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1. Introduction and preliminaries

Let G be an abelian group with identity e and R be a commutative ring with unity 1. We say that
R is a G-graded ring if there exists a family {Rg}g∈G of additive subgroups of R such that R = ⊕

g∈G
Rg

and RgRh ⊆ Rgh for all g, h ∈ G. The elements of the set h(R) =
⋃
g∈G

Rg are called the homogeneous

elements of R. In addition, the non-zero elements of Rg are called homogeneous elements of degree g.
Every element x ∈ R can be written uniquely as

∑
g∈G

xg, where xg ∈ Rg and xg = 0 for all but finitely

many g. It is easy to see that if R = ⊕
g∈G

Rg is a G-graded ring, then 1 ∈ Re, and Re is a subring of R;

see [9]. An ideal I of a G-graded ring R = ⊕
g∈G

Rg is said to be a G-graded ideal of R, denoted by I CG R,

if I = ⊕
g∈G

(I ∩ Rg). The graded radical of the graded ideal I is the set of all a =
∑

g∈G
ag ∈ R such that for

each g ∈ G there exists ng > 0 with ang
g ∈ I. By Gr(I) (resp.

√
I) we mean the graded radical (resp.

the radical) of I. Note that if r ∈ h(R), then r ∈ Gr(I) if and only if r ∈
√

I. If I = Gr(I), then we say
that I is a graded radical ideal of R; see [14]. The graded prime spectrum of R, given by S pecG(R), is
defined to be the set of all graded prime ideals of R. For each graded ideal J of R, define VR

G(J) as the
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set {p ∈ S pecG(R) | J ⊆ p}. Then, the collection {VR
G(J) | J CG R} satisfies the axioms for closed sets

of a topology on S pecG(R). The resulting topology is called the Zariski topology on S pecG(R) (see,
for example, [2, 11, 12, 14]).

Let R be a G-graded ring and M be a left R-module. We say that M is a G-graded R-module if
M = ⊕

g∈G
Mg and RgMh ⊆ Mgh for all g, h ∈ G, where every Mg is an additive subgroup of M. The

elements of the set h(M) =
⋃
g∈G

Mg are called the homogeneous elements of M. Also, the non-zero

elements of Mg are called homogeneous elements of degree g. If t ∈ M, then t can be uniquely
represented by

∑
g∈G

tg, where tg ∈ Mg and tg = 0 for all but finitely many g. A submodule N of a

G-graded R-module M = ⊕
g∈G

Mg is said to be a G-graded submodule of M if N = ⊕
g∈G

(N ∩ Mg). By

N ≤G M, we mean that N is a G-graded submodule of M. Let M be a G-graded R-module, I CG R and
N ≤G M. Then, AnnR(N) = {r ∈ R | rN = {0}} CG R, and AnnM(I) = {m ∈ M | Im = {0}} ≤G M;
see [9].

Let M be a G-graded R-module. A non-zero graded submodule S of M is called graded second if
rS = S or rS = 0 for every r ∈ h(R). In this case, AnnR(S ) is a graded prime ideal of R. The set of
all graded second submodules of M is denoted by S pecs

G(M), and it is known as the graded second
spectrum of M. If S pecs

G(M) = ∅, then we say that M is a G-graded secondless R-module. The graded
second radical (or graded second socle), socG(N), of a G-graded submodule N of M is defined as the
sum of all graded second submodules of M contained in N. When N does not contain graded second
submodules, we set socG(N) = {0}. For more information about the graded second submodules and the
graded second socle of graded submodules of graded modules, (see, for example, [5, 8, 16]).

Let M be a G-graded R-module and let Ωs∗(M) = {V s∗
G (N) | N ≤G M} where V s∗

G (N) = {S ∈
S pecs

G(M) | S ⊆ N} for any N ≤G M. We say that M is a G-cotop module if the collection Ωs∗(M)
is closed under finite union. When this is the case, Ωs∗(M) induces a topology on S pecs

G(M) having
Ωs∗(M) as the collection of all closed sets, and the generated topology is called the quasi-Zariski
topology on S pecs

G(M). Unlike Ωs∗(M), Ω(M) = {V s
G(N) | N ≤G M}, where V s

G(N) = {S ∈
S pecs

G(M) | AnnR(N) ⊆ AnnR(S )} for any N ≤G M always satisfies the axioms for closed sets of
a topology on S pecs

G(M). This topology is called the Zariski topology on S pecs
G(M). For a G-graded

R-module M, the map φ : S pecs
G(M) → S pecG(R/AnnR(M)) defined by S → AnnR(S )/AnnR(M) is

called the natural map of S pecs
G(M). For more details concerning the topologies on S pecs

G(M) and the
natural map of S pecs

G(M), one can look in [16].
Let M be a G-graded R-module. Then, M is said to be graded Noetherian (resp. graded Artinian) if

it satisfies the ascending (resp. descending) chain condition for the graded submodules. The G-graded
ring R is said to be graded Noetherian (resp. graded Artinian) if it is graded Noetherian (resp. graded
Artinian) as G-graded R-module; see [9]. A topological space X is Noetherian provided that the open
(resp. closed) subsets of X satisfy the ascending (resp. descending) chain condition, or the maximal
(resp. minimal) condition; see [6, 7].

We start this work by studying graded rings with Noetherian graded prime spectrum and provide
some related results which are important in the last section. For example, we show that every G-graded
Noetherian ring R has Noetherian graded prime spectrum, which implies that every graded radical ideal
I of R is the intersection of a finite number of minimal graded prime divisors of it (Proposition 2.2 and
Theorem 2.7). The notion of RFGg-ideals will be introduced, and some properties of them will be
given. In Section 2 of this paper, among other important results, we prove that S pecG(R) for a G-
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graded ring R is a Noetherian topological space if and only if every graded prime ideal of R is an
RFGg-ideal (Corollary 2.13). Let M be a G-graded R-module. In Section 3, we say that M is a
graded secondful module if the natural map φ of S pecs

G(M) is surjective. The surjectivity of φ plays
an important role in this study. So, we investigate some properties of the graded secondful modules.
Then, we define the graded Zariski socle, Z.socG(N), of a graded submodule N of M to be the sum
of all members of V s

G(N) if V s
G(N) , ∅, and we put Z.socG(N) = {0} otherwise. We provide some

relationships between V s∗
G (N) and V s

G(N) to obtain some situations where the graded second socle and
the graded Zariski socle coincide (Lemma 3.5 and Proposition 3.6). We also list some important
properties of the graded Zariski socle of graded submodules (Proposition 3.8). In Section 4, we study
graded modules with Noetherian graded second spectrum and state some related observations. The
properties of the graded Zariski socle of graded submodules are essential in this section. For example,
we show that the graded second spectrum of a graded module is a Noetherian space if and only if the
descending chain condition for graded Zariski socle submodules holds (Theorem 4.1). In addition,
we show that the surjective relationship between S pecs

G(M) and S pecG(R/AnnR(M)) for a G-graded
secondful R-module M yields the characterization that S pecs

G(M) is a Noetherian space exactly if
S pecG(R/AnnR(M)) is Noetherian (Theorem 4.5). After this, we add some conditions on the graded
secondful modules and prove that, under these conditions, every graded Zariski socle submodule is the
sum of a finite number of graded second submodules (Theorem 4.8(1)). Next, we give the concept of
RFG∗g-submodules of graded modules. Using the results of Sections 2 and 3, we prove the equivalence
that a graded faithful secondful module has Noetherian graded second spectrum if and only if every
graded second submodule is an RFG∗g-submodule (Corollary 4.12(1)).

