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1. Introduction and main results

This manuscript discusses the existence of nonnegative solutions for the following Sturm-Liouville
boundary value problems (BVP for short) in non-autonomous Lagrangian systems:

−(B(t)y′(t))′ + P(t)y(t) = µ∇yV(t, y), a.e. t ∈ [0, 1],
y(0) cos θ1 − B(0)y′(0) sin θ1 = 0,
y(1) cos θ2 − B(1)y′(1) sin θ2 = 0,

(1.1)

where B(t) = diag{(b1(t), · · · , bn(t)} ∈ C1([0, 1],Ld(Rn)) with b j(t) ∈ C1([0, 1],R), j = 1, · · · , n, and
B(t) is a positive definite diagonal matrix for t ∈ [0, 1]. P(t) = diag{(p1(t), · · · ,
pn(t)} ∈ L∞([0, 1],Ld(Rn)), ∇yV(t, y) is the gradient of V(t, y) for y ∈ Rn, and
µ > 0, θ1 ∈ [0, π), θ2 ∈ (0, π]. We make the following assumption:

(H0) V : [0, 1] × Rn → R is measurable in t for every y ∈ Rn and continuously differentiable in y
for a.e. t ∈ [0, 1]. If n = 1, then the function ∇yV(t, y) = v(t, y) : [0, 1] × R→ R is L1-Carathéodory; if
n ≥ 2, then

|∇yV(t, y)| ≤ C(1 + |y|γ), ∀y ∈ Rn, a.e. t ∈ [0, 1],
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where C > 0 and γ > 0.
Taking n = 1, θ1 = θ2 =

π
2 , the problem (1.1) is the Neumann BVP for Sturm-Liouville equations{
−(b(t)y′(t))′ + p(t)y(t) = µv(t, y), a.e. t ∈ [0, 1],
y′(1) = y′(0) = 0,

(1.2)

which implies that the problem (1.2) is a special case of (1.1).
For the equilibrium problems of strings, columns, beams etc. in mathematical physics, the

Neumann BVP has played an important role. Hence, many researchers have paid attention to it in
recent years (see [5, 7, 13–15, 17–20] and the references therein). When
b(t) > 0, b(t) ∈ C1([0, 1]), p(t) ≥ 0 and p(t) ∈ C([0, 1]), using the fixed point theorems, the authors
of [14, 15, 20] have investigated the multiplicity of solutions for the problem (1.2). In particular, when
b(t) > 0, b(t) ∈ C1([0, 1]), p(t) ≥ 0 and p(t) ∈ C([0, 1]), using the critical point theorems of [1, 3, 4, 6],
Bonanno-D’Aguı̀ [5] and Bonanno-Iannizzotto-Marras [7] established a three-nonnegative-solutions
result and a two-positive-solutions result for the problem (1.2), respectively. Meanwhile, the authors
of [5, 7] gave the application of these results in the complete Sturm-Liouville equations{

−(b(t)y′(t))′ + q(t)y′(t) + r(t)y(t) = µg(t, y(t)), t ∈ [0, 1],
y′(1) = y′(0) = 0,

(1.3)

where q(t) > 0, r(t) > 0, b(t) ∈ C1([0, 1]) and q(t), r(t) ∈ C([0, 1]).
In addition, in [2, 9, 10], with the aid of the three-critical-points theorem of [1, 4],

Averna-Giovannelli-Tornatore established a three-solutions result for the mixed BVP{
−(b(t)y′(t))′ + p(t)y(t) = µv(t, y), t ∈ [0, 1],
y′(1) = y(0) = 0,

(1.4)

where b(t) ∈ C1([0, 1]), essinft∈[0,1]b(t) > 0, p(t) ∈ C([0, 1]), and essinft∈[0,1] p(t) ≥ 0, . Meanwhile, the
authors of [2, 9, 10] also gave the application of the result in the complete Sturm-Liouville equations:{

−y′′ + y′ + y = µg(y(t)), t ∈ [0, 1],
y′(1) = y(0) = 0.

(1.5)

Clearly, taking n = 1, θ1 = 0, θ2 =
π
2 , the problem (1.1) becomes the problem (1.4).

In this manuscript, we are interested in the function p(t) ∈ L∞([0, 1]) and without the assumption
of p(t) ≥ 0 for the n-dimensional the problems (1.2) and (1.4). To this end, we reconsider in the
framework of the problem (1.1) some theorems proved in [2, 5, 7]. With the aid of index theory, we
construct a variational construction. Then using Bonanno-Candito’s three critical point theory obtained
in [4], we give some new criteria to have at least three nonnegative solutions for the problem (1.1). As
a direct application, we obtain the corresponding results for the complete Sturm-Liouville equations
meeting Sturm-Liouville boundary value conditions (BVC for short). Furthermore, we give three
examples to show the correctness of the obtained conclusions and to indicate that these results unify
and sharply improve some recent results.

Now, for all A(t) ∈ L∞([0, 1],Ls(Rn)), we use the index (iB
θ1,θ2

(A), νB
θ1,θ2

(A)) ∈ N×N in [11] to express
our primary results.

AIMS Mathematics Volume 8, Issue 3, 6543–6558.



6545

Theorem 1.1. Assume that there are A0(t), A(t) ∈ L∞([0, 1],Ld(Rn)) that satisfy P(t) = −A0(t) +A(t),
iB
θ1,θ2

(A0) = 0, νB
θ1,θ2

(A0) , 0, where A(t) is a positive definite diagonal matrix for t ∈ [0, 1], i.e., there
exist s̄ ≥ s > 0 such that s̄|y|2 ≥ (A(t)y, y) ≥ s|y|2 for all y ∈ Rn, t ∈ [0, 1].

