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1. Introduction

Convex optimization problem (COP) is considered very important in the current literature as it
covers a diverse range of problems with possible applications in signal processing, image processing
and machine learning. As a consequence, the tremendous progress in studying the COP has led
the emergence of a theory of convex optimization and a useful interface linking various branches of
sciences.

Monotone operator theory is a prominent framework for various nonlinear problems and closely
related with the theory of convex optimization. One of the fundamental themes in monotone
operator theory is to compute zeros of the (maximal-) monotone operators. The importance of this
concept stems from the fact that the sub-differential operator associated with a proper, convex and
lower semicontinuous (PCLS) function is not only a maximal monotone operator but also solves
the convex minimization problem. It is remarked that most of the practical phenomenon can be
reformulated as zero point problem. This formalism includes variational inequalities, evolution
equations, complementarity problems and inclusions [12].

The class of split feasibility problems (SFP) has an extraordinary utility and broad applicability in
medical image reconstruction, signal processing and computerized tomography [15, 17, 18, 21]. Some
interesting and crucial results regarding the SFP with areas of feasible applications are established
in [16, 19, 20]. The first prototype strategies for computing the optimal solution of the split common
null point problem (SCNPP) can be found in [16]. Since then, different variants of these strategies have
been proposed and analyzed for SCNPP and other instances of SFP [19, 20, 29].

Another useful formalism for modelling various nonlinear phenomenon is the fixed point problem
(FPP) of the operator under consideration. Most of the problems in diverse areas such as mathematical
economics, variational inequality theory, control theory and game theory can be reformulated in terms
of FPP. It is remarked that various nonlinear fixed point operators play equivalent important role in
COP. In 2015, Takahashi et al. [31] investigated a unified formalism of null point problem and FPP in
Hilbert spaces. Since then, FPP associated with different nonlinear operators are jointly investigated
with (split common-) null point problem in this domain. It is therefore natural to investigate FPP
associated with an infinite family of operators jointly with SCNPP in Hilbert spaces.

A variety of strategies combining iterative optimization algorithms and fixed point algorithms have
been introduced and analyzed to construct an optimal solution of the SCNPP and FPP. Each strategy
has certain shortcomings in terms of convergence characteristic and/or rate of convergence. The hybrid
shrinking projection algorithm is a well-known strategy for the strong convergence characteristic
whereas the inertial extrapolation technique, essentially due to [27] and see also [1–11, 32], enhances
the rate of convergence of the algorithm under consideration.

Our main contributions in this ongoing fruitful research direction are as follows:
(1) We posit a framework to jointly investigate SCNPP and FPP associated with an infinite family of
operators in Hilbert spaces. For the case of an infinite family of fixed point operators, we exploit the
construction of an auxiliary operator defined in [28, 34];
(2) We employ an algorithmic approach combining the hybrid shrinking projection algorithm with the
inertial extrapolation technique to construct the common optimal solution of the problems as mentioned
in item (1);
(3) We establish the strong convergence analysis of the proposed algorithm by employing the suitable
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constraints in accordance with the standard techniques and tools in the current literature;
(4) We posit different frameworks, as an application of the framework mentioned in item (1), for
various instances of SFP in Hilbert spaces;
(5) Last but not least, we incorporate an appropriate numerical example for the demonstration of the
framework as well as the applicability of the proposed algorithm for signal recovery problem.

2. Preliminaries

Throughout the rest of the sections, the triplet (Ξ1, < ·, · >, ‖ · ‖) indicates the real Hilbert space with
the conventional notations of the inner product and the norm and A1 ⊆ Ξ1 × Ξ1 denotes a set-valued
operator with the usual definitions of dom(A1), gra(A1) and zer(A1). We use→ (resp. ⇀) to represent
the symbol for strong convergence (resp. weak convergence). The set of reals and natural numbers are
symbolized as R and N, respectively.

Recall from the celebrated monograph [12] that the set-valued operator A1 is called monotone if
〈r − s, u − v〉 ≥ 0, ∀(r, u), (s, v) ∈ gra(A1). In addition, A1 is coined as maximal monotone operator
provided that the graph of A1 could not be properly contained in the graph of any other monotone
operator. Let m > 0, then the resolvent operator of A1 is defined as JA1

m = (Id+mA1)−1,where Id denotes
the identity operator. In this connection, JA1

m is well-defined, single-valued and firmly nonexpansive
operator.

Let T : H → H be an operator defined on a nonempty subset H of Ξ1. We use Fix(T ) = {p ∈ H | p =

T p} to denote the set of fixed points of the operator T . The metric projection operator ΠH : Ξ1 → H
associated with the nonempty closed convex subset H of Ξ1 is defined as ΠH(u) = argminv∈H‖u− v‖. It
is well-known that the operator ΠH is firmly nonexpansive and satisfies 〈u − ΠHu,ΠHu − v〉 ≥ 0,∀ u ∈
Ξ1, v ∈ H. Recall that the operator T is known as k-demicontractive [24] provided that k ∈ [0, 1) such
that

‖Tq − p‖2 ≤ ‖q − p‖2 + k‖q − Tq‖2, ∀q ∈ H, p ∈ Fix(T ).

