1X| . 1|
|X|lg(ﬁ) <1+ Z|X|’gk S| ¥1>0. (4.8)
k=1
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6715

By (4.8) and g(x) is a decreasing function if x > 0,

oo 2011
X
Hy <CZ Z ap-2a- 1E( Zg(“| '))

j1n2]

N (@p-2a-1)jr ] | |
cZz 215:( (zaw)))

j=1

o J
a(p-2)j1 2 HIX|
<C E 2%P JE(l + k_El X gk(2(k+l)a

=

0 oo J
. & X
<C Y 20y 0N -2 E(ngk(zl;‘(lk+ll)))

j=1 j=1 k=1

N

By p < 2, we obtain that H3;; < co. For H3,, by (4.8) and (2.2) in Lemma 2.2, we get

N a(p-2) 2 HiX|
ZZ " jE(X (2(1/(k+1)

j=k

Hs3p, <C

z EMx

<C ) 297Ky (X > 2%) < oo.
k=1

Case By: p > 2.
Byg>p>2andn>m,6 =1 and (2.6) in Lemma 2.4, we have

z Ela,/(X — EX )

H, <Z P20 5P K

i (en®)4
had a)2
+ Z n*’*mKexp< — T (en”) -
n=1 8m? Z E(a. (X, — EX ))*(1 + 6)
oo Z al. EI(X — EX N
<C ap- 2i=1
21” (eny?
N ap-2 (Sna)l
+C Z n“’ exp{ — -

16m? 3, a2 B(X,, — X))
i=1

<C i ntre Z ayBIX,; — BEX,|

=1 i=1

S

4.9)

(4.10)
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6716

© a)2
+C Z n2exp — - (en”)
= l6n? Yy, 2 B(X,, - EX )2
i=1

=l + b,.

Next we establish that /; < co and I, < co. For I, by E|X|? < oo, ¢, inequality, Jensen inequality
and (4.7), we have that

eSS

i=1

<CZ ap-2— (Zqz Zi (Eleq (l |) + na/qV(|X| > Iun(l’))

i=1

<CZ Z R 1E(|qu (“|X|))+CZ PIY(X] > pun®)

i=1 2i-lgp<)i

=l + 1. (4.11)

By (2.1), it is obvious that that /1, < co. We only need to prove /;; < co. By (2.1) and (4.8), it is easy
to prove that

Y " X
I <C ) 2ler=of (Iqug (’;'m | ))

i=1

" iapa ep—a 1X|
SCZZ(” 4)+C22(P q)z (|X|q (/”;ka))
N (ap—aq)t | |
Z yilep-ag)fy (|X|qgk (/;ka ))

i=k

N

ik

C

<C ) 2kPy(X| > ¢2") < oo. (4.12)
k=1

For @ > 3/2, 2a — 3 > 0, which implies that for all n large enough,

& 2a-3
—n™ " > aplnn.
16 p

By (3.2), we can imply that

2
L <CZ ap= 2exp{16 2a ‘3}

n=1

<C Z n®2exp{lnn~""}

n=1

[e6]
<CZ n?<oo
X

n=1
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Hence H, < oo. This finishes the proof of Theorem 3.1.

Proof of Theorem 3.2. Without loss of generality, assume a,; > 0 forall » > 1 and 1 < i < n. For any

g > 0, by Theorem 3.1 we have that

(o)
Z nap—ar—Z CV

n=1

n

Z am'Xni

i=1

r
_ ma}
+

n

0 00
_ ap—ar-2 o1 1/r
_an’ f V(Zanani—sn > X )dx
n=1 0 i=1
00 ner n
= Z nPar=2 f \Y Z a,iX,i| — en® > xl/rJ dx
n=1 0 i=1

+ i nal’—ar—2 foo V[ i anani

i=1

—en® > xl/r] dx

n
i Xnil > sn“]