Suppose V(t, y) satisfies (H0) and the following:
(H1) V(t, 0) = 0, and ∇yV(t, y) ≥ 0, i.e. ∂V

ui
≥ 0, ∀i = 1, · · · , n, where y = (u1, u2, · · · , un).

(H2) There are c0 > 0, b0 > 0 and y0 ∈ ker(Λ − A0) with c0
k

√
2
s < ∥y0∥L2 <

b0

k
√

2s̄
, such that

∫ 1

0
sup|y|≤c0

V(t, y)dt

c2
0

<
2
∫ 1

0
V(t, y0)dt

3s̄k2∥y0∥
2
L2

(1.6)

and ∫ 1

0
sup|y≤b0

V(t, y)dt

b2
0

<

∫ 1

0
V(t, y0)dt

3s̄k2∥y0∥
2
L2

, (1.7)

for all y ∈ Rn, where (Λy − A0y)(t) = −(B(t)y′)′(t) − A0(t)y(t), k = δ0(min{1, s})
−1
2 and δ0 > 0 is the

compact embedding constant of Z ↪→ L∞(or see (3.2)).

Then, for each µ ∈

(
3s̄∥y0∥

2
L2

4
∫ 1

0 V(t,y0)dt
,min{ c2

0
2k2α

,
b2

0
2k2β
}

)
, the problem (1.1) has at least three nonnegative

solutions yi with |yi| < b0 for i = 1, 2, 3, where α =
∫ 1

0
sup|y|≤c0

V(t, y)dt, β =
∫ 1

0
sup|y|≤b0

V(t, y)dt, and
the nonnegative solutions y(t) = (u1(t), · · · , un(t)) means that ui(t) ≥ 0, ∀i = 1, 2, · · · , n.

Next, as an application, we consider the complete Sturm-Liouville equations
−(b(t)y′(t))′ + q(t)y′(t) + r(t)y(t) = µg(t, y(t)), a.e. t ∈ [0, 1],
y(0) cos θ1 − e−Q(0)b(0)y′(0) sin θ1 = 0,
y(1) cos θ2 − e−Q(1)b(1)y′(1) sin θ2 = 0,

(1.8)

where µ > 0, θ1 ∈ [0, π), θ2 ∈ (0, π],Q′(t) = q(t)
b(t) , b(t) ∈ C1([0, 1],R) with ess inf[0,1] b(t) > 0, and

q(t), r(t) ∈ L∞([0, 1],R) with meas{t ∈ [0, 1] : q(t) , 0} > 0.

Theorem 1.2. Assume that there is A0(t) ∈ L∞([0, 1],R) such that iB1
θ1,θ2

(A0) = 0, νB1
θ1,θ2

(A0) , 0, and
s0 = ess inf[0,1]{e−Q(t)r(t) + A0(t)} > 0, where B1(t) = b(t)e−Q(t).

Suppose the function g : [0, 1] × R→ R is L1-Carathéodory and satisfies the following:
(G1) For all t ∈ [0, 1] and y ∈ R, g(t, y) ≥ 0.
(G2) There exist c0 > 0, b0 > 0 and y0 ∈ ker(Λ1 − A0) with c0

k0

√
2
s0
< ∥y0∥L2 < b0

k0
√

2s̄0
, such that

∫ 1

0
sup|y|≤c0

∫ y

0
g(t, ξ)dξdt

c2
0

<
2
∫ 1

0

∫ y0

0
g(t, ξ)dξdt

3s̄0k2
0∥y0∥

2
L2

and ∫ 1

0
sup|y|≤b0

∫ y

0
g(t, ξ)dξdt

b2
0

<

∫ 1

0

∫ y0

0
g(t, ξ)dξdt

3s̄0k2
0∥y0∥

2
L2

,
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for all y ∈ R, where (Λ1y − A0y)(t) = −(B1(t)y′)′(t) − A0(t)y(t), k0 = δ0(min{1, s0})
−1
2 and

s̄0 = ess sup[0,1]{e
−Q(t)r(t) + A0(t)} .

Then, for each µ ∈

(
3s̄0∥y0∥

2
L2

4
∫ 1

0 e−Q(t)
∫ y0

0 g(t,ξ)dξdt
,min

{
c2

0
2k2

0α1
,

b2
0

2k2
0β1

})
, the problem (1.8) has at least three

nonnegative solutions yi with |yi| < b0 for i = 1, 2, 3, where

α1 =
∫ 1

0
e−Q(t) sup

|y|≤c0

∫ y

0
g(t, ξ)dξdt and β1 =

∫ 1

0
e−Q(t) sup

|y|≤b0

∫ y

0
g(t, ξ)dξdt.

The organization of this manuscript is as follows. The main content of Section 2 is recalling the
three critical points theorem in [4] and some conclusions about the index theory of the second order
linear Lagrangian systems in [11, 12]. In Section 3, we construct a variational construction for (1.1) in
Z and give the proof of Theorems 1.1 and 1.2. Some helpful corollaries and some examples are given
in Section 4 to show the validity of our results. Meanwhile, we emphasize that our results unify and
sharply improve the correlative results of [2, 5, 7, 17, 18] via some remarks.

2. Preliminaries

First, we recall the three critical points theorem in [4] and some results about the index theory of
linear second order Lagrangian systems in [11, 12] in order to prove Theorems 1.1 and 1.2.