The class of k-demicontractive operators has been studied extensively in various instances of fixed
point problems in Hilbert spaces. However, we are concerned with the fixed point problem of an infinite
family of k-demicontractive operators in Hilbert spaces via the following construction of auxiliary
operator S k:

Qk,k+1 = Id,

Qk,k = βkT
′

kQk,k+1 + (1 − βk)Id,

Qk,k−1 = βk−1T
′

k−1Qk,k + (1 − βk−1)Id,
...

Qk,m = βmT
′

mQk,m+1 + (1 − βm)Id,
...

Qk,2 = β2T
′

2Qk,3 + (1 − β2)Id,

S k = Qk,1 = β1T
′

1Qk,2 + (1 − β1)Id,

where 0 ≤ βm ≤ 1 and T
′

m = αx + (1 + α)Tmx for all x ∈ H with Tm being k-demicontractive operator
and α ∈ [k, 1). It is well-known in the context of operator S k that each T

′

m is nonexpansive and the limit
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limk→∞ Qk,m exists. Moreover

S x = lim
k→∞

S k = lim
k→∞

Qk,1, ∀ x ∈ H.

This implies that Fix(S ) =
⋂∞

k=1 Fix(S k) [28, 34].
We now finally introduce the formalism of the proposed problem.
Let A1 ⊆ Ξ1×Ξ1 and A2 ⊆ Ξ2×Ξ2 be maximal monotone operators such that the domain of A1 is the

subset of H and let JA1
m and JA2

m be the resolvents of A1 and A2, respectively, for m > 0. Let h : Ξ1 → Ξ2

be a bounded linear operator and let h∗ be the adjoint operator of h. Let S k be the S -operator such that
Γ := Ω ∩ Fix(S ) , ∅, where Ω := { p̂ ∈ A−1

1 (0) : hp̂ ∈ A−1
2 (0)} indicates the SCNPP [16]. We aim to

find
p̂ ∈ Γ. (2.1)

The following crucial results are required in the sequel:

Lemma 2.1. [14] Let U : H → H be an operator defined on a nonempty closed convex subset H
of a real Hilbert space Ξ1 and let (pk) be a sequence in H. If pk ⇀ p and if (Id − U)pk → 0, then
p ∈ Fix(U).

Lemma 2.2. Let µ, ν ∈ Ξ1 and θ ∈ R then

(i) ‖µ + ν‖2 ≤ ‖µ‖2 + 2〈ν, µ + ν〉;
(ii) ‖µ − ν‖2 ≤ ‖µ‖2 − ‖ν‖2 − 2〈µ − ν, ν〉;

(iii) ‖θµ + (1 − θ)ν‖2 = θ‖µ‖2 + (1 − θ)‖ν‖2 − θ(1 − θ)‖µ − ν‖2.

Lemma 2.3. [34] Let H be a nonempty closed and convex subset of a real Hilbert space Ξ1 and let
T : H → H be a k-demicontractive operator with k ∈ [0, 1). Let α ∈ [k, 1) and set T

′

= (1−α)Id +αT,
then T

′

: H → H is a nonexpansive operator such that Fix(T
′

) = Fix(T ).

Lemma 2.4. [26] Let H be a nonempty closed convex subset of a real Hilbert space Ξ1. For every
p, q, t ∈ Ξ1 and γ ∈ R, the set

D = {v ∈ H : ‖q − v‖2 ≤ ‖p − v‖2 + 〈t, v〉 + γ},

is closed and convex.

Lemma 2.5. [34] Let H be a nonempty closed and convex subset of a real Hilbert space Ξ1 and let
(T

′

m) be a sequence of nonexpansive operators such that
⋂∞

k=1 Fix(T
′

k) , ∅ and 0 ≤ βm ≤ b < 1. Then
for a bounded subset K of H, we have

lim
k→∞

sup
x∈K
‖S x − S kx‖ = 0.

3. Algorithm and convergence analysis

We start with the architecture of the algorithm for the construction of an optimal solution of the
problem (2.1).

Theorem 3.1. The sequence (pk) generated by the Algorithm 1, under the following control conditions,
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Algorithm 1 Inertially constructed hybrid algorithm (Algo.1)
Initialization: Choose arbitrarily, p0, p1 ∈ H, set k ≥ 1 and nonincreasing sequence αk, βk ⊂ (0, 1),
θk ⊂ [0, 1), mk ∈ (0,∞) and δ ∈ (0, 2

‖h‖2 ) such that ‖h‖2 = L is the spectral radius of h∗h. Choose the
inertial parameter

θk =

{
min{ νk

‖pk−pk−1‖
, θ} i f pk , pk−1;

θ otherwise,

where {νk} is a positive sequence such that
∑∞

k=1 νk < ∞ and θ ∈ [0, 1).
Iterative Steps: Given pk ∈ Ξ1, calculate ek, w̄k and xk as follows:

Step 1. Compute
ek = pk + θk(pk − pk−1);
w̄k = (1 − αk)ek + αkS kek;
xk = (1 − βk)w̄k + βk(JA1

mk (w̄k + δh∗(JA2
mk − Id)hw̄k)).