Throughout this paper, G is an abelian group with identity e, and all rings are commutative with
unity 1. For a G-graded R-module M and a graded ideal I of R containing AnnR(M), I/AnnR(M) and
R/AnnR(M) will be expressed by I and R, respectively.

2. Graded rings with graded prime spectrum

In this section, we give a few conditions under which the Zariski topology on S pecG(R) for a G-
graded ring R is a Noetherian space and obtain some related results that are needed in the last section.

Let R be a G-graded ring and Y be a subset of S pecG(R). Then, the closure of Y in S pecG(R) will
be denoted by Cl(Y). Also, the intersection of all members of Y will be denoted by ξ(Y). If Y = ∅, we
write ξ(Y) = R. It is clear that ξ(Y2) ⊆ ξ(Y1) for any Y1 ⊆ Y2 ⊆ S pecG(R).

Lemma 2.1. Let R be a G-graded ring. Then, we have the following:

1) If Y ⊆ S pecG(R), then Cl(Y) = VR
G(ξ(Y)).

2) ξ(VR
G(I)) = Gr(I) for each graded ideal I of R.

3) Gr(I1) = Gr(I2)⇔ VR
G(I1) = VR

G(I2) for each pair of graded ideals I1 and I2 of R.

4) If R has Noetherian graded prime spectrum, then so does R/I for any graded ideal I of R.

Proof. (1) Clearly, Y ⊆ VR
G(ξ(Y)). Let VR

G(I) be any closed subset of S pecG(R) containing Y , where
I CG R. It is enough to show that VR

G(ξ(Y)) ⊆ VR
G(I). So, let p ∈ VR

G(ξ(Y)). Then, ξ(Y) ⊆ p. Note that
for any p′ ∈ Y , we have I ⊆ p′, and thus I ⊆

⋂
p′∈Y

p′ = ξ(Y) ⊆ p. This implies that p ∈ VR
G(I). Therefore,
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VR
G(ξ(Y)) is the smallest closed set containing Y and, hence Cl(Y) = VR

G(ξ(Y)).
(2) follows from [14, Proposition 2.5].
(3) Suppose that Gr(I1) = Gr(I2). By (2), we have ξ(VR

G(I1)) = ξ(VR
G(I2)) and, this implies that VR

G(I1) =

Cl(VR
G(I1)) = VR

G(ξ(VR
G(I1))) = VR

G(ξ(VR
G(I2))) = Cl(VR

G(I2)) = VR
G(I2) by (1). The converse is clear by

using (2) again.
(4) Let VR/I

G (J1/I) ⊇ VR/I
G (J2/I) ⊇ ... be a descending chain of closed sets in S pecG(R/I), where Ji CG R

containing I. Then, it is easy to see that we obtain VR
G(J1) ⊇ VR

G(J2) ⊇ ..., which is a descending chain
of closed sets in S pecG(R). By hypothesis, there exists k ∈ Z+ such that VR

G(Ji) = VR
G(Jk) for each i ≥ k.

Therefore, VR/I
G (Ji/I) = VR/I

G (Jk/I) for each i ≥ k, as desired. �

Proposition 2.2. Let R be a G-graded ring. Then, the following hold:

(a) R has Noetherian graded prime spectrum if and only if the ascending chain condition for graded
radical ideals of R holds.

(b) If R is a graded Noetherian ring, then S pecG(R) is a Noetherian space.

Proof. (a) Suppose that S pecG(R) is a Noetherian space and let I1 ⊆ I2 ⊆ ... be an ascending chain
of graded radical ideals of R. By [14, Proposition 3.1(1)], we have VR

G(I1) ⊇ VR
G(I2) ⊇ ..., which is a

descending chain of closed sets in S pecG(R). So, there exists k ∈ Z+ such that VR
G(It) = VR

G(Ik) for each
t ≥ k. By Lemma 2.1(3), we obtain It = Gr(It) = Gr(Ik) = Ik for each t ≥ k, which completes the proof
of the first direction. Now, suppose that the ascending chain condition for graded radical ideals holds
and let VR

G(I1) ⊇ VR
G(I2) ⊇ ... be a descending chain of closed sets in S pecG(R). Using Lemma 2.1(2)

and [14, Proposition 2.4], we have that Gr(I1) ⊆ Gr(I2) ⊆ ... is an ascending chain of graded radical
ideals of R and, hence there exists k ∈ Z+ such that Gr(Ik) = Gr(It) for each t ≥ k. Again, by Lemma
2.1(3), we get VR

G(Ik) = VR
G(It) for each t ≥ k, as desired. Now, the proof of (b) is trivial by (a). �

Let W be a topological space. Then, W is said to be irreducible if W , ∅, and whenever W1 and
W2 are closed subsets in W with W = W1 ∪ W2, then either W = W1 or W = W2. Let W ′ ⊂ W.
Then, W ′ is irreducible if it is an irreducible space with the relative topology. The maximal irreducible
subsets of W are called the irreducible components of W. It is easy to see that every singleton subset
of W is irreducible, and a subset Z of W is irreducible if and only if its closure is irreducible (see, for
example, [6, 7]).

Theorem 2.3. Let R be a G-graded ring and Y ⊆ S pecG(R). Then, Y is an irreducible closed subset of
S pecG(R) if and only if Y = VR

G(I) for some I ∈ S pecG(R).

Proof. ⇒: Since Y is irreducible in S pecG(R), we have ξ(Y) ∈ S pecG(R) by [15, Lemma 4.3]. Since Y
is closed, we have Y = Cl(Y) = VR

G(ξ(Y)) by Lemma 2.1(1). Choose I = ξ(Y).
⇐: Suppose that Y = VR

G(I) for some I ∈ S pecG(R). By Lemma 2.1(1), Y = Cl({I}). Since {I} is
irreducible, then its closure Cl({I}) = Y is irreducible, as needed. �

Definition 2.4. [13] Let R be a G-graded ring and I CG R. The graded prime ideal that is minimal with
respect to containing I is called a minimal graded prime divisor of I (or minimal graded prime ideal
over I). That is, p is a minimal graded prime divisor of I if p ∈ VR

G(I), and whenever J ∈ S pecG(R)
with I ⊆ J ⊆ p, we have p = J.

Theorem 2.5. Let R be a G-graded ring and I CG R. Then, the following hold:
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1) If Y ⊆ VR
G(I), then Y is an irreducible component of the subspace VR

G(I) if and only if Y = VR
G(p)

for some minimal graded prime divisor of I.

2) If VR
G(I) is a Noetherian topological subspace of S pecG(R), then I contains only a finite number

of minimal graded prime divisors.