Lemma 2.1. ( [4]) Let Z be a reflexive real Banach space. Assume that two functionals Φ,Ψ : Z → R
are continuously Gâteaux differentiable, Φ is coercive and convex with Φ′ having a continuous inverse
on Z∗, and Ψ′ is compact, such that
(1) Φ(θ) = Ψ(θ) = infZ Φ = 0.
(2) For each µ > 0, if y1, y2 are two local minima of Φ − µΨ with Ψ(y1) ≥ 0 and Ψ(y2) ≥ 0, then
infϑ∈[0,1]Ψ(ϑy1 + (1 − ϑ)y2) ≥ 0.

If there are ρ1 > 0, ρ2 > 0 and ỹ ∈ Z with 2ρ1 < Φ(ỹ) < ρ2
2 , such that

(i)
supy∈Φ−1((−∞,ρ1)) Ψ(y)

ρ1
< 2Ψ(ỹ)

3Φ(ỹ)
and

(ii)
supy∈Φ−1((−∞,ρ2)) Ψ(y)

ρ2
< Ψ(ỹ)

3Φ(ỹ) ,

then, for each µ ∈
(

3Φ(ỹ)
2Ψ(ỹ) ,min

{
ρ1

supy∈Φ−1((−∞,ρ1)) Ψ(y) ,
ρ2

2 supy∈Φ−1((−∞,ρ2)) Ψ(y)

})
, Φ − µΨ has at least three distinct

critical points which lie in Φ−1((−∞, ρ2)).

The index theory in [11, 12] is designed to address the classification problem of L∞([0, 1], Ls(Rn))
associated with the Lagrangian system

−(B(t)y′)′ − A(t)y = 0, (2.1)
y(0) cos θ1 − B(0)y′(0) sin θ1 = 0, (2.2)
y(1) cos θ2 − B(1)y′(1) sin θ2 = 0, (2.3)

where θ1 ∈ [0, π), θ2 ∈ (0, π], A(t) ∈ L∞([0, 1],Ls(Rn)) = {A(t) = (a jk)n×n|a jk(t) = ak j(t),
t ∈ [0, 1], a jk(t) ∈ L∞([0, 1])}, and B(t) ∈ C1([0, 1],Ls(Rn)) with B(t) is a positive definite matrix for
t ∈ [0, 1].
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Let Y = L2([0, 1],Rn). Set (Λy)(t) = −(B(t)y′)′(t), and

D(Λ) = {y ∈ H2([0, 1],Rn) : y satisfies (2.2, 2.3)}.

In Section 2.3 of [11], it has been proved the operator Λ is self-adjoint, and σ(Λ) = σd(Λ) is bounded
from below, where σd(Λ) = {η ∈ R : η is the point spectrum of Λ}. Then, for all x, y ∈ Z, we consider
the bilinear form

L(x, y) =
∫ 1

0
(B(t)x′(t), y′(t))dt + (x(0), y(0))γ(θ1) − (x(1), y(1))γ(θ2), (2.4)

where (·, ·) is the commonly used inner product in Rn, γ(t) = cot t as t ∈ (0, π), γ(t) = 0 as t = 0 or
t = π, and

Z =



{y ∈ H1([0, 1],Rn)|y′(1) = y′(0) = 0}, θ1 = θ2 =
π
2 ;

{y ∈ H1([0, 1],Rn)|y′(1) = y(0) = 0}, θ1 = 0, θ2 =
π
2 ;

{y ∈ H1([0, 1],Rn)|y(1) = y(0) = 0}, θ1 = 0, θ2 = π;
{y ∈ H1([0, 1],Rn)|y(1) = 0}, θ1 = 0, θ2 ∈ (0, π);
{y ∈ H1([0, 1],Rn)|y(0) = 0}, θ1 ∈ (0, π), θ2 = π;
H1([0, 1],Rn), θ1, θ2 ∈ (0, π).

(2.5)

Similarly to the proof of Proposition 1.17 in [8], it can be proved Z is a Hilbert space. Furthermore,
Z = D(|Λ|

1
2 ) is capable of being equipped with an equivalent norm

∥y∥Z =
(∫ 1

0
[|y(t)|2 + y′(t)|2]dt

) 1
2

, ∀ y ∈ Z,

which implies that two embedded mappings Z ↪→ L∞ and Z ↪→ L2 = Y are compact.
For any A(t) ∈ L∞([0, 1],Ls(Rn)), define ψB,A

θ1,θ2
(x, y) as follows:

ψB,A
θ1,θ2

(x, y) = L(x, y) −
∫ 1

0
(A(t)x(t), y(t))dt, ∀ x, y ∈ Z. (2.6)

Proposition 2.2. ( [11]) For any A(t) ∈ L∞([0, 1],Ls(Rn)), the space

Z = Z−(A) ⊕ Z0(A) ⊕ Z+(A)

is a ψB,A
θ1,θ2

-orthogonal decomposition, where ψB,A
θ1,θ2

is negative definite, null and positive definite on
Z−(A),Z0(A) and Z+(A), respectively. Particularly, Z−(A) and Z0(A) are finitely dimensional.

Definition 2.3. ( [11]) For any A(t) ∈ L∞([0, 1],Ls(Rn)), we define

iB
θ1,θ2

(A) =
∑
λ<0

νB
θ1,θ2

(A + λIn), νB
θ1,θ2

(A) = dimker(Λ − A).