The algorithm aborts if xk = w̄k = ek = pk and pk is the required approximation.
Otherwise,

Step 2. Compute

Hk+1 = {z ∈ Hk : ‖xk − z‖2 ≤ ‖pk − z‖2 + θ2
k‖pk − pk−1‖

2 + 2θk〈pk − z, pk − pk−1〉},

pk+1 = ΠHk+1 p1, ∀ k ≥ 1,

set k =: k + 1 and go back to Step 1.

(C1)
∑∞

k=1 θk‖pk − pk−1‖ < ∞;
(C2) 0 < a ≤ lim infk→∞ αk ≤ lim supk→∞ αk ≤ a∗;
(C3) lim infk→∞ βk > 0;
(C4) lim infk→∞mk > 0;

converges strongly to an element p∗ ∈ Γ.

Proof. Step 1. The Algorithm 1 is well-defined.
Recall that the set Γ is closed and convex whereas the closedness and the convexity of Hk+1, for

each k ≥ 1, follows from Lemma 2.4. Let p∗ ∈ Γ, then recalling the Algorithm 1, we have

‖ek − p∗‖2 = ‖(pk − p∗) + θk(pk − pk−1)‖2

≤ ‖pk − p∗‖2 + θ2
k‖pk − pk−1‖

2 + 2θk〈pk − p∗, pk − pk−1〉. (3.1)

Also from Algorithm 1 and Lemma 2.3, we have

‖w̄k − p∗‖2 = ‖(1 − αk)ek + αkS kek − p∗‖2

≤ (1 − αk)‖ek − p∗‖2 + αk‖S kek − p∗‖2 − αk(1 − αk)‖(Id − S k)ek‖
2

≤ (1 − αk)‖ek − p∗‖2 + αk‖ek − p∗‖2 − αk(1 − αk)‖(Id − S k)ek‖
2

= ‖ek − p∗‖2 − αk(1 − αk)‖(Id − S i)ek‖
2

≤ ‖pk − p∗‖2 + θ2
k‖pk − pk−1‖

2 + 2θk〈pk − p∗, pk − pk−1〉. (3.2)
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Further, we obtain

‖xk − p∗‖2 = ‖(1 − βk)(w̄k − p∗) + βk(JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k) − p∗)‖2

≤ (1 − βk)‖w̄k − p∗‖2 + βk‖JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k) − p∗‖2. (3.3)

Recalling the nonexpansivity of JA1
mk , we obtain

‖JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k) − JA1

mk
p∗‖2

≤‖w̄k + δh∗(JA2
mk
− Id)hw̄k − p∗‖2

≤‖w̄k − p∗‖2 + δ2‖h∗(JA2
mk
− Id)hw̄k‖

2 + 2δ〈w̄k − p∗, h∗(JA2
mk
− Id)hw̄k〉

≤‖w̄k − p∗‖2 + δ2‖h‖2‖(JA2
mk
− Id)hw̄k‖

2 + 2δ〈hw̄k − hp∗, (JA2
mk
− Id)hw̄k)〉. (3.4)

Denote λk = 2δ〈hw̄k − hp∗, (JA2
mk − Id)hw̄k〉 and recalling the firm nonexpansivity of JA2

mk , we get

λk = 2δ〈hw̄k − hp∗ + (JA2
mk

(hw̄k) − hw̄k) − (JA2
mk

(hw̄k) − hw̄k), JA2
mk

(hw̄k) − hw̄k〉

= 2δ(〈hw̄k − hp∗ + JA2
mk

(hw̄k) − hw̄k, JA2
mk

(hw̄k) − hw̄k〉

− 〈JA2
mk

(hw̄k) − hw̄k, JA2
mk

(hw̄k) − hw̄k〉)
= 2δ(〈JA2

mk
(hw̄k) − hp∗, JA2

mk
(hw̄k) − hw̄k〉 − ‖JA2

mk
(hw̄k) − hw̄k‖

2)
≤ −2δ‖(JA2

mk
− Id)hw̄k)‖2. (3.5)

The estimate (3.3) implies after recalling the estimates (3.4) and (3.5)

‖xk − p∗‖2 ≤ (1 − βk)‖w̄k − p∗‖2 + βk(‖w̄k − p∗‖2 + δ2‖h‖2‖(JA2
mk
− Id)hw̄k)‖2 − 2δ‖(JA2

mk
− Id)hw̄k‖

2),
= (1 − βk)‖w̄k − p∗‖2 + βk(‖w̄k − p∗‖2 − δ(2 − δ‖h‖2)‖(JA2

mk
− Id)hw̄k‖

2)
≤ (1 − βk)‖w̄k − p∗‖2 + βk‖w̄k − p∗‖2

≤ ‖pk − p∗‖2 + θ2
k‖pk − pk−1‖

2 + 2θk〈pk − p∗, pk − pk−1〉. (3.6)

The above estimate (3.6) indicates the inclusion Γ ⊂ Hk+1. Summarising the above stated facts, this
infers that the Algorithm 1 is well-defined.
Step 2. The limit limk→∞ ‖pk − p1‖ exists.