Proof. (1) ⇒: Suppose that Y is an irreducible component of the subspace VR
G(I). By [6, p. 13,

Exercise 20(iii)], Y is an irreducible closed space in the subspace VR
G(I), and hence it is irreducible

closed in S pecG(R). By Theorem 2.3, Y = VR
G(p) for some p ∈ S pecG(R). It is clear that p ∈ VR

G(I).
Let J ∈ S pecG(R) with I ⊆ J ⊆ p. Again, by Theorem 2.3, VR

G(J) is irreducible in S pecG(R). How
ever, VR

G(J) ⊆ VR
G(I) and VR

G(I) is closed in S pecG(R). It follows that VR
G(J) is irreducible in the

subspace VR
G(I). Since VR

G(p) ⊆ VR
G(J) ⊆ VR

G(I) and VR
G(p) is an irreducible component of VR

G(I), we
have VR

G(p) = VR
G(J), and hence p ⊆ J. This shows that p is a minimal graded prime divisor of I.

⇐: Suppose that Y = VR
G(p) for some minimal graded prime divisor p of I. By Theorem 2.3, Y is

irreducible in S pecG(R). Now, it is easy to see that Y is irreducible in the subspace VR
G(I). Let Y ′ be

irreducible in the subspace VR
G(I) with Y ⊆ Y ′. To complete the proof, it is enough to show that Y ′ ⊆ Y .

By Lemma 2.1(2), we obtain I ⊆ Gr(I) = ξ(VR
G(I)) ⊆ ξ(Y ′) ⊆ ξ(VR

G(p)) = Gr(p). Since p ∈ S pecG(R),
we have Gr(p) = p by [14, Proposition 2.4(5)]. Also, by [15, Lemma 4.3], ξ(Y ′) ∈ S pecG(R). Since
I ⊆ ξ(Y ′) ⊆ p and p is minimal graded prime ideal over I, we have ξ(Y ′) = p. By Lemma 2.1(1),
Y ′ ⊆ Cl(Y ′) = VR

G(ξ(Y ′)) = VR
G(p) = Y , as desired.

(2) By [7, p. 124, Proposition 10], the subspace VR
G(I) has only finitely many irreducible components

as VR
G(I) is a Noetherian space. Now, the result follows by (1). �

Let R be a G-graded ring and p CG R. It is clear that p is a minimal graded prime ideal of R if and
only if p is a minimal graded prime divisor of {0}. Now, the following result can be easily checked by
replacing I by {0} in Theorem 2.5.

Corollary 2.6. The following hold for any G-graded ring R:

(i) If Y ⊆ S pecG(R), then Y is an irreducible component of S pecG(R) if and only if Y = VR
G(p) for

some minimal graded prime ideal p of R.

(ii) If S pecG(R) is a Noetherian space, then R contains only finitely many minimal graded prime
ideals. Hence, by Proposition 2.2, every graded Noetherian ring has only finitely many minimal
graded prime ideals.

Theorem 2.7. Let R be a G-graded ring with Noetherian graded prime spectrum. Then, every graded
radical ideal I of R is the intersection of a finite number of minimal graded prime divisors of it.

Proof. Note that R is the intersection of the empty family of graded prime divisors of R. Suppose that
I , R. Since S pecG(R) is a Noetherian space, we have the subspace VR

G(I) is Noetherian by [7, p.
123, Proposition 8(i)]. Since I , R, we get that I has at least one minimal graded prime divisor by [13,
Corollary 2.3]. Using Theorem 2.5(2), I contains only a finite number of minimal graded prime divisors
p1, p2, ..., pn, say, where n ∈ Z+. So, VR

G(p1),VR
G(p2), ...,VR

G(pn) are the only irreducible components of
VR

G(I) by Theorem 2.5(1). Since every topological space is the union of its irreducible components, we

have VR
G(I) = VR

G(p1)∪VR
G(p2)∪ ...∪VR

G(pn). By [11, Proposition 2.1(3)], we obtain VR
G(I) = VR

G(
n⋂

i=1
pi).
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By hypothesis and using Lemma 2.1(3), we have I = Gr(I) = Gr(
n⋂

i=1
pi) =

n⋂
i=1

Gr(pi) =
n⋂

i=1
pi, as

needed. �

Recall that a graded ideal I of a G-graded ring R is said to be graded finitely generated if I =

Rr1 + Rr2 + ... + Rrn for some r1, r2, ..., rn ∈ h(I) = I ∩ h(R); see [9].

Definition 2.8. We say that a graded ideal I of a G-graded ring R is an RFGg-ideal if Gr(I) = Gr(J)
for some graded finitely generated ideal J of R. In addition, we say that R has property (RFGg) if every
graded ideal I of R is an RFGg-ideal.

Proposition 2.9. Let R be a G-graded ring. Then,

1) If I and J are RFGg-ideals of R, then so are IJ and I ∩ J.

2) If I is an RFGg-ideal of R, then Gr(I) = Gr(Rx1+Rx2+...+Rxn) for some n ∈ Z+ and x1, x2, ..., xn ∈

h(I).

Proof. (1) By hypothesis, Gr(I) = Gr(I′) and Gr(J) = Gr(J′) for some graded finitely generated ideals
I′ and J′ of R. By [14, Proposition 2.4(4)], Gr(IJ) = Gr(I ∩ J) = Gr(I) ∩Gr(J) = Gr(I′) ∩Gr(J′) =

Gr(I′J′). It is straightforward to see that I′J′ is a graded finitely generated ideal of R. Therefore, IJ
and I ∩ J are RFGg-ideals of R.
(2) By hypothesis, Gr(I) = Gr(T ) for some graded finitely generated ideal T of R, and hence T =

Ra1 +Ra2 + ...+Ram for some a1, a2, ..., am ∈ h(T ) = T ∩h(R). Thus, Gr(I) = Gr(Ra1 +Ra2 + ...+Ram).
Since ai ∈ h(R) ∩ Rai ⊆ h(R) ∩ Gr(I) for each i = 1, ...,m, we have ai ∈

√
I for each i. This

follows that for each i = 1, ...,m, ∃ki ∈ Z
+ such that aki

i ∈ I. So, Rak1
1 + Rak2

2 + ... + Rakm
m ⊆ I, and so

Gr(Rak1
1 +Rak2

2 +...+Rakm
m ) ⊆ Gr(I). Now, let p ∈ S pecG(R) with Rak1

1 +Rak2
2 +...+Rakm

m ⊆ p. Note that for
each i, we have aki

i ∈ Rai ⊆ p, and hence ai ∈
√

p. How ever, ai ∈ h(R). This implies that ai ∈ Gr(p) =

p as p ∈ S pecG(R). So, Ra1 +Ra2 + ...+Ram ⊆ p, and so Gr(I) = Gr(Ra1 +Ra2 + ...+Ram) ⊆ Gr(p) = p.
By Lemma 2.1(2), we get Gr(I) ⊆ ξ(VR

G(Rak1
1 +Rak2

2 +...+Rakm
m )) = Gr(Rak1

1 +Rak2
2 +...+Rakm

m ). Therefore,
Gr(I) = Gr(Rak1

1 + Rak2
2 + ... + Rakm

m ). Choose n = m and xi = aki
i ∈ h(I) for each i, which completes the

proof. �

Let R be a G-graded ring. In [11, Theorem 2.3], it has been proved that for each r ∈ h(R), the set
Dr = S pecG(R) − VR

G(rR) is open in S pecG(R), and the family {Dr | r ∈ h(R)} is a base for the Zariski
topology on S pecG(R). In addition, Dr is compact for each r ∈ h(R). Now, we need the following
lemma to prove the next theorem, and it will also be used in the last section.