Proposition 2.4. ( [12]) For any A ∈ L∞([0, 1],Ls(Rn)), Z0(A) is the solution subspace of the
systems 2.1 and 2.3, and

iB
θ1,θ2

(A) = dimZ−(A), νB
θ1,θ2

(A) = dimZ0(A).

iB
θ1,θ2

(A) and νB
θ1,θ2

(A) are called the index and nullity of A with respect to ψB,A
θ1,θ2

(·, ·), respectively.
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Proposition 2.5. ( [16]) For any A ∈ L∞([0, 1],Ls(Rn)), for y = y1 + y2 ∈ Z, if y1 ∈ Z−(A) and
y2 ∈ Z+(A), then (−ψB,A

θ1,θ2
(y1, y1))

1
2 +(ψB,A

θ1,θ2
(y2, y2))

1
2 is an equivalent norm on Z.

Remark 1. ( [12]) If B(t) ≡ In, c ∈ R, one has

νIn
0, π2

(cIn) = n as c = (
1
2
+ k)2π2,

νIn
0, π2

(cIn) = 0 as c , (
1
2
+ k)2π2 for k ∈ N,

iIn
0, π2

(cIn) = 0 as c ≤
π2

4
,

iIn
0, π2

(cIn) = (k + 1)n as c ∈
(
(
1
2
+ k)2π2, (

1
2
+ k + 1)2π2

)
,

νIn
π
2 ,

π
2
(cIn) = n as c = k2π2, νIn

π
2 ,

π
2
(cIn) = 0 as c , k2π2 for k ∈ N,

iIn
π
2 ,

π
2
(cIn) = 0 as c ≤ 0, iIn

π
2 ,

π
2
(cIn) = (k + 1)n as c ∈

(
k2π2, (k + 1)2π2

)
.

Remark 2. Since C1([0, 1],Ld(Rn)) ⊂ C1([0, 1],Ls(Rn)), L∞([0, 1],Ld(Rn)) ⊂ L∞([0, 1], Ls(Rn)), for
B(t) ∈ C1([0, 1],Ld(Rn)), A(t) ∈ L∞([0, 1],Ld(Rn)), the above index theories also hold.

3. Proof of the main results

From the assumptions iB
θ1,θ2

(A0) = 0 and νB
θ1,θ2

(A0) , 0, we can see that minσ(Λ − A0) = 0 via
Definition 2.3 and Proposition 2.4. Hence, we define another inner product:

⟨x, y⟩ = L(x, y) −
∫ 1

0
(A0(t)x(t), y(t))dt +

∫ 1

0
(x(t), y(t))dt, ∀x, y ∈ Z,

where the corresponding norm is defined as

∥y∥ = (L(y, y) − (A0y, y)L2 + ∥y∥2L2)
1
2 , ∀y ∈ Z.

By Proposition 2.5, we can see that ∥ · ∥ is equivalent to ∥ · ∥Z. For all y ∈ Z, put

∥y∥S =
(
L(y, y) −

∫ 1

0
(A0(t)y(t), y(t))dt +

∫ 1

0
(A(t)y(t), y(t))dt

) 1
2

.

Since A(t) is a positive definite matrix, for all y ∈ Y there are s̄ ≥ s > 0 such that s̄∥y∥2L2 ≥ (Ay, y)L2 ≥

s∥y∥2L2 . Thus, one has

min{1, s}∥y∥2 ≤ ∥y∥2S ≤ max{1, s̄}∥y∥2. (3.1)

Let ∥ · ∥∞ be the norm of L∞([0, 1],Rn). By the compactness of the embedded mappings Z ↪→ L2 = Y
and Z ↪→ L∞, we know that there is δ0 > 0 such that

|y| ≤ ∥y∥∞ ≤ δ0∥y∥ ≤ k∥y∥S (3.2)

for all y ∈ Z, where k = δ0(min{1, s})
−1
2 .
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Next, we prove that Theorems 1.1 and 1.2. To this end, set

I(y) =
∥y∥2S

2
− µ

∫ 1

0
V(t, y)dt, ∀y ∈ Z. (3.3)

By (H0), it is not difficult to prove that I is continuously differentiable in Z, and

I′(y)x = L(y, x) +
∫ 1

0
(P(t)y, x)dt − µ

∫ 1

0
(∇yV(t, y), x)dt,

for all x, y ∈ Z. Similar to the proof of Proposition 2.3.3 (1) in [11], it can easily be proved that the
critical points of I are the solutions of the problem (1.1), and we leave out the details here.

Proof of Theorem 1.1. For each y ∈ Z, set

Φ(y) =
∥y∥2S

2
, Ψ(y) =

∫ 1

0
V(t, y)dt.

Obviously, the critical points of Φ − µΨ in Z correspond to the solutions of (1.1).
From (3.1), the compactness of the embedding Z ↪→ L2 = Y and the condition (H0), we can see

that Φ is coercive, convex and continuously Gâteaux differentiable, and Ψ is continuously Gâteaux
differentiable with Ψ′ being compact. Meanwhile, V(t, 0) = 0 implies that (1) of Lemma 2.1 is valid.

Next, we show that Φ′ has a continuous inverse on Z∗. Noting (3.1), for all x, y ∈ Z, we have

⟨Φ′(y) − Φ′(x), y − x⟩ = ∥y − x∥2S ≥ min{1, s}∥y − x∥2,

which means that Φ′ is uniformly monotone on Z∗. With the aid of standard arguments, we can ensure
that Φ′ is also hemicontinuous and coercive on Z∗. Moreover, using Theorem 26. A of [21], it is easy
to show that Φ′ has a continuous inverse on Z∗.