Note that ‖pk+1 − p1‖ ≤ ‖p − p1‖, for all p ∈ Hk+1 by employing the fact that pk+1 = ΠHk+1 p1. This
infers that ‖pk+1 − p1‖ ≤ ‖p∗ − p1‖, for all p∗ ∈ Γ ⊂ Hk+1 and consequently establishes the boundedness
of (‖pk − p1‖). Also from pk = ΠHk p1, we have that

‖pk − p1‖ ≤ ‖pk+1 − p1‖.

The above approximation infers that the sequence (‖pk − p1‖) is non-decreasing, therefore, we have

lim
k→∞
‖pk − p1‖ exists. (3.7)

Step 3. Prove that q ∈ Γ.

The following crucial estimates are required to prove the claim:
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‖pk+1 − pk‖
2 = ‖pk+1 − p1 + p1 − pk‖

2

= ‖pk+1 − p1‖
2 + ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − p1〉

= ‖pk+1 − p1‖
2 + ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − pk + pk − p1〉

= ‖pk+1 − p1‖
2
− ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − pk〉

≤ ‖pk+1 − p1‖
2
− ‖pk − p1‖

2 .

By employing the lim sup, and recalling the estimate (3.7), the above estimate implies that
lim supk→∞ ‖pk+1 − pk‖

2 = 0. That is

lim
k→∞
‖pk+1 − pk‖ = 0. (3.8)

Recalling the definition of (ek) and the condition (C1), we have

lim
k→∞
‖ek − pk‖ = lim

k→∞
θk‖pk − pk−1‖ = 0. (3.9)

As an easy inference of the approximates (3.8) and (3.9), we get

lim
k→∞
‖ek − pk+1‖ = 0. (3.10)

Since pk+1 ∈ Hk+1, we have

‖xk − pk+1‖ ≤ ‖pk − pk+1‖ + θk‖pk − pk−1‖ + 2θk〈pk − pk+1, pk − pk−1〉.

Recalling the estimate (3.8) and the condition (C1), the above estimate implies that

lim
k→∞
‖xk − pk+1‖ = 0. (3.11)

Recalling the estimates (3.8), (3.11) and the following triangular inequality:

‖xk − pk‖ ≤ ‖xk − pk+1‖ + ‖pk+1 − pk‖,

we get
lim
k→∞
‖xk − pk‖ = 0. (3.12)

Consider the estimate (3.6) in the following variation:

a(1 − a∗)‖(Id − S k)ek‖
2 ≤ (‖pk − p∗‖ + ‖xk − p∗‖)‖pk − xk‖ + θ2

k‖pk − pk−1‖
2

+ 2θk‖pk − p∗‖‖pk − pk−1‖.

Letting k → ∞ and recalling the conditions (C1)–(C2) and the estimate (3.12), we have

lim
k→∞
‖(Id − S k)ek‖ = 0. (3.13)

The estimate (3.13) also implies that

lim
k→∞
‖w̄k − ek‖ = lim

k→∞
a∗‖(Id − S k)ek‖ = 0. (3.14)
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Recalling the estimates (3.8), (3.14) and the following triangular inequality:

‖w̄k − pk‖ ≤ ‖w̄k − pk+1‖ + ‖pk+1 − pk‖,

we get
lim
k→∞
‖w̄k − pk‖ = 0. (3.15)

Now recalling the estimates (3.4), (3.5) and Lemma 2.2, we have

‖xk − p∗‖2 = ‖(1 − βk)w̄k + βk(JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k)) − p∗)‖2

≤ (1 − βk)‖w̄k − p∗‖2 + βk(‖w̄k − p∗‖2 − δ(2 − δ‖h‖2)‖(JA2
mk
− Id)hw̄k‖

2)
≤ ‖w̄k − p∗‖2 − βkδ(2 − δ‖h‖2)‖(JA2

mk
− Id)hw̄k‖

2

≤ ‖ek − p∗‖2 − βkδ(2 − δ‖h‖2)‖(JA2
mk
− Id)hw̄k‖

2

≤ ‖pk − p∗‖2 + 2θk〈pk − pk−1, ek − p∗〉 − βkδ(2 − δ‖h‖2)‖(JA2
mk
− Id)hw̄k‖

2. (3.16)

Rearranging the estimate (3.16), we have

βkδ(2 − δ‖h‖2)‖(JA2
mk
− Id)hw̄k‖

2 ≤ ‖pk − p∗‖2 − ‖xk − p∗‖2 + 2θk〈pk − pk−1, ek − p∗〉

≤ (‖pk − p∗‖ + ‖ek − p∗‖) ‖pk − ek‖ + 2θk〈pk − pk−1, ek − p∗〉. (3.17)

Now recalling the conditions (C1), (C3), the estimate (3.9) and δ ∈ (0, 2
‖h‖2 ), the estimate (3.17) implies

that
lim
k→∞
‖(JA2

mk
− Id)hw̄k‖ = 0. (3.18)