Lemma 2.10. [7, p. 123, Proposition 9] A topological space X is Noetherian if and only if every open
subset of X is compact.

Theorem 2.11. A G-graded ring R has Noetherian graded prime spectrum if and only if R has the
property (RFGg).

Proof. Suppose that R has Noetherian graded prime spectrum, and let I CG R. By Lemma 2.10, the
open set S pecG(R) − VR

G(I) is compact. Since {Dr | r ∈ h(R)} is a base for the Zariski topology

on S pecG(R), we have S pecG(R) − VR
G(I) =

n⋃
i=1

Dri for some r1, r2, ..., rn ∈ h(R). By [11, Proposition
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2.1(2)], we obtain VR
G(I) = S pecG(R) −

n⋃
i=1

Dri =
n⋂

i=1
VR

G(Rri) = VR
G(

n∑
i=1

Rri). By Lemma 2.1(3), we get

Gr(I) = Gr(
n∑

i=1
Rri), and hence I is an RFGg-ideal. Therefore, R has the property (RFGg). Conversely,

suppose that R has the property (RFGg), and let U = S pecG(R) − VR
G(K) be any open set in S pecG(R),

where KCGR. By Lemma 2.10, it is sufficient to prove that U is compact. Note that Gr(K) = Gr(
m∑

i=1
Rxi)

for some x1, x2, ..., xm ∈ h(R). Again, using Lemma 2.1(3) and [11, Proposition 2.1(2)], we get VR
G(K) =

m⋂
i=1

VR
G(Rxi). Thus, U = S pecG(R) −

m⋂
i=1

VR
G(Rxi) =

m⋃
i=1

Dxi is a finite union of compact sets in S pecG(R),

and hence U is compact, as needed. �

Proposition 2.12. Let R be a G-graded ring and Υ = {I CG R | I is not an RFGg-ideal of R }. If Υ , ∅,
then Υ contains maximal elements with respect to inclusion, and any such maximal element is a graded
prime ideal of R.

Proof. Order Υ by inclusion, i.e., for I1, I2 ∈ Υ, I1 ≤ I2 if I1 ⊆ I2. It is clear that (Υ,≤) is a partially
ordered set. Let C = {Iα | α ∈ ∆} be any non-empty chain subset of Υ and let J =

⋃
α∈∆

Iα. Clearly,

J CG R. Now, assume by way of contradiction that J < Υ. Then, J is an RFGg-ideal of R. By
Proposition 2.9(2), Gr(J) = Gr(Rr1 +Rr2 + ...+Rrn) for some r1, r2, ..., rn ∈ h(J) = J∩h(R). Hence, for
each i = 1, ..., n, there exists αi ∈ ∆ such that ri ∈ Iαi . It is clear that the non-empty totally ordered set
{Iα1 , Iα2 , ..., Iαn} has a maximum element, say Iαt . Then, Iα1 , Iα2 , ..., Iαn ⊆ Iαt , and hence r1, r2, ..., rn ∈ Iαt .
Thus, Rr1 + Rr2 + ... + Rrn ⊆ Iαt ⊆ J, which implies that Gr(Rr1 + Rr2 + ... + Rrn) ⊆ Gr(Iαt) ⊆ Gr(J) =

Gr(Rr1 + Rr2 + ... + Rrn). So, Gr(Iαt) = Gr(Rr1 + Rr2 + ... + Rrn), and so Iαt is an RFGg-ideal of R, a
contradiction. Therefore, J ∈ Υ. How ever, J is an upper bound for Υ. So, by Zorn’s lemma, Υ has
a maximal element, I, say. Now, we show that I ∈ S pecG(R). If not, then there exist A, B CG R such
that AB ⊆ I, but A * I, and B * I by [14, Proposition 1.2]. This implies that I  A + I, I  B + I and
(A + I)(B + I) ⊆ I ⊆ (A + I)∩ (B + I). Let H = A + I and K = B + I. Then, H,K CG R with I  H, I  K
and HK ⊆ I ⊆ H ∩ K. Since I is a maximal element of Υ, we have that H and K are RFGg-ideals
of R. How ever, Gr(HK) ⊆ Gr(I) ⊆ Gr(H ∩ K) = Gr(HK), which implies that Gr(HK) = Gr(I).
By Proposition 2.9(1), HK is an RFGg-ideal of R, and hence Gr(I) = Gr(HK) = Gr(L) for some
graded finitely generated ideal L of R. This implies that I is an RFGg-ideal, a contradiction. Therefore
I ∈ S pecG(R), as desired. �

The following is an easy result of Proposition 2.12 and Theorem 2.11.

Corollary 2.13. A G-graded ring R has Noetherian graded prime spectrum if and only if every graded
prime ideal of R is an RFGg-ideal.

3. Graded Zariski socles of graded submodules

Definition 3.1. 1) A G-graded R-module M is said to be graded secondful if the natural map φ :
S pecs

G(M)→ S pecG(R) defined by S → AnnR(S ) is surjective.

2) Let M be a G-graded R-module and N ≤G M. The graded Zariski socle of N, denoted by
Z.socG(N), is the sum of all members of V s

G(N), i.e., Z.socG(N) =
∑

S∈V s
G(N)

S . If V s
G(N) = ∅,
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then Z.socG(N) = 0. Moreover, we say that a graded submodule N of M is a graded Zariski socle
submodule if N = Z.socG(N).

The purpose of this section is to give some properties of the graded secondful modules and the
graded Zariski socle of graded submodules. The obtained results will be used in the final section. In
part (a) of the next example, we see that every non-zero graded module over a graded field is graded
secondful. However, if M is a graded secondful module over a graded ring R, then R is not necessarily
a graded field, and this will be discussed in part (b).

Example 3.2. (a) Let F be a G-graded field and M be a non-zero G-graded F-module. Since the
only graded ideals of F are {0} and F, it is easy to see that AnnF(M) = {0}, S pecG(F) = {{0}}, and
AnnF(S ) = {0} for each S ∈ S pecs

G(M). Hence, M is a graded secondful module.
(b) Let R = Z, G = Z2 and M = Z2 × Z2. Then, R is a G-graded ring by R0 = R and R1 = {0}.
Also, M is a G-graded R-module by M0 = {0} × Z2 and M1 = Z2 × {0}. By some computations, we
can see that S pecs

G(M) = {M,M0,M1}, AnnR(M) = 2Z, and S pecG(R) = S pecG(Z/2Z) = {2Z}. Since
2Z = AnnR(M0) = φ(M0), we have that M is graded secondful. How ever, R is not a Z2-graded field.