Put ỹ = y0 and ρ1 =
1
2 ( c0

k )2. By (3.2), we know that {y ∈ Z : Φ(y) < ρ1} ⊂ {y ∈ Z : |y| ≤ c0}, which
implies that

sup
Φ(y)<ρ1

Ψ(y) = sup
Φ(y)<ρ1

∫ 1

0
V(t, y)dt ≤

∫ 1

0
sup
|y|≤c0

V(t, y)dt.

Taking into account that y0 ∈ ker(Λ − A0), from Propositions 2.2 and 2.4, we obtain

Φ(y0) =
1
2

L(y0, y0) +
1
2

∫ 1

0
(P(t)y0, y0)dt

=
1
2
ψB,A0
θ1,θ2

(y0, y0) +
1
2

∫ 1

0
(A(t)y0, y0)dt

=
1
2

∫ 1

0
(A(t)y0, y0)dt,

which shows that
1
2

s∥y0∥
2
L2 ≤ Φ(y0) ≤

1
2

s̄∥y0∥
2
L2 . (3.4)

Noticing that

supΦ(y)<ρ1
Ψ(y)

ρ1
≤

2k2
∫ 1

0
sup|y|≤c0

V(t, y)dt

c2
0
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and

2Ψ(y0)
3Φ(y0)

=
4
∫ 1

0
V(t, y0)dt

3
∫ 1

0
(A(t)y0, y0)dt

≥
4
∫ 1

0
V(t, y0)dt

3s̄∥y0∥
2
L2

,

by (1.6) of the condition (H2), we obtain

supy∈Φ−1((−∞,ρ1))Ψ(y)

ρ1
<

2Ψ(y0)
3Φ(y0)

,

which means that (i) of Lemma 2.1 holds.
Again, put ρ2 =

1
2 ( b0

k )2. As above, we can see that

supΦ(y)<ρ2
Ψ(y)

ρ2
≤

2k2
∫ 1

0
sup|y|≤b0

V(t, y)dt

b2
0

and

Ψ(y0)
3Φ(y0)

≥
2
∫ 1

0
V(t, y0)dt

3s̄∥y0∥
2
L2

.

By (1.7) of (H2), we have
supy∈Φ−1((−∞,ρ2))Ψ(y)

ρ2
<
Ψ(y0)
3Φ(y0)

,

which means that (ii) of Lemma 2.1 holds.
Moreover, from c0

k

√
2
s < ∥y0∥L2 < b0

k
√

2s̄
and (3.4), we obtain 2ρ1 < Φ(y0) < ρ2

2 .
Finally, we prove that (2) of Lemma 2.1 holds. For each µ > 0, if y1 and y2 are two local minima of

Φ − µΨ with Ψ(y1) ≥ 0 and Ψ(y2) ≥ 0, then y1 and y2 are two critical points of Φ − µΨ, which implies
that y1 and y2 are two solutions of the problem (1.1). Taking into account that ∇yV(t, y) ≥ 0, we have
y1(t) ≥ 0, y2(t) ≥ 0 via the following Lemma 3.1. Then, it follows that (1 − ϑ)y1 + ϑy2 ≥ 0,∀ϑ ∈ [0, 1].
Hence,

inf
ϑ∈[0,1]

Ψ((1 − ϑ)y1 + ϑy2) = inf
ϑ∈[0,1]

∫ 1

0

∫ 1

0
(∇yV(t, ξ((1 − ϑ)y1 + ϑy2)), (1 − ϑ)y1 + ϑy2)dξdt ≥ 0

via ∇yV(t, y) ≥ 0 and V(t, 0) = 0.
By Lemma 2.1, for each

µ ∈

(
3Φ(y0)
2Ψ(y0)

,min{
ρ1

supy∈Φ−1((−∞,ρ1))Ψ(y)
,

ρ2

2 supy∈Φ−1((−∞,ρ2))Ψ(y)
}

)
,

I = Φ − µΨ has at least three distinct critical points yi with Φ(yi) < ρ2 for i = 1, 2, 3 in Z. Hence, for
each

µ ∈

(
3s̄∥y0∥

2
L2

4
∫ 1

0 V(t,y0)dt
,min{ c2

0

2k2
∫ 1

0 sup|y|≤c0
V(t,y)dt

,
b2

0

2k2
∫ 1

0 sup|y|≤b0
V(t,y)dt

}

)
,
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by (3.2) and the following Lemma 3.1, we know that the problem (1.1) has at least three nonnegative
solutions yi with |yi| < b0 for i = 1, 2, 3 in Z. The proof is complete. □

Lemma 3.1. Let νB
θ1,θ2

(A0) , 0, iB
θ1,θ2

(A0) = 0 and ∇yV(t, y) ≥ 0. If y ∈ Z is a solutions of the
problem (1.1), then y is nonnegative.

Proof. Set y−(t) = −min{0, y(t)} = (−min{0, u1(t)}, · · · ,−min{0, un(t)}). Evidently, y−(t) ∈ Z. Since
b(t) ∈ C1([0, 1],Ld(Rn)), P(t) ∈ L∞([0, 1],Ld(Rn)),

(P(t)y, y−) = −(P(t)y−, y−), L(y, y−) = −L(y−, y−).

