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1. Introduction

Let A (Ω) denote the class of analytic functions f(ς) in the open unit disk Ω = {ς : |ς| < 1}. The
class An contains the functions f ∈ A (Ω) having the series of the form

f(ς) = ς + an+1ς
n+1 + an+2ς

n+2 + ..., (ς ∈ Ω) . (1.1)

For n = 1, we have A1 = A, the class of normalized analytic functions in Ω. Let S , S ∗ and C denote
the subclasses of A of univalent functions, starlike functions and convex functions, respectively. The
class of Carathéodory functions is denoted by P. Let f, g ∈ A. Then, f ≺ g denotes the subordination of
functions f and g, defined as f(ς) = g(w(ς)), where w(ς) is a Schwartz function in Ω (see [1]). In [2,3],
the authors introduced and studied the concept of differential subordination. Fuzzy subordination and
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fuzzy differential subordination was first studied by G. I. Oros and Gh. Oros; see [4, 5]. Fuzzy
differential subordination theory represents a generalization of the classical concept of differential
subordination which emerged in recent years as a result of embedding the concept of fuzzy sets into
geometric function theory. Several authors contributed in the study of fuzzy differential subordination;
for examples, see [6–19]. Here, we give an overview of some useful basic concepts related to fuzzy
differential subordination and q-calculus.

Definition 1.1. [20] Let Y , φ, and F is a mapping from Y to [0, 1]. Then, F is called a fuzzy subset
on Y.

Alternatively, the fuzzy subset is also defined as the following.

Definition 1.2. [20] A pair (I, FI) is called a fuzzy subset on Y, where FI : Y → [0, 1] is the
membership function of the fuzzy set (I, FI), and I = {x ∈ Y : 0 < FI(x) ≤ 1} = sup (I, FI) is the support
of fuzzy set (I, FI).

Definition 1.3. [20] Fuzzy subsets (I, FI) and (J, FJ) of Y are equal if and only if I = J, whereas
(J, FJ) ⊆ (I, FI) if and only if FI (x) ≤ FJ (x), x ∈ Y.

Definition 1.4. [5] Let D ⊂ C and ς0 ∈ D be a fixed point. Then, analytic function f1 is fuzzy
subordinate to the analytic function f2 (written as f1 ≺F f2 (or f1(ς) ≺F f2(ς) )) if

f1(ς0) = f2(ς0) and F (f1 (ς)) ≤ F (f2 (ς)) , ς ∈ D.

Remark 1.1. We can assume such a function Γi : C→ [0, 1], (i = 1, 2, 3, 4), as any of the following.

Γ1(ς) =
|ς|

1 + |ς|
, Γ2(ς) =

1
1 + |ς|

, Γ3(ς) = |cos |ς|| ,Γ4(ς) = |sin |ς|| .

Remark 1.2. If D = Ω in Definition 1.4, then the fuzzy subordination coincides with the classical
subordination.

In [21], the author studied the q-difference operator, which is defined by

Dqf(ς) =
f(ς) − f(qς)

(1 − q)ς
, q , 1, ς , 0, (1.2)

for q ∈ (0, 1). Clearly, the q-difference operator becomes the well known differential operator for
q→ 1−.

For n ∈ N = {1, 2, 3, ..} and ς ∈ Ω, we note that

Dq

 ∞∑
n=1

anς
n

 =

∞∑
n=1

[n]q ς
n−1, (1.3)

with
[n]q =

1 − qn

1 − q
= 1 + q + q2 + .... (1.4)

Some important rules of Dq are given as the following.
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Dq (xf1 (ς) ± yf2 (ς)) = xDqf1 (ς) ± yDqf2 (ς)

Dq (f1 (ς) f2 (ς)) = f1 (qς)Dq (f2 (ς)) + f2(ς)Dq (f1 (ς))

Dq

(
f1(ς)
f2(ς)

)
=
Dq (f1(ς)) f2(ς) − f1(ς)Dq (f2(ς))

f2(qς)f2(ς)
, f2(qς)f2(ς) , 0.

Dq
(
log f1(ς)

)
=

ln qDq (f1(ς))
(q − 1) f1(ς)

.

In [22], the authors for the first time discussed some properties of the function theory in terms of
q-theory.