Recalling the estimates (3.4) and (3.5), we obtain

‖JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k) − JA1

mk
p∗‖2 ≤ ‖w̄k + δh∗(JA2

mk
− Id)hw̄k − p∗‖2

≤ ‖w̄k − p∗‖2. (3.19)

Denote ξk = JA1
mk (w̄k + δh∗(JA2

mk − Id)hw̄k) and recalling the estimate (3.19), it follows that

‖ξk − p∗‖2 = ‖JA1
mk

w̄k + δh∗(JA2
mk
− Id)hw̄k) − JA1

mk
p∗‖2

≤ 〈JA1
mk

(w̄k + δh∗(JA2
mk
− Id)hw̄k) − JA1

mk
p∗, w̄k + δh∗(JA2

mk
− Id)hw̄k − p∗〉

= 〈ξk − p∗, w̄k + δh∗(JA2
mk
− Id)hw̄k − p∗〉

=
1
2

(‖ξk − p∗‖2 + ‖w̄k + δh∗(JA2
mk
− Id)hw̄k − p∗‖2 − ‖ξk − w̄k − δh∗(JA2

mk
− Id)hw̄k‖

2)

≤
1
2

(‖ξk − p∗‖2 + ‖w̄k − p∗‖2 − ‖ξk − w̄k − δh∗(JA2
mk
− Id)hw̄k‖

2)

=
1
2

(‖ξk − p∗‖2 + ‖w̄k − p∗‖2 − ‖ξk − w̄k‖
2 − δ2‖h∗(JA2

mk
− Id)hw̄k‖

2

+ 2δ〈ξk − w̄k, h∗(JA2
mk
− Id)hw̄k〉)

≤
1
2

(‖ξk − p∗‖2 + ‖w̄k − p∗‖2 − ‖ξk − w̄k‖
2 − δ2‖h∗(JA2

mk
− Id)hw̄k‖

2

+ 2δ‖ξk − w̄k‖‖h∗(JA2
mk
− Id)hw̄k‖). (3.20)
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That is
‖ξk − p∗‖2 ≤ ‖w̄k − p∗‖2 − ‖ξk − w̄k‖

2 + 2δ‖ξk − w̄k‖‖h∗(JA2
mk
− Id)hw̄k‖. (3.21)

As a consequence, we have

‖xk − p∗‖2 ≤ (1 − βk)‖w̄k − p∗‖2 + βk‖ξk − p∗‖2

≤ (1 − βk)‖w̄k − p∗‖2 + βk(‖w̄k − p∗‖2 − ‖ξk − w̄k‖
2

+ 2δ‖ξk − w̄k‖‖h∗(JA2
mk
− Id)hw̄k‖). (3.22)

The estimate (3.22), gives that

βk‖ξk − w̄k‖
2 ≤ ‖w̄k − p∗‖2 − ‖xk − p∗‖2 − 2βkδ‖ξk − w̄k‖‖h∗(JA2

mk
− Id)hw̄k‖). (3.23)

Recalling the estimate (3.18) and the condition (C3), we have

lim
k→∞
‖ξk − w̄k‖ = 0. (3.24)

Reasoning as above, by recalling the definition of (ek), the condition (C1) and the estimate (3.24), we
get

lim
k→∞
‖ξk − pk‖ = 0. (3.25)

Note that the existence of a convergent subsequence (pk j) of (pk) such that pk j ⇀ q ∈ Ξ1 as j → ∞
follows from the boundedness of (pk). This also infers that ξk j ⇀ q and w̄k j ⇀ q as j → ∞. To
establish the claim, we first prove that q ∈ Ω.

Let (u, v) ∈ gra(A1). Since ξk j = JA1
mk j

(w̄k j + δh∗(JA2
mk j
− Id)hw̄k j), therefore, we have

w̄k j + δh∗(JA2
mk j
− Id)hw̄k j ∈ ξk j + mk j A1(ξk j).

This implies that
1

mk j

(w̄k j − ξk j) +
1

mk j

δh∗(JA2
mk j
− Id)hw̄k j ∈ A1(ξk j).

Recalling the monotonicity of A1, we have

〈u − ξk j , v − (
1

mk j

(w̄k j − ξk j) +
1

mk j

(δh∗(JA2
mk j
− Id)hw̄k j))〉 ≥ 0.

The above estimate infers that

〈u − ξk j , v〉 ≥ 〈u − ξk j ,
1

mk j

(w̄k j − ξk j) +
1

mk j

(δh∗(JA2
mk j
− Id)hw̄k j)〉

= 〈u − ξk j ,
1

mk j

(w̄k j − ξk j)〉 + 〈u − ξk j ,
1

mk j

(δh∗(JA2
mk j
− Id)hw̄k j)〉. (3.26)

Since ξk j ⇀ q, we obtain lim j→∞〈u − ξk j , v〉 = 〈u − q, v〉. Now utilizing the estimates (3.18), (3.24)
and (3.26), we have 〈u − q, v〉 ≥ 0. This implies that 0 ∈ A1q.