( Zn: i X

i=1

> x”') dx

n=1

L )
< Z napfar72 f v

Q@
n=1 n

\'
( i X > xl/r] dx = J.
-1

Hence, it suffices to show that J < oo.
Foralln > 1 and 1 < i < n, denote that

Y’;i = —xl/rI(Xm- < _xl/r) + Xml(lxml < xl/r) + xl/rI(Xm' S xl/r),
Y = X + 2 DIy < =217+ Ky = 2 DIK > 617,

then

n

n*rm 2f Z V(X > x"/")dx + Z n‘”’_m_zf V(Z am'Y;,i > xl/r] dx
nﬂ/}" N n:l n(IV l:1
nermar-2 f ZV(|X,”-| > x'")dx
)dx

Mg

1l
—_

n

Mg

Il
—

n i=1

+ Z nﬂp—ar—Z foo A\ [i Clm'(Y,’”- - E(Y;”)) > xl
n=1 ne"

i=1

n

=1 anB(r)

i=1

=J; + /.

In order to estimate J < oo, we only to show that J; < oo and J, < co. Thus by (4.5), (2.1) in Lemma

2.2 and g(x) is a decreasing function when x > 0, we get

inw Mf Z (1_ (D?/UJ))d

n=
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nr-arl wa(l —g( l}l(/lr))dx
(m+1)"
uf el
N ap—ar—1 ar _ o mer |X|
<>on Z[(m+1) —m B 1|

< i mar_IVGXl > luma) Z nap—ar—l

1 n=1

3
[

< Zm“”_IV(IXI > um®) < oo,

m=1

Next we prove J, < oo. By (4.5) and ¢, inequality, for all y > 0

i 2. a3

xl/r

<E(|X|7g (’%')) + XV (X > pxt. (4.13)
X r

Case Cy: p > 1.

By (4.5), EXm = 0 and ap > 1, it is sufficient to see that

n

Z aniEY;”.

i=1

n

<sup x Y @, BIX, - Y,

x>na/r i ]
n
1 N "
<sup x” E a,B|Y, |
x=n" i1

n

= sup x> @ BI(1Xl = (Xl > x7)]

>n" -
x=n =1

sup x~ /"

x=n®"

n

< > @ BIXull( Xl > n)]

i=1

- A Xni
<n? Z a,E [IXml (1 - g (ln—al))]

i=1

ez (1[5

<Cn'"E|IX)” >0, n— oo.
Case C: 0<p< 1.
By (4.5), (4.13), Markov inequality and ap > 1, we show that

n

Z amEY;ﬂ-

i=1

n

<sup Y 0,

>nr 3
xX2n i=1

sup x~ /"
x=n®"
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N X,i
< sup x~ Z aniE(|Xni|g (#| 1 l))
. xHr

x=n"

i=1
< A Xm'
+ sup x‘l/’Zamx‘”’E(l - g(l 5 I))
x r
o1

x=>ner

. 1
< sup x” VrEIX|I(1X|) < —=x") + sup nV(X| > ux'")

x=n®r x>nar
<Cn'"E|X)P + nV(X| > un®)

<Cn"EXPP -0, n— .

Hence, it follows that for all n large enough,

n

Z am-EY,;i <

i=1

sup x~ /"

x=>ner

which implies that

b 00 n ., 1/r
Jr < Z na/p—a'r—Zf V[Z an(Y,; —B(Y,)) > x2 )dx = Js.

n=1 i=1

By Definition 2.6, we know that {am(Y EY Jn=1,1< n} are still arrays of rowwise m-END

random variables, and E(am(Ym ]EYm)) =0. In order to prove Jz < oo, we have to show J; < oo.

Case Dy: p < 2.

By ¢, inequality, Jensen inequality, and (2.5) in Lemma 2.4, combine with (4.5), (4.9), (4.10) and

(4.13) that

o o 3 Blau(Y, - BY,))?
ap—ar-2 i=1
J3 < E P~ 2(4(1 + Ke))ym? f P dx

nar

n=1
n

Cin‘”’ o zf _2/’ZaiifE(Y;i)2dx

i=1

nap—ar—l —2/rE (le (ﬂl |)) dx
< 4 X
na/p—ozr—lf E(l _ g(l‘lll |)) d_x
ar xl/r
*© (k+1)*" . X
nap—ar—l f x—2/rE (|X|2 (/Jll/rl )) dx
k n kar
pep-ar- ko= 1- ZQE(|XI (lul |))

k
k- 1 2(1 (|X| (,Ul |))Z ap—ar—1

n=1

N

=
1l
—_

N

M i i

C

+

N

C

S
1l
—_

A
Mg
M

S
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—_

N
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[

>~
1l
—_
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- . X

<C Z km’—l—ZaE (|X|2g (%)) Jap—ar
k=1
- . X

<C Z kar—l—Z(xE (|X|2g (:ullca |)) < 0.
k=1

Case D;: p > 2.
For g > p > 2 and n > m, by (2.6) in Lemma 2.4, ¢, inequality and Jensen inequality, let 6 = 1, we
have