Taking into account that y ∈ Z is a solution of the problem (1.1), we choose y = y−(t). By (3.2),
iB
θ1,θ2

(A0) = 0 and Proposition 2.2, we have

0 ≤ µ

∫ 1

0
(∇yV(t, y), y−)dt

= L(y, y−) +
∫ 1

0
(P(t)y, y−)dt

= −L(x−, x−) −
∫ 1

0
(P(t)y−, y−)dt

= −∥y−∥2S ≤ −
δ2

0

k2 ∥y
−∥2 ≤ 0.

That is, y− = 0 a.e. in [0, 1], and y is nonnegative. □

Proof of Theorem 1.2. In consideration of q(t)
b(t) being Lebesgue integrable in [0, 1], we set the function

Q(t) satisfying Q′(t) = q(t)
b(t) a.e. in [0, 1]. Consider the following problem:
−(e−Q(t)b(t)y′(t))′ + r(t)y(t)e−Q(t) = µg(t, y(t))e−Q(t),

y(0) cos θ1 − e−Q(0)b(0)y′(0) sin θ1 = 0,
y(1) cos θ2 − e−Q(1)b(1)y′(1) sin θ2 = 0,

(3.5)

for a.e. t ∈ [0, 1]. We can prove that the solutions of (3.5) are also the solutions of (1.8). Thus, setting
B1(t) = b(t)e−Q(t), P(t) = r(t)e−Q(t) and V(t, y) =

∫ y

0
g(t, ξ)e−Q(t)dξ, the validity of the conditions of

Theorem 1.1 can be proved. Hence, from Theorem 1.1, the conclusion follows. □

4. Corollaries and examples

As can be seen from (2.5) of Section 2, if θ1 = θ2 =
π
2 ; θ1 = 0, θ2 =

π
2 ; or θ1 = 0, θ2 = π

in Theorems 1.1 and 1.2, we immediately obtain the corresponding the existence results for the n-
dimensional Neumann, mixed or two point BVP.

First, we discuss the Neumann BVP as follows:{
−(B(t)y′(t))′ + P(t)x(t) = µ∇yV(t, y), a.e. t ∈ [0, 1],
y′(1) = y′(0) = 0,

(4.1)
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where B(t) ∈ C1([0, 1],Ld(Rn)) and P(t) ∈ L∞([0, 1],Ld(Rn)) with P(t) and B(t) positive definite for
t ∈ [0, 1]. After a simple calculation, we know that ker(Λ) = Rn, iB

π
2 ,

π
2
(0) = 0, and νB

π
2 ,

π
2
(0) , 0. Set

A0 = 0, P(t) = A(t). Therefore, we immediately obtain Corollary 4.1 through Theorem 1.1.

Corollary 4.1. Assume that V(t, y) satisfies (H0), (H1). If there are c0 > 0, b0 > 0 and y0 ∈ Rn with
c0
k

√
2
s < |y0| <

b0

k
√

2s̄
, such that V(t, y) satisfies (H2), then the conclusion of Theorem 1.1 is still valid.

Remark 3. In Corollary 4.1, if n = 1, we have ker(Λ) = R. Thus, Corollary 4.1 can be reduced to
Theorem 3.4 in [5] via some simple calculations. However, we still need to point out that Corollary 4.1
generalizes Theorem 3.4 in [5] as n = 1 in two aspects. First, Corollary 4.1 requires ∇yV(t, y) = v(t, y)
being an L1-Carathéodory function instead of continuous in t ∈ [0, 1] and y ∈ R; second Corollary 4.1
requires P(t) ∈ L∞[0,1] instead of P(t) ∈ C([0, 1]).

Next, we give an example of (4.1).

Example 1. Let α(t) ∈ C([0, 1],R+) with
∫ 1

0
α(t)dt > 0. Consider{

−y′′(t) + P(t)y(t) = λ∇yV(t, y),
y′(0) = y′(1) = 0,

(4.2)

where n = 2, P(t) = diag{p1(t), p2(t)} with

p1(t) = p2(t) =
{

1, t ∈ [0, 1
2 ],

2, t ∈ (1
2 , 1],

and

V(t, y) = V(t, u1, u2)

=



α(t)(u1 + u2), |u1 + u2| ≤ 1,

α(t)[ (u1+u2)11

11 + 10
11 ], 1 < |u1 + u2| ≤ 2,

α(t)[210(u1 + u2) + 10(1−211)
11 ], 2 < |u1 + u2| ≤ 300,

α(t)[ 210

5×3004 (u1 + u2)5 + 240 × 210

+
10(1−211)

11 ], 300 < |u1 + u2|.

Clearly, s = 1, s̄ = 2. For y ∈ Z, by

|y(t)| ≤ |
∫ t

t1
y′(s)ds| + |y(t1)| ≤

∫ 1

0
|y′(s)|ds + |y(t1)|

≤

(∫ 1

0
|y′(s)|2ds

) 1
2

+

(∫ 1

0
|y(s)|2ds

) 1
2

,

we have
max
t∈[0,1]
|y(t)| ≤

√
2∥y∥,
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which implies that δ0 =
√

2 and k =
√

2. We easily check that V(t, y) satisfies (H0) and (H1). By
ker(Λ) = R2, taking y0 = (1, 1), c0 =

√
2

2 and b0 = 150
√

2, we have 1
2 =

c0
k

√
2
s < |y0| =

√
2 < b0

k
√

2s̄
= 75,

∫ 1

0
sup|y|≤c0

V(t, y)dt

c2
0

=
√

2
∫ 1

0
α(t)dt

<

(
211

11 +
10
11

) ∫ 1

0
α(t)dt

12
=

2
∫ 1

0
V(t, y0)dt

3s̄k2|y0|
2

and ∫ 1

0
sup|y|≤b0

V(t, y)dt

b2
0

=

(
210 × 300 + 10(1−211)

11

) ∫ 1

0
α(t)dt

2 × 1502

<

(
211

11 +
10
11

) ∫ 1

0
α(t)dt

24
=

∫ 1

0
V(t, y0)dt

3s̄k2|y0|
2

which show that (1.6) and (1.7) of (H2) hold. After a simple calculation, from Corollary 4.1, we know
that for each µ ∈ ( 33

1034
∫ 1

0 α(t)dt
, 12375

335873
∫ 1

0 α(t)dt
), the problem (4.2) has at least three positive solutions yi

such that |yi| < 150
√

2 for all t ∈ [0, 1], i = 1, 2, 3.