Recalling the facts that (i) h is a bounded linear operator implies that hw̄k j ⇀ hq as j→ ∞, (ii) JA2
mk

is a nonexpansive operator with Id − JA2
mk being demiclosed at the origin (Lemma 2.1), we also obtain

that 0 ∈ A2(hq). Hence q ∈ Ω.
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We now show that q ∈ Fix(S ). Observe that

‖ek − S ek‖ ≤ ‖ek − S kek‖ + ‖S kek − S ek‖

≤ ‖ek − S kek‖ + sup
x∈K
‖S kx − S x‖.

Recalling the estimate (3.13) and Lemma 2.5, the above estimate implies that limk→∞ ‖ek − S ek‖ = 0.
This together with the fact that ek j ⇀ q implies, with the help of Lemma 2.1, that q ∈ Fix(S ) =⋂∞

k=1 Fix(S k).
Step 4. Prove that pk → p∗ = ΠΓ p1.

Let p∗ = ΠΓ p1. As pk+1 = ΠHk+1 p1 and Γ ⊂ Hk+1, therefore, we have

‖pk+1 − p1‖ ≤ ‖p∗ − p1‖ .

Also

‖p1 − p∗‖ ≤ ‖p1 − q‖ ≤ lim inf
j→∞

∥∥∥p1 − pk j

∥∥∥ ≤ lim sup
k→∞

∥∥∥p1 − pk j

∥∥∥ ≤ ‖p1 − p∗‖ .

That is
lim
j→∞

∥∥∥pk j − p1

∥∥∥ = ‖q − p1‖ = ‖p∗ − p1‖ .

This implies that limk→∞ pk = q = p∗ = ΠΓ p1 and hence completes the proof. �

If we take A2 = 0 and Ξ1 = Ξ2, then the problem (2.1) reduces to find a point of the following
problem:

p̂ ∈ Γ := {p ∈ A−1
1 (0) ∩ Fix(S )}.

Hence the following result is an easy consequence of the Theorem 3.1:

Corollary 3.1. Assume that Γ , ∅. Then the sequence (pk)

ek = pk + θk(pk − pk−1);
w̄k = (1 − αk)ek + αkS kek;
xk = (1 − βk)w̄k + βkJA1

mk (w̄k);
Hk+1 = {z ∈ Hk : ‖xk − z‖2 ≤ ‖pk − z‖2 + θ2

k‖pk − pk−1‖
2 + 2θk〈pk − z, pk − pk−1〉};

pk+1 = ΠHk+1 p1,∀ k ≥ 1;

(3.27)

generated by (3.27), under the control conditions (C1)–(C4), converges strongly to an element p∗ =

ΠΓ p1.

4. Applications

In this section, we posit different frameworks, as an application of the framework established in
Section 3.
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4.1. Split feasibility problems

The classical SFP, essentially due to Censor and Elfving [18], aims to find p̂ ∈ ω := H ∩ h−1(G) =

{q̄ ∈ H : hq̄ ∈ G}, where H ⊂ Ξ1 and G ⊂ Ξ2 are nonempty, closed and convex subsets of Ξ1 and
Ξ2, respectively. For the implementation of the Theorem 3.1, we recall the indicator operator of a
nonempty, closed and convex subset H of Ξ1 as

ΦH(p∗) :=
{

0, p∗ ∈ H;
∞, otherwise.

It has been established that the subdifferential ∂ΦH satisfies the maximal monotonicity provided that
the operator ΦH is proper, convex and lower semicontinuous. Also ∂ΦG = N(µ,H), where N(µ,H)
is the normal cone of H at µ. Utilizing this fact, we conclude that the resolvent operator of ∂ΦH

is the metric projection operator of Ξ1 onto H. We, therefore, arrive at the following variant of the
problem (2.1):

Corollary 4.1. Assume that Γ = ω ∩ Fix(S ) , ∅. Then the sequence (pk)

ek = pk + θk(pk − pk−1);
w̄k = (1 − αk)ek + αkS kek;
xk = (1 − βk)w̄k + βk(ΠH(w̄k + δh∗(ΠG − Id)hw̄k));
Hk+1 = {‖xk − z‖2 ≤ ‖pk − z‖2 + θ2‖pk − pk−1‖

2 + 2θk〈pk − z, pk − pk−1〉};
pk+1 = ΠHk+1 p1, ∀ k ≥ 1,

(4.1)

generated by (4.1), under the control conditions (C1)–(C4), converges strongly to an element p∗ =

ΠΓ p1.

4.2. Split equilibrium problems

The equilibrium problem from [13] aims to compute a point p∗ ∈ H such that

f (p∗, ȳ) ≥ 0, for all ȳ ∈ H, (4.2)

where f : H × H → R is a bifunction satisfying,
(A1) f (p∗, p∗) = 0 for all p∗ ∈ H;
(A2) f is monotone, i.e., f (p∗, q∗) + f (q∗, p∗) ≤ 0 for all p∗, q∗ ∈ H;
(A3) for each p∗, q∗, t∗ ∈ H, lim supx→0 f (xt∗ + (1 − x)p∗, q∗) ≤ f (p∗, q∗);
(A4) for each p∗ ∈ H, q∗ 7→ h(p∗, q∗) is convex and lower semi-continuous.