Z |ani(Y,,”' - EY;”)VI

[
]3 CZ popP-ar- 2 dx
na xq/”
i 00 x2/r
+C Z napar=2 f expy — dx
n A A
n:l n(IV

8m2 3, Blan (Y, — BY )2(1 + &)
i=1

o) 00 n
<C Z n“p_“r_zf x‘q”Z a’ By, — BY, |dx
n

ar -
i=1

& 00 2/r

X
+C Zn"p_‘”_Q f exps — - dx

n=1 " 16m? Y, a2 B(Y, - EY, )
i=1

o0 o n
_ _ _ A ’
<C E ppmer2 x4 E al BlY,,1%dx
n(‘tr l—l

=1

3

i 00 2/r
X
+C Z papar=2 f expy — - dx
n=1 16m? Y, 2 B(Y, - EY )
i=1
=J31 + J3.

Next we prove J3; < oo and J3, < o0. By ¢, inequality, Jensen inequality, and (2.5), combine with
(4.5), (4.11), (4.12) and (4.13), then

S 00 X
J31 SCZnC’p—m_l f _q/r( (|X|q (,u| | ) + q/’E(l g(/#/l))) dx
ner xHr

n=1

<CZnap ar— lf —q/rE (leq (,Ltl |)) dx

n=

+C n‘”"”lf (1— (ﬁ))d

n=

0 0 (k+1)2" |X|
CZnap ar— IZf —q/rE(|X|q ( 0 ))

n=1 k=n
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N
A
M8

= . X
p—ar—l Z kar—l—aqE |X|qg (/‘%))
k=n

X1\ §
kar—l—a/qE (|X|qg H Z nap—ar—l

S
Il
—_

A
a
agk

ka

=1 n=1

=~

A
M8

X
ke 1-aq (leqg ,Lll | kap—ar

k=1 ke
= X

< Z ar 1 2( (leqg :ullca| < 00,
k_

Let 8 > max{5:— Loy and £ > 1,2 —ap+ Qa—3)8 > 1, it follows that all s large enough, e® > s*,

302
take x = n®’t, noting that by (3 2),
00 2/r
X
ap—ar—Zf exp 1 — _ / —— dx
o 16n3B(Y, — BY )2
00 2/r
X
nePmar2 f exXp——5 rdx
1 n(Yf n
00 2a42/r
n-=“t
nap—ar—Znarf exp 5 dt
1 1 n
0o [ 2a2/r\B
nap—ar—2narf (l’l 2 ) dt
1 n
- 1
< ap-2-Qa-3)p
<C Z 128/ rdt

1

1
<CZ n2—a/p+(2(l—3)ﬁ <
n=1

By B(X,) = &X,) =0, {=X,;,n > 1,i > 1} also satisfies the conditions of Theorem 3.2, we obtain

o0 0o n
Z ntrer f v [Z @i X, < —x/ ’] dx < co.
n:l nar

i=1

]32 <C

Nt

N

Me

C

S
Il

M

N

C

n

M

<C

n=1

Hence, the proof of Theorem 3.2 is finished.
Proof of Theorem 3.3. Take ap = 2 in Theorem 3.1, we get

iV{Zam i >6n“}<00.

n=1

By Lemma 2.5, then
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and
(V{O ﬁ [ Z aiXo| < W)} .
furthermore, m=t n=m AT
' {D ﬁ ( Z niXni| < Sn“)} -1
Then o) e [T

| < 811"]] - (n“’ Z i Xy — O).

i=1

When a = 2/p, we have

i=1

A\ {[n_z/p Z am-Xm-] —> O} =1.

Above all, the proof of Theorem 3.3 is completed.
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