Shah and Noor [23] generalized the Srivastava-Attiya operator and the multiplier transformation
in terms of the q-calculus. Let b ∈ C \ Z−0 , s ∈ C when |ς| < 1, and < (s) > 1 when |ς| = 1. The
q-Srivastava-Attiya operator J s,b

q : A→ A is given by

J s,b
q f(ς) = ψq (s, b; ς) ∗ f(ς)

= ς +

∞∑
n=2

(
[1 + b]q

[n + b]q

)s

anς
n, (1.5)

where

ψq (s, b; ς) = ς +

∞∑
n=2

(
[1 + b]q

[n + b]q

)s

ςn,

and “ ∗ ” denotes convolution (or Hadamard product).
It is noted that, if q → 1−, then the operator J s

q,b coincides with the Srivastava-Attiya operator;
see [24]. Furthermore, this operator generalizes the q-Alexander operator, the q-Bernardi operator and
the q-Libera operator; we refer to [25].

For f ∈ A, b > −1, q ∈ (0, 1) and real number s, the operator I s,b
q : A→ A is defined as follows:

I s,b
q f(ς) = ς +

∞∑
n=2

(
[n + b]q

[1 + b]q

)s

anς
n. (1.6)

This operator is known as the q-analogue of multiplier transformation. The operator I s,b
q generalizes a

well-known Salagean q-differential operator; see [26].
We use (1.5) and (1.6) to obtain the following identities:

ςDq

(
J s+1,b

q f(ς)
)

=

(
1 +

[b]q

qb

)
J s,b

q f(ς) −
[b]q

qb J s+1,b
q f(ς). (1.7)

ςDq

(
I s,b
q f(ς)

)
=

(
1 +

[b]q

qb

)
I s+1,b
q f(ς) −

[b]q

qb I s,b
q f(ς). (1.8)

We use the notion of fuzzy subordination along with the q-difference operator to define the following
classes:

Let T be the class of analytic and univalent convex functions g (ς) in Ω with g (0) = 1 and
Re (g (ς)) > 0 in Ω.
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Definition 1.5. Let f ∈ A, non-negative real s, q ∈ (0, 1), 0 , τ ∈ C, b ∈ N, and g(ς) ∈ T. Then,
f ∈ FS Tq,τ (g) if and only if

1 +
1
τ

(
ςDqf (ς)
f (ς)

− 1
)
≺F g (ς) ,

and f ∈ FCVq,τ (g) if and only if
ςDqf (ς) ∈ FS Tq,τ (g) ,

where F : C→ [0, 1], and Dq is the q-difference operator.

Next, some new classes are defined connecting the q-analogue of the linear operators discussed
above with the classes introduced in the previous definition.

Definition 1.6. Let f ∈ A, b > −1, s be a real and 0 , τ ∈ C. Then,

f ∈ FS T s,b
q,τ (g) if and only if J s,b

q f(ς) ∈ FS Tq,τ (g) ,

and
f ∈ FCV s,b

q,τ (g) if and only if J s,b
q f(ς) ∈ FCVq,τ (g) .

We note that
f ∈ FCV s,b

q,τ (g) if and only if ς
(
Dqf

)
∈ FS T s,b

q,τ (g) . (1.9)

Special cases:
(i) If s = 0, then FS T s,b

q,τ (g) = FS Tq,τ (g), and FCV s,b
q,τ (g) = FCVq,τ (g).

(ii) If q → 1− and τ = 1, then the classes FS T s,b
q,τ (g) and FCV s,b

q,τ (g) coincide with the classes
FS T s

b (g) and FC s
b (g) studied by Shah et al. [12].

(iii) If s = 0, q→ 1− and τ = 1, then the classes FS T s,b
q,τ (g) and FCV s,b

q,τ (g) coincide with the classes
FS T (g) and FC (g) studied by Shah et al. [12].

Definition 1.7. Let f ∈ A, b > −1, s be a real and 0 , τ ∈ C. Then,

f ∈ F̃S T
s,b
q,τ (g) if and only if I s,b

q f(ς) ∈ FS Tq,τ (g) ,

and
f ∈ F̃CV

s,b
q,τ (g) if and only if I s,b

q f(ς) ∈ FCVq,τ (g) .

It is obvious that
f ∈ F̃CV

s,b
q,τ (g) if and only if ς

(
Dqf

)
∈ F̃S T

s,b
q,τ (g) . (1.10)

2. Main results

Before the discussion of our main investigations, some required lemmas are given as the following.

