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Abstract: The degree of credibility of the fuzzy assessment value demonstrates its significance and
necessity in the fuzzy decision making problem. The fuzzy assessment values should be closely related
to their credibility measures in order to increase the credibility levels and degrees of fuzzy assessment
values. This will increase the abundance and the credibility of the assessment information. As a new
extension of the intuitionistic fuzzy concept, this study suggests the idea of an intuitionistic fuzzy
credibility number (IFCN). So, based on Dombi norms, we proposed some new operational laws for
intuitionistic fuzzy credibility numbers. Different intuitionistic fuzzy credibility aggregation operators
are defined using Dombi t-norm and t-conorm operations. i.e., intuitionistic fuzzy credibility Dombi
weighted averaging (IFCDWA), intuitionistic fuzzy credibility Dombi ordered weighted averaging
(IFCDOWA), intuitionistic fuzzy credibility Dombi hybrid weighted averaging (IFCDHWA) operators.
Next, we defined multiple criteria group decisions (MCGDM) approach. To ensure that their results are
reliable and applicable, we also gave an example of railway train selection and discussed comparative
result analysis.
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1. Introduction

The best tools for accurate reasoning, computing, and modeling are crisp, deterministic, and precise
in nature, where crisp is defined as a dichotomous, or dual logic statement, statement. Common dual
logic contains two true or false statements, in which the central term is disregarded [32]. Multi-attribute
group decision-making (MAGDM) system is one of the most important factors in the current research
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situation [8]. Using MAGDM, experts evaluate and select alternatives based on priorities. Taking a
chance on making that different decision must be taken into account [11]. The choice of robots for a
manufacturing facility is a MAGDM problem that requires non-programmed decision-making and a
lengthy period of contracting with the business. Many decision analysts, including those from the fields
of research, economics, development, and engineering, make up this type of decision-making group.
Actually, it may not be likely for a single decision maker to pay attention. The prominence of the
expert in the decision making (DM) process has the potential to change the outcome. The development
of a multi-functional team on purchasing the most efficient firms was impacted by the selection and
valuation of robots. The representation of the attribute value, which results from clear numbers, is a
crucial topic in DM. When the decision-maker has a choice, it can be challenging to demonstrate an
attribute using a crisp set. Fuzzy set theory can be useful in many contexts, including engineering,
management, and social sciences, to identify DM problems such as ambiguity and data imprecision.
The application of fuzzy set theory to DM problems is extremely important. The fuzzy set theory is
crucial for solving problems involving decision-making. In 1965, Zadeh [31] found a solution to this
problem when he defined the fuzzy set. It is observed that the notion of a negative membership degree
occasionally manifests, which is a crucial fact in organizing the entire suggested outcome and problem
design. Various fuzzy approaches [2, 14, 21, 22, 27] have been proposed and used for decision-making
and evaluation problems in the fuzzy environment in more recent times.

The IFS is presented in order of pairs which are considered by the membership of positive and
negative degree following the condition, that the addition of both the function is to be less than
or equal to one [17]. Additionally, a decision matrix with ambiguous assessments and a need for
human judgment is necessary. Decision-makers may provide fuzzy evaluation values with some
degree of credibility in relation to dissimilar attributes. Experts are more knowledgeable about some
characteristics, but not all of the requirements. When supposition occurs, three types of decision
responses take place: no, yes, and refusal. The most precise response in all of these cases is
“refusal”, which might not be possible using the usual fuzzy sets [31] and [1]. In [20], entropy for the
intuitionistic fuzzy sets is defined. To solve the DM problems based on IFS, Hung and Chen [9] also
created a TOPSIS method with entropy weight. Fuzzy multiple attribute GDM problems were studied
by Xu [23], where the attribute values are represented in IFNs and the attribute weights are provided
by the DMs in accordance with one or more of the various preference structures. The intuitionistic
fuzzy set has recently been widely used to solve decision-making problems [3, 4, 6, 15]. IFSs have
been discovered to be a very helpful tool for dealing with vagueness. Dombi’s t-norm and t-conorm,
two new operations with the operation of the parameters prioritized for variability, were introduced
in [5]. Liu [16] applied in Dombi operations to IFSs and introduced the MAGDM problem using
the Dombi Bonferroni mean operator in the context of IF information to take advantage of Dombi
operations. Huang et al. [12] design alternative assessment and selection: A novel Z-cloud rough
number-based BWM-MABAC model. Xiao et al. [24] defined a q-rung orthopair fuzzy decision-
making model with new score function and best-worst method for manufacturer selection. Huang et al.
[13] proposed failure mode and effect analysis Using T-Spherical fuzzy maximizing deviation and
combined comparison solution methods. Xiao [26] discussed an integrated risk assessment method
using Z-fuzzy clouds and generalized TODIM. Huang [10] developed an assessment and prioritization
method of key engineering characteristics for complex products based on cloud rough numbers.