Remark 4. The inability of Theorem 3.4 in [5] to apply to Example 1 is because the assumption of
P(t) ∈ C([0, 1],R)) in Theorem 3.4 is necessary. In addition, by Remark 4.5 of [5], it is not difficult
to find that Theorem 1 of [17] and [18] also cannot be applied to Example 1. Therefore, Corollary 4.1
unifies and sharply improves the prior results.

Now, we discuss the complete Sturm-Liouville equation{
−(b(t)y′(t))′ + q(t)y′(t) + r(t)y(t) = λg(t, y(t)), a.e. t ∈ [0, 1],
y′(1) = y′(0) = 0.

(4.3)

Assume that q(t), r(t) ∈ L∞[0,1], b(t) ∈ C1([0, 1]) satisfy meas{t ∈ [0, 1] : q(t) , 0} > 0, ess inf[0,1] b(t) > 0
and ess inf[0,1] r(t) > 0. By a simple calculation, we know that ker(Λ1) = R, iB1

π
2 ,

π
2
(0) = 0 and νB1

π
2 ,

π
2
(0) , 0.

Therefore, from Theorem 1.2 we immediately obtain Corollary 4.2.

Corollary 4.2. Assume that L1-Carathéodory function g : [0, 1] × R → R satisfies (G1). If there
exist c0 > 0, b0 > 0 and x0 ∈ R with c0

k0

√
2
s0
< |y0| <

b0

k0
√

2s̄0
, such that g satisfies (G2), then the

conclusion of Theorem 1.2 still holds true, where s̄0 = ess sup[0,1] {e
−Q(t)r(t)}, s0 = ess inf[0,1]{e−Q(t)r(t)},

and k0 = δ0(min{1, s0})
−1
2 .

Example 2. Let r(t) ∈ L∞[0,1] with supt∈[0,1] r(t) = 2, inft∈[0,1] r(t) = 1, and

g(t, y) =


t, y ≤ 1,
ty12, 1 < y ≤ 2,
t212, 2 < y ≤ 214,

th(y), 214 < y,
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where h(y) ≥ 0 is an arbitrary L1-Carathéodory function. We consider{
−y′′(t) + y′(t) + r(t)y(t) = λg(t, y(t)),
y′(1) = y′(0) = 0.

(4.4)

Clearly, s0 =
1
e , s̄0 = 2, k0 =

√
2e, and (G1) holds. Noticing that ker(Λ1) = R, put c0 =

1
2e , b0 =

214, y0 = 2, and we have 1
2e =

c0
k0

√
2
s0
< 2 = |y0| <

b0

k0
√

2s̄0
= 213
√

2e
,

∫ 1

0
sup|y|≤c0

∫ y

0
g(t, ξ)dξdt

c2
0

= e

<
2051
156e

=
2
∫ 1

0

∫ y0

0
g(t, ξ)dξdt

3s̄0k2
0|y0|

2

and ∫ 1

0
sup|y|≤b0

∫ y

0
g(t, ξ)dξdt

b2
0

=

1
2

(
1 + 213

13 −
1

13 + 212(214 − 2)
)

228

<
227

229 =
1
4
<

2051
312e

=

∫ 1

0

∫ y0

0
g(t, ξ)dξdt

3s̄0k2
0∥y0∥

2
L2

,

implying that (G2) holds. Hence, by a simple calculation and Corollary 4.2, we know that for each
µ ∈ ( 39e

4102(e−2) ,
1

8e(e−2) ), the problem (4.4) admits at least three positive solutions yi such that |yi| < 214 for
t ∈ [0, 1], i = 1, 2, 3.

Remark 5. Since the proof in Theorem 1.1 in [7] requires r(t) ∈ C([0, 1],R)), Theorem 1.1 in [7]
cannot be used to study Example 2. Moreover, since g(t, y) is not the autonomous case, we know that
Corollary 4.3 in [5] also cannot be used to study Example 2. These show that Corollary 4.2 improves
the prior results.

Next, we consider the following 1-dimensional mixed BVP:{
−y′′(t) + p(t)y(t) = λv(t, y), a.e. t ∈ [0, 1],
y′(1) = y(0) = 0,

(4.5)

where p(t) ∈ L∞[0,1]. By Remark 1 and a simple calculation, we know that iI1
0, π2

(π
2

4 ) = 0, νI1
0, π2

(π
2

4 ) , 0

and ker(Λ − π2

4 ) = {µ sin(π2 t) : µ ∈ R}. Set A0 =
π2

4 , p(t) = −π
2

4 + A(t). From Theorem 1.1, we have
Corollary 4.3.