The set EP( f ) denotes the set of all solutions associated with the equilibrium problem (4.2). Recall
the following auxiliary results for the equilibrium problem:

Lemma 4.1. [25] Let H be a nonempty closed convex subset of a real Hilbert space Ξ1 and let
f : H × H → R be a bifunction satisfying (A1)–(A4). For s > 0 and p∗ ∈ Ξ1, there exists t∗ ∈ H such
that

f (t∗, q∗) +
1
s
〈q∗ − t∗, t∗ − p∗〉 ≥ 0, ∀q∗ ∈ H.

Moreover, define an operator U f
s : Ξ1 → H by

U f
s (p∗) =

{
t∗ ∈ H : f (t∗, q∗) +

1
s
〈q∗ − t∗, t∗ − p∗〉 ≥ 0, ∀q∗ ∈ H

}
.
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Lemma 4.2. [30] Let H be a nonempty closed convex subset of Ξ1 and let f : H × H → R be a
bifunction satisfying (A1)–(A4). Let A f : Ξ1 → 2Ξ1 be a multivalued operator defined as:

A f (p∗) =

{
{q∗ ∈ Ξ1 : f (p∗, t∗) ≥ 〈t∗ − p∗, q∗〉, ∀t∗ ∈ H}, if p∗ ∈ H,
∅, if p∗ < H.

Recall that the operator A f is a maximal monotone operator with domain D(A f ) ⊂ C and EP( f ) =

A−1
f 0. Moreover, U f

s = (Id + sA f )−1 for s > 0, i.e., U f
s is the resolvent of A f . We, therefore, arrive at

the following variant of the problem (2.1):

Corollary 4.2. Assume that Γ = EP( f1) ∩ h−1(EP( f2)) ∩ Fix(S ) , ∅. Then the sequence (pk)

ek = pk + θk(pk − pk−1);
w̄k = (1 − αk)ek + αkS kek;
xk = (1 − βk)w̄k + βk(U

f1
s (w̄k + δh∗(U f2

s − Id)hw̄k));
Hk+1 = {‖xk − z‖2 ≤ ‖pk − z‖2 + θ2

k‖pk − pk−1‖
2 + 2θk〈pk − z, pk − pk−1〉};

pk+1 = ΠHk+1 p1, ∀ k ≥ 1,

(4.3)

generated by (4.3), under the control conditions (C1)-(C4), converges strongly to an element p∗ =

ΠΓ p1.

4.3. Split optimization problems

Let g : Ξ1 → (−∞,∞] be a PCLS function, then the set of minimizer associated with g is defined as

argmin g := {p∗ ∈ Ξ1 : g(p∗) ≤ g(q∗), for all q∗ ∈ Ξ1}.

Recall that the ∂g of PCLS function g is a maximal monotone operator and the corresponding resolvent
operator of ∂g is called the proximity operator (see [22]). Hence argmin g = (∂g)−10. We, therefore,
arrive at the following variant of the problem (2.1).

Corollary 4.3. Assume that Γ = {x ∈ arg min g1 : hx ∈ arg min g2} ∩ Fix(S ) , ∅. Then the sequence
(pk) 

ek = pk + θk(pk − pk−1);
w̄k = (1 − αk)ek + αkS kek;
xk = (1 − βk)w̄k + βk(J∂g1

mk (w̄k + δh∗(J∂g2
mk − Id)hw̄k));

Hk+1 = {‖xk − z‖2 ≤ ‖pk − z‖2 + θ2
k‖pk − pk−1‖

2 + 2θk〈pk − z, pk − pk−1〉};
pk+1 = ΠHk+1 p1, ∀ k ≥ 1,

(4.4)

generated by (4.4), under the control conditions (C1)–(C4), converges strongly to an element p∗ =

ΠΓ p1.

5. Numerical experiment and results

In this section, we present an example that characterizes the performance of our algorithm.
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Example 5.1. Let Ξ1 = Ξ2 = (R, 〈·, ·〉, | · |) where 〈p, q〉 = pq. Consider the operators h, A1, A2 : R→ R
are defined as h(p) = 3p, A1 p = 2p and A2 p = 3p, respectively. It is evident from the definition that
A1, A2 are maximal monotone operators such that Ω := {p∗ ∈ A−1

1 0 : hp∗ ∈ A−1
2 0} = 0 and h is a

bounded linear operator on R with the adjoint operator h∗ such that ‖h‖ = ‖h∗‖ = 3. Let the sequence
of operators S k : R→ R be defined by

S k(p) =

{
−

p
k , p ∈ [0,∞);

p, p ∈ (−∞, 0).

Then S k is an infinite family of 1−k2

(1+k)2 -demicontractive operators with
⋂∞

k=1 Fix(S k) = {0}. Hence
Γ = Ω ∩

⋂∞
k=1 Fix(S k) = 0. We use the following initialization parameters for the computation of the

Algorithm 1: θ = 0.5, αk = 1
100k+1 , βk = k

100k+1 , δ = 1
8 , L = 3 and m=0.02. Also observe that{

min{ 1
k2‖pk−pk−1‖

, 0.5}, i f pk , pk−1;
0.5, otherwise.