A proper graded ideal J of a G-graded ring R is called graded maximal if whenever H is a G-graded
ideal of R with J ⊆ H ⊆ R, then either H = J or H = R. The set of all graded maximal ideals of R will
be denoted by MaxG(R). The graded Jacobson radical of R, denoted by JG(R), is the intersection of all
graded maximal ideals of R; see [9].

Proposition 3.3. Let M be a G-graded secondful R-module. Then the following hold:

1) If M , 0 and I is a graded radical ideal of R, then AnnR(AnnM(I)) = I ⇔ AnnR(M) ⊆ I.

2) If p ∈ MaxG(R) such that AnnM(p) = 0, then there exists x ∈ p ∩ Re such that (1 + x)M = 0.

3) If I is a graded radical ideal of R contained in the graded Jacobson radical JG(R) such that
AnnM(I) = 0, then M = 0.

4) If I is a graded radical ideal of R such that I ⊆ J(Re) and AnnM(I) = 0, then M = 0. Here, J(Re)
is the Jacobson radical of the ring Re.

Proof. (1) Since AnnM(I) ⊆ M, we have AnnR(M) ⊆ AnnR(AnnM(I)) = I. Conversely, it is clear that I ⊆
AnnR(AnnM(I)). Now, let p ∈ S pecG(R) with I ⊆ p. Then, AnnR(M) ⊆ p. Since M is graded secondful,
there exists S ∈ S pecs

G(M) such that AnnR(S ) = p, which implies that AnnM(AnnR(S )) ⊆ AnnM(I).
Thus AnnR(AnnM(I)) ⊆ AnnR(AnnM(AnnR(S ))) = AnnR(S ) = p, and hence AnnR(AnnM(I)) ⊆ p for
each p ∈ VR

G(I). By Lemma 2.1(2), we have AnnR(AnnM(I)) ⊆ ξ(VR
G(I)) = Gr(I) = I, as needed.

(2) Note that p ⊆ AnnR(M) + p ⊆ R. If AnnR(M) + p = p, then AnnR(M) ⊆ p and hence p =

AnnR(AnnM(p)) = AnnR({0M}) = R, which is a contradiction. So AnnR(M) + p = R, and so 1 = r + i
for some r ∈ AnnR(M) and i ∈ p. Since 1 ∈ Re, we have 1 = 1e = (r + i)e = re + ie, which implies that
re = 1 − ie ∈ AnnR(M), as AnnR(M) CG R. Take x = −ie ∈ p ∩ Re. Then, (1 + x)M = 0.
(3) Assume by way of contradiction that M , 0. Then, AnnR(M) , R, and hence there exists p ∈
MaxG(R) such that AnnR(M) ⊆ p by [14, Proposition 1.4]. By hypothesis, I ⊆ p and thus AnnM(p) ⊆
AnnM(I) = 0, which implies that AnnR(AnnM(p)) = R. Using (1), we have p = AnnR(AnnM(p)) = R, a
contradiction.
(4) By [9, Corollary 2.9.3], J(Re) = JG(R) ∩ Re, and thus I ⊆ JG(R). Now, the result follows from
(3). �
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Let M be a G-graded R-module and Y be a subset of S pecs
G(M). Then, the sum of all members of

Y will be expressed by T (Y). If Y = ∅, we set T (Y) = 0. It is clear that T (Y1 ∪ Y2) = T (Y1) + T (Y2) for
any Y1,Y2 ⊆ S pecs

G(M). Also, if Y1 ⊆ Y2, then T (Y1) ⊆ T (Y2).

Proposition 3.4. Let M be a G-graded R-module and N ≤G M. Then;

1) socG(N) = T (V s∗
G (N)).

2) Z.socG(N) = T (V s
G(N)).

3) If Y ⊆ S pecs
G(M), then Cl(Y) = V s

G(T (Y)). Therefore, V s
G(T (V s

G(N)) = V s
G(Z.socG(N)) = V s

G(N).

Proof. (1) and (2) are clear, and (3) has been shown in [16, Proposition 4.1]. �

In the next lemma, we give some situations where V s
G(N) and V s∗

G (N) for a graded submodule N of
a G-graded module M coincide.

Lemma 3.5. Let M be a G-graded R-module. If N ≤G M and I CG R, then the following hold

1) V s
G(AnnM(I)) = V s

G(AnnM(Gr(I))) = V s∗
G (AnnM(I)) = V s∗

G (AnnM(Gr(I))).

2) V s
G(N) = V s

G(AnnM(AnnR(N))) = V s
G(AnnM(Gr(AnnR(N)))) = V s∗

G (AnnM(AnnR(N))) =

V s∗
G (AnnM(Gr(AnnR(N)))).

Proof. (1) It is straightforward to see that V s
G(AnnM(J)) = V s∗

G (AnnM(J)) for any JCG R. So, it is enough
to show that V s∗

G (AnnM(I)) = V s∗
G (AnnM(Gr(I)). Since I ⊆ Gr(I), we have AnnM(Gr(I)) ⊆ AnnM(I), and

hence V s∗
G (AnnM(Gr(I))) ⊆ V s∗

G (AnnM(I)). For the reverse inclusion, let S ∈ V s∗
G (AnnM(I)). Then, S ⊆

AnnM(I), and thus I ⊆ AnnR(S ), which implies that Gr(I) ⊆ Gr(AnnR(S )) = AnnR(S ), as AnnR(S ) ∈
S pecG(R). This implies that S ⊆ AnnM(AnnR(S )) ⊆ AnnM(Gr(I)). Therefore, S ∈ V s∗

G (AnnM(Gr(I))),
as desired.
(2) For any S ∈ S pecs

G(M), we have S ∈ V s
G(N) ⇔ AnnR(AnnM(AnnR(N))) = AnnR(N) ⊆ AnnR(S ) ⇔

S ∈ V s
G(AnnM(AnnR(N))). This means that V s

G(N) = V s
G(AnnM(AnnR(N))). Now, the result follows

from (1). �

A G-graded R-module M is said to be a comultiplication graded R-module if for every N ≤G M, we
have N = AnnM(I) for some I CG R (see, for example, [1, 3, 4]). By [1, Lemma 3.2], if N is a graded
submodule of a comultiplication graded R-module M, then N = AnnM(AnnR(N)).

In the next proposition, we compare the graded Zariski socle and the graded second socle of
graded submodules. The proof of the proposition can be easily checked by using Proposition 3.4
and Lemma 3.5.

Proposition 3.6. Let M be a G-graded R-module. Let N,N′ ≤G M and I CG R. Then, the following
hold:

1) Z.socG(AnnM(I)) = Z.socG(AnnM(Gr(I))) = socG(AnnM(I)) = socG(AnnM(Gr(I))).

2) Z.socG(N) = Z.socG(AnnM(AnnR(N))) = Z.socG(AnnM(Gr(AnnR(N)))) =

socG(AnnM(AnnR(N))) = socG(AnnM(Gr(AnnR(N)))).

3) socG(N) ⊆ Z.socG(N). Moreover, if M is a comultiplication G-graded R-module, then the equality
holds.
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4) If V s
G(N) ⊆ V s

G(N′), then Z.socG(N) ⊆ Z.socG(N′).