Lemma 2.1. [27] Let p(ς) = 1 + pk(ς) + ..., k ≥ 1, be analytic in Ω, and let q(ς) = 1 + ck(ς) + ...,
be analytic and univalent in Ω. If p(ς) ⊀ q(ς), then there exist a real number m (m ≥ 1), ς0 ∈ Ω and
ξ0 ∈ ∂Ω such that

(1) p(|ς| < |ς0|) ⊂ q (Ω).
(2) p(ς0) = q (ξ0).
(3) arg

(
ς0Dq p(ς0)

)
= arg

(
ξ0Dqq(ξ0)

)
.

(4)
∣∣∣ς0Dq p(ς0)

∣∣∣ = m
∣∣∣ξ0Dqq(ξ0)

∣∣∣.
AIMS Mathematics Volume 8, Issue 3, 6642–6650.



6646

Lemma 2.2. Let ξ, λ ∈ C with ξ , 0, and let g(ς) be analytic in Ω with g(0) = 1 and

<{ξg(ς) + λ} > 0. (2.1)

If p(ς) = 1 + p1ς + p2ς
2 + ... is analytic in Ω, then

p(ς) +
ςDq p(ς)
ξp(ς) + λ

≺F g(ς) implies p(ς) ≺F g(ς),

where F : C→ [0, 1].

Proof. We assume that all the functions under consideration are analytic in the closed disc Ω. Suppose
on the contrary that p(ς) ⊀F g(ς). According to the Lemma 2.1, there exist a real number m ≥ 1,
ς0 ∈ Ω and ξ0 ∈ ∂Ω such that

p(ς0) +
ς0Dq p(ς0)
ξp(ς0) + λ

= g(ξ0) +
ξ0Dqg(ξ0)
ξg(ξ0) + λ

. (2.2)

From (2.1), we can write arg |ξg(ξ0) + λ| < π
2 , and ξ0Dqg(ξ0) is in the direction of the outer normal to

the convex domain g (Ω). Therefore,

p(ς0) +
ς0Dq p(ς0)
ξp(ς0) + λ

< g (Ω) .

This is the contradiction to the hypothesis. Hence, p(ς) ≺F g(ς).
Replace p(ς) by pµ(ς) = p(µς), and gµ(ς) = g(µς), 0 < µ < 1. Due to the theorem, we obtain

pµ(ς) ≺F gµ(ς) for each µ. For µ→ 1, we have p(ς) ≺F g(ς). �

2.1. Inclusion results

Theorem 2.1. Let F : C→ [0, 1], g ∈ T, q ∈ (0, 1), s > 0, b ∈ N, and 0 , τ ∈ C. Then,

FS T s,b
q,τ (g) ⊂ FS T s+1,b

q,τ (g) ,

for

<
{
τ (g(ς) − 1) +

(
1 + εq

)}
> 0, with εq =

[b]q

qb .

Proof. Let f ∈ FS T s,b
q,τ (g). For p(ς) analytic in Ω with p(0) = 1, we set

p(ς) =
1
τ

ςDq

(
J s+1,b

q f(ς)
)

J s+1,b
q f(ς)

− (1 − τ)

 . (2.3)

We use identity (1.7) and (2.3) to get

p(ς) =
1
τ



(
1 +

[b]q

qb

)
J s,b

q f(ς)

J s+1,b
q f(ς)

+
[b]q

qb

 − (1 − τ)

 ,
AIMS Mathematics Volume 8, Issue 3, 6642–6650.
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and this implies

(
1 + εq

) J s,b
q f(ς)

J s+1,b
q f(ς)

= τ (p(ς) − 1) +
(
1 + εq

)
,

(
for εq =

[b]q

qb

)
.

The q-logarithmic differentiation and (2.3) yields

1
τ

ςDq

(
J s,b

q f(ς)
)

J s,b
q f(ς)

− (1 − τ)

 = p(ς) +
ςDq p(ς)

τ (p(ς) − 1) +
(
1 + εq

) . (2.4)

Since f ∈ FS T s,b
q,τ (g), from (2.3) we have

p(ς) +
ςDq p(ς)

τ (p(ς) − 1) +
(
1 + εq

) ≺F g(ς), (2.5)

for g ∈ T . If we assume
<

{
τ (g(ς) − 1) +

(
1 + εq

)}
> 0,

then by using Lemma 2.2 and (2.5), we obtain that p(ς) ≺F g(ς) implies f ∈ FS T s+1,b
q,τ (g). �

Theorem 2.2. Let F : C→ [0, 1], g ∈ T, q ∈ (0, 1), s > 0, b ∈ N, and 0 , τ ∈ C. Then,

FCV s,b
q,τ (g) ⊂ FCV s+1,b

q,τ (g) ,

for

<
{
τ (g(ς) − 1) +

(
1 + εq

)}
> 0,

(
for εq =

[b]q

qb

)
.