Corollary 4.3. Assume that A(t) = p(t)+ π2

4 > 0 for t ∈ [0, 1], V(t, y) =
∫ y

0
v(t, ξ)dξ satisfies (H0), (H1),

and there exist three constants c0 > 0, b0 > 0 and µ0 ∈ R with c0
k

√
2
s < ∥y0∥L2 = ∥µ0 sin(π2 t)∥L2 <

b0

k
√

2s̄
,

such that (H2) holds. Then, the conclusion of Theorem 1.1 is still valid.

Remark 6. Since −π
2

4 < p(t) < 0 and p(t) ∈ L∞([0, 1],R) are allowed in Corollary 4.3, our result
generalizes Theorem 3.1 in [2]. Here is an example of Corollary 4.3 to illustrate its validity.
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Example 3. Consider problem (4.5). Let p(t) =
 −π2

8 , t ∈ [0, 1
2 ],

− π
2

16 , t ∈ ( 1
2 , 1],

and

V(t, y) =



ty, y ≤ 1,

t[ y11

11 +
10
11 ], 1 < y ≤ 2,

t[210y + 10(1−211)
11 ], 2 < y ≤ 220,

t[ 210

5×280 y5 + 232

5 +
10(1−211)

11 ], 220 < y.

Clearly, A(t) =
 π2

8 , t ∈ [0, 1
2 ],

3π2

16 , t ∈ (1
2 , 1],

and s = π2

8 , s̄ =
3π2

16 . For y ∈ Z, by

|y(t)| ≤ |
∫ t

0
y′(s)ds| ≤

(∫ 1

0
|y′(s)|2ds

) 1
2

,

we have
max
t∈[0,1]
|y(t)| ≤ ∥y∥,

which implies that δ0 = 1 and k = 1. Obviously, V(t, y) satisfies (H0) and (H1). By ker(Λ − A0) =
{µ sin(π2 t) : µ ∈ R}, taking µ0 = 2, c0 = 1 and b0 = 220, we have 4

π
= c0

k

√
2
s < ∥µ0 sin(π2 t)∥L2 =

√
2 <

b0

k
√

2s̄
= 222

π
√

6
,

∫ 1

0
sup|y|≤c0

V(t, y)dt

c2
0

=
1
2

<
240
√

3
11π2 <

80
81π2 ×

(
√

3)11

11

<
32
9π2

∫ 1

2
3

t
 (
√

3)11

11
+

10
11

 dt

<
32
9π2

∫ 1
3

0
2t sin(

π

2
t)dt +

∫ 1

1
3

t
 (2 sin(π2 t))11

11
+

10
11

 dt


=

2
∫ 1

0
V(t, y0)dt

3s̄k2∥µ0 sin(π2 t)∥L2

and ∫ 1

0
sup|y|≤b0

V(t, y)dt

b2
0

=

(
230 +

10(1−211)
11

) ∫ 1

0
tdt

241

<
1

211 <
120
√

3
11π2 <

∫ 1

0
V(t, y0)dt

3s̄k2∥µ0 sin(π2 t)∥L2
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showing that (1.6) and (1.7) of (H2) hold. After a simple calculation, from Corollary 4.3, we know that
for each µ ∈ ( 9π2

32
∫ 1

0 V(t,2 sin( π2 t)dt
, 1), the problem (4.5) has at least three nonnegative solutions yi such that

|yi| < 220 for all t ∈ [0, 1], i = 1, 2, 3.

Finally, we discuss the complete Sturm-Liouville equation{
−y′′ + y′ + r(t)y(t) = λg(t, y(t)), a.e. t ∈ [0, 1],
y(0) = y′(1) = 0,

(4.6)

where r(t) ∈ L∞([0, 1],R) with ess inf[0,1] r(t) > 0. By a simple calculation, we know that there exists
A0 > 0 such that iB1

0, π2
(A0) = 0, νB1

0, π2
(A0) , 0, where B1(t) = e−t. Thus, by Theorem 1.2, we obtain

Corollary 4.4.

Corollary 4.4. Assume that s0 = ess inf[0,1]{r(t)e−Q(t) + A0} > 0, and the function g : [0, 1] × R → R
is L1-Carathéodory and satisfies (G1). If there exist c0 > 0, b0 > 0 and y0 ∈ ker(Λ1 − A0) with
c0
k0

√
2
s0
< ∥y0∥L2 < b0

k0
√

2s̄0
, such that g satisfies (G2), then the conclusion of Theorem 1.2 still holds true,

where s̄0 = ess sup[0,1] {e
−Q(t)r(t) + A0}.

Remark 7. Since the proof in Theorem 4.1 in [2] requires r(t), g(t, y) ∈ C([0, 1],R)), Corollary 4.4 is
a new conclusion.

5. Conclusions

For the equilibrium problems of strings, columns, beams, etc. in mathematical physics, the
nonnegative solutions of the Neumann BVP and mixed BVP have played an important role. For the
Neumann BVP and mixed BVP, there are many works reported on the existence of three nonnegative
solutions. However, the conditions needed to obtain the results are relatively strong. In this paper, we
reconsider, in the framework of the Sturm-Liouville BVP for the non-autonomous Lagrangian
systems, these problems. With the aid of index theory, using Bonanno-Candito’s three critical point
theory, we give some new criteria to have at least three nonnegative solutions for the Sturm-Liouville
BVP. As some direct applications, we obtain the corresponding results for the Neumann BVP, mixed
BVP and the complete Sturm-Liouville equations meeting Sturm-Liouville BVC. The conditions of
the theorems in this paper are clearly weaker than those found in other papers. For more details, see
Examples 1–3 and Remarks 3–7 of this paper.
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