5) V s
G(N) = V s

G(N′)⇔ Z.socG(N) = Z.socG(N′).

The following example shows that the reverse inclusion in Proposition 3.6(3) is not true in general.

Example 3.7. Let F = R (The field of real numbers), G = Z2 and M = R × R. Then, F is a G-graded
field by F0 = F and F1 = {0}. Also, M is a G-graded F-module by M0 = R × {0} and M1 = {0} × R.
Clearly, M0 ≤G M. By [16, Lemma 2.8(1)], every non-zero graded submodule of a graded module over
a graded field is graded second, which implies that M0 ∈ S pecs

G(M), and hence socG(M0) = M0. Since
M0 , 0, we have AnnF(M0) , F, and thus AnnF(M0) = 0. So, we get V s

G(M0) = S pecs
G(M). Again,

by [16, Lemma 2.8(1)], M ∈ S pecs
G(M). Consequently, Z.socG(M0) = T (V s

G(M0)) = T (S pecs
G(M)) =

M , M0.

In the following proposition, we give some more properties of both V s
G(N) and Z.socG(N) for N ≤G

M.

Proposition 3.8. Suppose that N and N′ are graded submodules of a G-graded R-module M. Then,
the following hold:

(a) Z.socG(0) = 0.

(b) If N ⊆ N′, then Z.socG(N) ⊆ Z.socG(N′).

(c) Z.socG(Z.socG(N)) = Z.socG(N).

(d) Z.socG(N + N′) = Z.socG(N) + Z.socG(N′).

(e) If M is graded secondful, then N , 0⇔ V s
G(N) , ∅ ⇔ Z.socG(N) , 0.

(f) Gr(AnnR(N)) ⊆ AnnR(Z.socG(N)). If M is graded secondful, then the equality holds.

Proof. (a) Z.socG(0) = T (V s
G(0)) = T (∅) = 0.

(b) Since N ⊆ N′, we have AnnR(N) ⊆ AnnR(N′), and hence V s
G(N) ⊆ V s

G(N′). By Proposition 3.6(4),
we get Z.socG(N) ⊆ Z.socG(N′).
(c) By Lemma 3.5(3), we have V s

G(Z.socG(N)) = V s
G(N). So, Z.socG(Z.socG(N)) = Z.socG(N) by

Proposition 3.6(5).
(d) By [16, Theorem 2.16(3)], we have V s

G(N + N′) = V s
G(N) ∪ V s

G(N′) which implies that Z.socG(N +

N′) = T (V s
G(N + N′)) = T (V s

G(N) ∪ V s
G(N′)) = T (V s

G(N)) + T (V s
G(N′)) = Z.socG(N) + Z.socG(N′).

(e) By part (a) and Proposition 3.6(5), V s
G(N) , ∅ ⇔ V s

G(N) , V s
G(0) ⇔ Z.socG(N) , Z.socG(0) = 0.

Now, it is clear that V s
G(N) , ∅ ⇒ N , 0 and, it remains to prove the converse. So, suppose

that N , 0. Then, AnnR(N) , R. By [14, Proposition 1.4], we obtain AnnR(N) ⊆ p for some
p ∈ MaxG(R) ⊆ S pecG(R). By hypothesis, there exists S ∈ S pecs

G(M) such that AnnR(S ) = p,
which implies that AnnR(N) ⊆ AnnR(S ), i.e., S ∈ V s

G(N).
(f) By Proposition 3.6(2), Z.socG(N) = S ocG(AnnM(Gr(AnnR(N)))) ⊆ AnnM(Gr(AnnR(N))), and thus
Gr(AnnR(N)) ⊆ AnnR(Z.socG(N)). Now, suppose that M is graded secondful, and we show that
AnnR(Z.socG(N)) ⊆ Gr(AnnR(N)). If V s

G(N) = ∅, then N = 0 by (e). Hence, Gr(AnnR(N)) = Gr(R) =

R, and the result is trivially true. So, suppose that V s
G(N) , ∅. So, N , 0, and so AnnR(N) , R, which

implies that VR
G(AnnR(N)) , ∅. So, let p ∈ VR

G(AnnR(N)). Then, there exists S ∈ S pecs
G(M) such that
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AnnR(S ) = p, and hence AnnR(N) ⊆ AnnR(S ). This implies that AnnR(Z.socG(N)) = AnnR(
∑

H∈V s
G(N)

H) =⋂
H∈V s

G(N)
AnnR(H) ⊆ AnnR(S ) = p. Therefore, AnnR(Z.socG(N)) ⊆ p for each p ∈ VR

G(AnnR(N)). By

Lemma 2.1(2), we have AnnR(Z.socG(N)) ⊆ ξ(VR
G(AnnR(N))) = Gr(AnnR(N)), which completes the

proof. �

4. Graded modules with Noetherian graded second spectrum

Let M be a G-graded R-module. In this section, we investigate S pecs
G(M) with respect to Zariski

topology from the viewpoint of being a Noetherian space.

Theorem 4.1. A G-graded R-module M has Noetherian graded second spectrum if and only if the
descending chain condition for graded Zariski socle submodules of M holds.

Proof. Suppose that S pecs
G(M) is a Noetherian space and let N1 ⊇ N2 ⊇ ... be a descending chain of

graded Zariski socle submodules of M, where Ni ≤G M. Then, V s
G(N1) ⊇ V s

G(N2) ⊇ ... is a descending
chain of closed sets in S pecs

G(M). So, there exists k ∈ Z+ such that V s
G(Ni) = V s

G(Nk) for each i ≥ k.
By Proposition 3.6(5), we have Nk = Z.socG(Nk) = Z.socG(Ni) = Ni for each i ≥ k. Conversely,
suppose that the descending chain condition for graded Zariski socle submodules of M holds, and let
V s

G(N1) ⊇ V s
G(N2) ⊇ ... be a descending chain of closed sets in S pecs

G(M), where Ni ≤G M. Then,
T (V s

G(N1)) ⊇ T (V s
G(N2)) ⊇ .... By Proposition 3.4(2) and Proposition 3.8(c), we have Z.socG(N1) ⊇

Z.socG(N2) ⊇ ..., which is a descending chain of graded Zariski socle submodules of M. Therefore,
there exists k ∈ Z+ such that Z.socG(Nk) = Z.socG(Ni) for each i ≥ k. Consequently, V s

G(Nk) = V s
G(Ni)

for each i ≥ k by Proposition 3.6(5) again. �

The proof of the following result is clear by Theorem 4.1.

Corollary 4.2. Every graded Artinian module has Noetherian graded second spectrum.

In the following lemma, we recall some properties of the natural map φ of S pecs
G(M). These

properties are important for the rest of this section.

Lemma 4.3. ( [16, Proposition 3.1 and Theorem 3.7]) Let M be a G-graded R-module. Then, the
following hold:

1) φ is continuous, and φ−1(VR
G(I)) = V s

G(AnnM(I)) for every graded ideal I of R containing AnnR(M).

2) If M is graded secondful, then φ is closed with φ(V s
G(N)) = VR

G(AnnR(N)) for any N ≤G M.