Proof. Let f ∈ FCV s,b
q,τ (g). Then, by (1.9), ςDqf ∈ FS T s,b

q,τ (g). This implies, by using
Theorem 2.1, ςDqf ∈ FS T s+1,b

q,τ (g). Again by (1.9), we get f ∈ FCV s+1,b
q,τ (g). �

When q→ 1− and τ = 1, we obtain the results proved in [12] and given as the following.

Corollary 2.1. Let g(ς) ∈ T, s > 0, and b ∈ N. Then,

FS T s
b (g) ⊂ FS T s+1

b (g) , and FCV s
b (g) ⊂ FCV s+1

b (g) .

The following inclusion results can easily be proved by using similar arguments as used before.

Theorem 2.3. Let F : C→ [0, 1], g ∈ T, q ∈ (0, 1), s > 0, b ∈ N, and 0 , τ ∈ C. Then,

F̃S T
s+1,b
q,τ (g) ⊂ F̃S T

s,b
q,τ (g) , and F̃CV

s+1,b
q,τ (g) ⊂ F̃CV

s,b
q,τ (g) ,

for

<
{
τ (g(ς) − 1) +

(
1 + εq

)}
> 0, with εq =

[b]q

qb .
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2.2. Integral preserving property

Theorem 2.4. Let F : C→ [0, 1], g ∈ T, q ∈ (0, 1), s > 0, b ∈ N and 0 , τ ∈ C, and let f ∈ FS T s,b
q,τ (g).

Then, Fq,b ∈ FS T s,b
q,τ (g), where

Fq,b(ς) =
[1 + b]q

ςb

∫ ς

0
tb−1
f(t)Dqt, (2.6)

for
<

{
τ (g(ς) − 1) +

(
1 + [b]q

)}
> 0.

Proof. Let f ∈ FS T s,b
q,τ (g). For p(ς) analytic in Ω with p(0) = 1, we set

p(ς) =
1
τ

ςDq

(
J s+1,b

q f(ς)
)

J s+1,b
q f(ς)

+ τ − 1

 . (2.7)

From (2.6), we can write
Dq

(
ςbFq,b(ς)

)
[1 + b]q

= ςb−1
f(ς).

We use the product rule of the q-difference operator to get

ςDqFq,b(ς) =

(
1 +

[b]q

qb

)
f(ς) − [b]q Fq,b(ς). (2.8)

From (2.7), (2.8) and (1.5), we have(
1 +

[b]q

qb

)
J s,b

q f(ς)

J s+1,b
q Fq,b(ς)

= τ (p(ς) − 1) +
(
1 + [b]q

)
.

We take q-logarithmic differentiation to get

p(ς) +
ςDq p(ς)

τ (p(ς) − 1) +
(
1 + [b]q

) ≺F g(ς),

since f ∈ FS T s,b
q,τ (g), and g ∈ T . If we assume

<
{
τ (g(ς) − 1) +

(
1 + [b]q

)}
> 0,

on making use of Lemma 2.2, we obtain p(ς) ≺F g(ς), and this completes the proof. �

Remark 2.1. (i) Using a similar technique, we can prove the above integral preserving property for
the classes FCV s,b

q,τ (g), F̃S T
s,b
q,τ (g) and F̃CV

s,b
q,τ (g).

(ii) In particular, the classes FS T s
b (g) and FCV s

b (g), defined in [12], preserve under the q-Bernardi
integral operator.
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3. Conclusions

In this article, the notion of a fuzzy subset is used to define certain subclasses of univalent functions
associated with the q-difference operator. The applications of the q-Srivastava-Attiya operator and
the q-multiplier transformation are discussed. On employing these operators, we introduced certain
subclasses. Various important properties such as the inclusion relationship between the classes and the
integral preserving properties are investigated. This article will inspire the scholars of this field for
further investigations related to the notion of fuzzy subsets involving q-theory in the future.
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