Let Error = Ek = ‖pk − pk−1‖ < 10−5 denote the stopping criteria. The performance of the Algorithm 1
(i.e., Algo.1, θk , 0) is compared with the non-inertial variant of the Algorithm 1 (i.e., Algo.1, θk = 0)
and Algo. 3.1 [16]. For different choices of the initial inputs p0 and p1, the values of Algo.1 are
summarized in the following table:
Choice A. Choose x0 = (5), x1 = (2),
Choice B. Choose x0 = (4.2), x1 = (1.5),
Choice C. Choose x0 = (−7), x1 = (4).

Table 1. Computed Data Representation for the Algorithm 1 and Algo. 3.1(Byrne et. al [16]).

No. of Iterations CPU Time(Sec)

Choice 1 Choice 2 Choice 3 Choice 1 Choice 2 Choice 3

Algo.1,θk , 0, 1787 1401 1920 0.064561 0.049590 0.057585
Algo.1,θk = 0, 1819 1620 2008 0.071565 0.063519 0.076661
Algo. 3.1 [16] 7620 6598 8958 0.284874 0.687913 0.912241

The error plotting Ek against Algorithm 1 and Algorithm 3.1 [16], for each choices in Table 1, has
shown in Figure 1.
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Figure 1. Comparison of Algorithm 1 (i.e., Algo.1, θk , 0), Algorithm 1 (i.e., Algo.1, θk = 0)
and Algorithm 3.1 [16].

It is evident from Figure 1 that Algorithm 1 outperforms its noninertial variant and
Algorithm 3.1 [16] with respect to the computation of error, CPU time and the number of iterations.

5.1. Signal processing

The mathematical model of the signal recovery problem in an under-determined linear equation
system is expressed as follows:

ζ = hν + ρ, (5.1)

where ν ∈ RD denotes the original unknown signal to be recovered, ζ ∈ RP denotes the observed signal
distort via the bounded linear matrix operator h : RD → RP, (P < D) and the noise ρ. One can define
a natural convex constrained optimization-theoretic formulation of (5.1) via the following well known
LASSO problem [33]:

min
v∈RD

{1
2
‖hν − ζ‖2

}
subject to ‖ν‖1 ≤ c, ∀ c > 0. (5.2)

The set of solutions of the `1-minimization problem (5.1) is equivalent to the set of solutions of (5.2)
under certain control conditions on the matrix h [15]. The `1-norm based regularization problems are
widely applicable in signal and image processing.
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Set Γ = H ∩ h−1(G) , ∅ with H = {ν | ‖ν‖1 ≤ c} and G = {ζ}. The experiment is conducted under
the matrix hD×P whose elements are generated from independently distributed normal distributions
having 0 as mean and 1 as variance. The sparse vector ν, having t = spikes nonzero elements, is
generated via uniform distribution in [−2, 2]. The following iterative regularization method, often
known as the Richardson method (or the Landweber method) [23], is generally employed to solve the
problem (5.2):

νk+1 = νk + ηhT (ζ − hνk), (5.3)

where η, the step size, is assumed to be constant. The algorithm (5.3) converges for 0 < η < 2
ε2

max
,

where εmax is the maximum singular value of h. The initial points ν0, ν1 are chosen randomly. We use
the mean squared error indicator to examine the performance of the algorithm for image restoration,
i.e., Ek = 1

N ‖νk − ν
∗‖ < 10−4, where ν∗ is the approximation of the signal ν. The computation of the

observed signal ζ is carried out by employing the Gaussian noise associated with the signal-to-noise
ratio (SNR=40). Also set mk = 1.85

‖h‖2 , αk = k
100k+1 , βk = 1

15k+1 , δ = 0.04, c = t − 0.002, µ = 0 and θk=0.5.
Performance Test 1: Fix D = 512, P = 256 and spikes = 15.
Performance Test 2: Fix D = 1024, P = 512 and spikes = 35.

It is clear from the Figures 2 and 3 that the Algorithm 1 outperforms its variants and
Algorithm 3.1 [16] for the signal recovery problem as well as exhibits fast convergence characteristic
with regards to the error and number iterations.
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Figure 2. Comparison for the performance test 1.
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Original signal (D=1024, P=512, spikes=35)
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Figure 3. Comparison for the performance test 2.

6. Conclusions

In this paper, we have posited a framework for the investigation of the SCNPP and the FPP
associated with an infinite family of k-demicontractive operators in Hilbert spaces. The common
optimal solution of the problem is then constructed via an inertial hybrid projection algorithm under
the suitable set of constraints. We have incorporated an appropriate numerical example for the
demonstration of the framework as well as for the applicability of our algorithm. We found that our
algorithm outperforms its variants and Algorithm 3.1 [16]. We have also discussed various instances
of the proposed formalism and can pave a way for an important future research direction in the theories
of SCNPP and FPP.
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