Now, we need the following lemma to prove the next theorem.

Lemma 4.4. If M is a non-zero G-graded secondful R-module, then VR
G(AnnR(AnnM(I))) = VR

G(I) for
every graded ideal I of R containing AnnR(M).

Proof. By Lemma 3.5(1), we have V s
G(AnnM(Gr(I))) = V s

G(AnnM(I)). Since M is graded secondful, we
have VR

G(AnnR(AnnM(Gr(I)))) = φ(V s
G(AnnM(Gr(I)))) = φ(V s

G(AnnM(I))) = VR
G(AnnR(AnnM(I))). By

Proposition 3.3(1), we have VR
G(Gr(I)) = VR

G(AnnR(AnnM(I))). It is easy to see that VR
G(Gr(I)) = VR

G(I).
Consequently, VR

G(I) = VR
G(AnnR(AnnM(I))). �
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In Lemma 4.4, if we drop the condition that M is a graded secondful module, then the equality
might not happen. For this, take the ring of integers R = Z as a Z2-graded Z-module by R0 = Z

and R1 = {0}. Note that AnnZ(Z) = {0}. By [16], S pecs
Z2

(Z) = ∅. Now, it is clear that Z is not a
Z2-graded secondful Z-module. Let I = 2Z. Then, VZ

Z2
(AnnZ(AnnZ(I))) = ∅. How ever, I ∈ VZ

Z2
(I). So,

VZ
Z2

(I) , VZ
Z2

(AnnZ(AnnZ(I))).

Theorem 4.5. Let M be a G-graded secondful R-module. Then, M has Noetherian graded second
spectrum if and only if R has Noetherian graded prime spectrum.

Proof. If M = 0, then the result is trivially true. So, assume that M , 0. Suppose that M has Noetherian
graded second spectrum and let VR

G(I1) ⊇ VR
G(I2) ⊇ ... be a descending chain of closed sets in S pecG(R),

where It is a G-graded ideal of R containing AnnR(M) for each t. Then, φ−1(VR
G(I1)) ⊇ φ−1(VR

G(I2)) ⊇ ...,
and hence, by Lemma 4.3(1), V s

G(AnnM(I1)) ⊇ V s
G(AnnM(I2)) ⊇ ..., which is a descending chain of

closed sets in S pecs
G(M). Thus, there exists k ∈ Z+ such that V s

G(AnnM(Ik)) = V s
G(AnnM(Ih)) for each

h ≥ k, and thus VR
G(AnnR(AnnM(Ik))) = φ(V s

G(AnnM(Ik))) = φ(V s
G(AnnM(Ih))) = VR

G(AnnR(AnnM(Ih)))
by Lemma 4.3(2). Now, using Lemma 4.4, we get VR

G(Ik) = VR
G(Ih) for each h ≥ k, which completes the

proof of the first direction. For the converse, suppose that R has Noetherian graded prime spectrum,
and let V s

G(N1) ⊇ V s
G(N2) ⊇ ... be a descending chain of closed sets in S pecs

G(M), where Ni ≤G

M. So, φ(V s
G(N1)) ⊇ φ(V s

G(N2)) ⊇ ..., and so VR
G(AnnR(N1)) ⊇ VR

G(AnnR(N2)) ⊇ ... is a descending
chain of closed sets in S pecG(R) by Lemma 4.3(2). This implies that there exists k ∈ Z+ such that
VR

G(AnnR(Ni)) = VR
G(AnnR(Nk)) for each i ≥ k, and hence φ−1(VR

G(AnnR(Ni))) = φ−1(VR
G(AnnR(Nk))). By

Lemma 3.5(2) and Lemma 4.3(1), we have V s
G(Ni) = V s

G(AnnM(AnnR(Ni))) = V s
G(AnnM(AnnR(Nk))) =

V s
G(Nk) for each i ≥ k. �

Corollary 4.6. Let M be a G-graded secondful R-module. Then, we have the following:

(i) If R has Noetherian graded prime spectrum, then M has Noetherian graded second spectrum.

(ii) If R is a graded Noetherian ring, then M has Noetherian graded second spectrum.

Proof. (i) This is clear by Lemma 2.1(4) and Theorem 4.5.
(ii) Since R is a graded Noetherian ring, it has Noetherian graded prime spectrum by Proposition 2.2.
Now, the result follows from part (i). �

In the following lemma, we give a property for the graded second socle of graded submodules which
will be used in the proof of the next theorem.

Lemma 4.7. Let M be a G-graded R-module and I1, I2 CG R. Then, socG(AnnM(I1I2)) =

socG(AnnM(I1)) + socG(AnnM(I2)).

Proof. By [16, Corollary 2.14], we have V s∗
G (AnnM(I1)) ∪ V s∗

G (AnnM(I2)) = V s∗
G (AnnM(I1I2)). This

implies that socG(AnnM(I1I2)) = T (V s∗
G (AnnM(I1I2))) = T (V s∗

G (AnnM(I1)) ∪ V s∗
G (AnnM(I2))) =

T (V s∗
G (AnnM(I1))) + T (V s∗

G (AnnM(I2))) = socG(AnnM(I1)) + socG(AnnM(I2)). �

A G-graded R-module M is said to be a graded weak comultiplication module if S pecs
G(M) = ∅ or

any graded second submodule S of M has the form S = AnnM(I) for some graded ideal I of R. It can
be easily checked that a G-graded R-module M is a graded weak comultiplication module if and only
if S = AnnM(AnnR(S )) for each graded second submodule S of M.
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Theorem 4.8. Let R be a G-graded ring with Noetherian graded prime spectrum. If M is a non-zero
graded secondful weak comultiplication R-module, then the following hold:

1) Any graded Zariski socle submodule N of M is the sum of a finite number of graded second
submodules.

2) A graded submodule N of M is a graded Zariski socle submodule of M if and only if N = 0 or

N =
n∑

i=1
AnnM(pi) for some pi ∈ VR

G(AnnR(N)) and n ∈ Z+.

Proof. (1) Note that {0} is the sum of the empty family of graded second submodules of M. Suppose
that N , 0. Then, AnnR(N) , R, and hence Gr(AnnR(N)) , R. By Theorem 2.7, we have that
Gr(AnnR(N)) is the intersection of a finite number of minimal graded prime divisors of it. So there
exists n ∈ Z+ and p1, p2, ..., pn minimal graded prime divisors of Gr(AnnR(N)) such that Gr(AnnR(N)) =
n⋂

i=1
pi. Since M is graded secondful, we have for each i = 1, ..., n, there exists S i ∈ S pecs

G(M)

such that pi = AnnR(S i). As M is a graded weak comultiplication, S i = AnnM(AnnR(S i)) =

AnnM(pi) for each i. By Proposition 3.6(2), [14, Proposition 2.4] and Lemma 4.7, we obtain

N = Z.socG(N) = socG(AnnM(Gr(AnnR(N)))) = socG(AnnM(
n⋂

i=1
pi)) = socG(AnnM(

n⋂
i=1

Gr(pi))) =

socG(AnnM(Gr(p1 p2...pn))) = socG(AnnM(p1 p2...pn)) =
n∑

i=1
socG(AnnM(pi)) =

n∑
i=1

S i.

(2)⇒: The proof is clear by part (1).

⇐: Suppose that N =
n∑

i=1
AnnM(pi) for some pi ∈ VR

G(AnnR(N)) and n ∈ Z+. Note that for each i =

1, ..., n, there exists S i ∈ S pecs
G(M) such that pi = AnnR(S i) as M is a graded secondful module. Since

M is a graded weak comultiplication module, we have AnnM(pi) = AnnM(AnnR(S i)) = S i ∈ S pecs
G(M)

for each i. This implies that N =
n∑

i=1
AnnM(pi) =

n∑
i=1

socG(AnnM(pi)) =
n∑

i=1
Z.socG(AnnM(pi)) =

Z.socG(
n∑

i=1
AnnM(pi)) = Z.socG(N) by Proposition 3.6(1) and Proposition 3.8(d). Therefore, N =

Z.socG(N), as needed. �

Definition 4.9. A graded submodule N of a G-graded R-module M is said to be an RFG∗g-submodule
if Z.socG(N) = Z.socG(AnnM(I)) for some graded finitely generated ideal I of R. In addition, we say
that M has property (RFG∗g) if every graded submodule of M is an RFG∗g-submodule.

By Proposition 3.6(2), every graded module over a graded Noetherian ring has property (RFG∗g).
Let M be a G-graded R-module. In [16, Proposition 3.13 and Theorem 3.15], we have proved that
for each r ∈ h(R), the set Xs

r = S pecs
G(M) − V s

G(AnnM(r)) is open in S pecs
G(M), and the family

{Xs
r | r ∈ h(R)} is a base for the Zariski topology on S pecs

G(M). In addition, if M is a graded secondful
module, then Xs

r is compact for each r ∈ h(R).

Theorem 4.10. Let M be a G-graded secondful R-module. Then, M has Noetherian graded second
spectrum if and only if M has property (RFG∗g).

Proof. Suppose that M has Noetherian graded second spectrum and let N ≤G M. By Lemma 2.10,
the open set S pecs

G(M) − V s
G(N) is compact. Since {Xs

r | r ∈ h(R)} is a base for the

Zariski topology on S pecs
G(M), we have S pecs

G(M) − V s
G(N) =

n⋃
i=1

Xs
ri

for some r1, r2, ..., rn ∈
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h(R). Using [16, Theorem 2.16(2)], V s
G(M) = S pecs

G(M) −
n⋃

i=1
Xs

ri
=

n⋂
i=1

V s
G(AnnM(ri)) =

V s
G(

n⋂
i=1

AnnM(AnnR(AnnM(ri)))) = V s
G(

n⋂
i=1

AnnM(ri)) = V s
G(AnnM(

n∑
i=1

Rri)). By Proposition 3.6(5),

we obtain Z.socG(N) = Z.socG(AnnM(
n∑

i=1
Rri)), which implies that N is an RFG∗g-submodule.

Consequently, M has property (RFG∗g). Conversely, assume that M has property (RFG∗g) and let
U = S pecs

G(M) − V s
G(T ) be any open set in S pecs

G(M), where N ≤G M. By Lemma 2.10, it is enough

to show that U is compact. Note that Z.socG(T ) = Z.socG(AnnM(
k∑

i=1
Rri)) for some r1, r2, ..., rk ∈ h(R).

Again, by Proposition 3.6(5) and [16, Theorem 2.16(2)], we have V s
G(T ) =

k⋂
i=1

V s
G(AnnM(ri)). Hence

U =
k⋃

i=1
Xs

ri
is a finite union of compact sets in S pecs

G(M), and thus U is compact, as desired. �

A G-graded R-module M is said to be graded faithful if whenever r ∈ h(R) with rM = {0M}, r = 0. In
other words, M is a G-graded faithful R-module if the set Annh(R)(M) = {r ∈ h(R) | rM = {0M}} = {0R},
see [10]. Let M be a G-graded R-module and I CG R. It is easy to see that if Annh(R)(M) ⊆ I, then
AnnR(M) ⊆ I.

Lemma 4.11. Let M be a G-graded secondful faithful R-module and N ≤G M. Then, N is an RFG∗g-
submodule of M if and only if AnnR(N) is an RFGg-ideal.

Proof. ⇒: Suppose that N is an RFG∗g-submodule. Then, Z.socG(N) = Z.socG(AnnM(I)) for
some graded finitely generated ideal I of R. Since M is graded secondful, by Proposition 3.8(f)
and Proposition 3.6(1), we have Gr(AnnR(N)) = AnnR(Z.socG(N)) = AnnR(Z.socG(AnnM(I))) =

AnnR(Z.socG(AnnM(Gr(I)))) = Gr(AnnR(AnnM(Gr(I)))). Since M is a graded faithful module, we
have Annh(R)(M) = {0} ⊆ I, and hence AnnR(M) ⊆ I ⊆ Gr(I). By Proposition 3.3(1), we get
AnnR(AnnM(Gr(I))) = Gr(I), and thus Gr(AnnR(N)) = Gr(Gr(I)) = Gr(I). Therefore, AnnR(N) is
an RFGg-ideal of R.
⇐: Suppose that AnnR(N) is an RFGg-ideal of R. Then, Gr(AnnR(N)) = Gr(J) for some graded finitely
generated ideal J of R. By Proposition 3.6, we obtain Z.socG(N) = Z.socG(AnnM(Gr(AnnR(N)))) =

Z.socG(AnnM(Gr(J))) = Z.socG(AnnM(J)), and thus N is an RFG∗g-submodule. �

Corollary 4.12. Let M be a G-graded secondful faithful R-module. Then the following hold:

1) M has Noetherian graded second spectrum if and only if every graded second submodule of M is
an RFG∗g-submodule.

2) If N1 and N2 are RFG∗g-submodules of M, then so is N1 + N2.

Proof. (1)⇒: It is obvious by Theorem 4.10.
⇐: Suppose that every graded second submodule of M is an RFG∗g-submodule and let p ∈ S pecG(R).
Since M is graded faithful, we have Annh(R)(M) = {0} ⊆ p, and hence AnnR(M) ⊆ p. As M is graded
secondful, then there exists S ∈ S pecs

G(M) such that AnnR(S ) = p. So, S is an RFG∗g-submodule,
and so p is an RFGg-ideal of R by Lemma 4.11. This means that every graded prime ideal of R is an
RFGg-ideal. Thus, R has Noetherian graded prime spectrum by Corollary 2.13. This implies that R
has Noetherian graded prime spectrum, using Lemma 2.1(4). By Theorem 4.5, we obtain that M has
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Noetherian graded second spectrum, as needed.
(2) By Lemma 4.11, AnnR(N1) and AnnR(N2) are RFGg-ideals of R. How ever, AnnR(N1 + N2) =

AnnR(N1)∩AnnR(N2). Using Proposition 2.9(1), we have AnnR(N1 + N2) is an RFGg-ideal of R. Again,
by Lemma 4.11, we obtain that N1 + N2 is an RFG∗g-submodule of M. �
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