However, due to the haziness and uncertainty of human cognition and judgments for challenging
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MADM problems, existing fuzzy MADM methods only indicates fuzzy assessment values and lack
the degrees of credibility regarding the fuzzy assessment values in the appropriate assessment of
alternatives over attributes. In uncertain and ambiguous contexts, human subjective assessments and
judgments are typically at the heart of MADM difficulties. Therefore, decision-makers or experts may
provide fuzzy evaluation values using varying degrees of credibility with respect to certain attributes
when they may be more familiar with some traits but not so much with others. For instance, in some
article review systems, each expert or reviewer is obliged to provide his or her overall evaluation of
a paper and the appropriate credibility degree or level, ranging from 1 to 10. Assume that due to any
inadequacy, ambiguity, or uncertainty in the expert’s knowledge and/or experience, the expert specifies
6 (equal to the fuzzy evaluation value of 0.6) and 9 (corresponding to the credibility degree/level
of 0.9). In order to increase the credibility of his or her overall assessment of the text, it is clear
that the fuzzy assessment value of 0.6 is closely related to the credibility degree of 0.9 in the pair of
fuzzy values (0.6, 0.9). The classical fuzzy and intuitionistic fuzzy concept in [17] cannot convey the
information of the pair of fuzzy and intuitionistic fuzzy values since it simply indicates a fuzzy degree
without taking into account its credibility degree (0.6, 0.9). Then, they suggest in-depth familiarity
with the geology, which is frequently ambiguous, complex, and uncertain in terms of the structural and
material characteristics of mineral deposits. In the meantime, designers and decision-makers could
lack some expertise and understanding when evaluating slope design schemes based on certain indices
or features. Because human judgments might not be totally accurate and trustworthy in ambiguous
and unpredictable contexts, they not only provide fuzzy evaluation values, but also indicate their
credibility degrees to maintain credibility levels/degrees of the fuzzy evaluation values. In order to
increase the quantity and credibility of the assessment information, the intuitionistic fuzzy evaluation
values in uncertain and ambiguous situations should be correlated to their credibility levels/degrees.
As a new extension of the intuitionistic fuzzy concept, this study suggests the idea of a intuitionistic
fuzzy credibility number (IFCN), where a intuitionistic fuzzy value and a credibility degree are both
expressed by a pair of intuitionistic fuzzy values.

Ye et al. [30] discussed these issues in detail in the new concept known as the fuzzy credibility set
(FCS). Qiyas et al. [18] studied decision support system using fuzzy credibility Dombi aggregation
operators and modified TOPSIS method. Yahya et al. [29] developed an analysis of S-box using image
encryption application and complex fuzzy credibility Frank AOs. Yahya et al. [28] discussed analysis
of medical diagnosis based on fuzzy credibility Dombi Bonferroni mean operator. Qiyas et al. [19]
defined extended GRA method for MCGDM problem based on fuzzy credibility geometric aggregation
operator.

The novelty and new contributions in this paper are summarized below:
(1). The proposed new concept of IFCN based on the hybrid information on the intuitionistic

fuzzy values and degree of credibility can make the information expression more credible and more
reasonable.

(2). The operations and score function of IFCNs and the intuitionistic fuzzy credibility averaging
and geometric operators of IFCNs can provide useful mathematical tools for the modeling of MAGDM
problems with IFCN information.

(3). To determine the verity of the proposed approach with the help of an example by using the
defined operators to determine the consistency and validity of the defined approach.

(4). The proposed MAGDM method not only solves the MAGDM problem with IFCNs, but also
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makes the decision process more credible and more effective.
(5). To demonstrate the benefits of the suggested method, the mathematical manifestations of the

determined operators are discussed.
(6). To determine the comparative analysis of the proposed operators by using some existing

operators.
The paper is designed as follows: Preliminaries contained some basic definition of FS, IFS, FCN and

some new operational laws of IFCNs. In Section 3, we defined intuitionistic fuzzy credibility Dombi
weighted averaging (IFCDWA), intuitionistic fuzzy credibility Dombi ordered weighted averaging
(IFCDOWA), intuitionistic fuzzy credibility Dombi hybrid averaging (IFCDHWA) operators. In
Section 4, we proposed intuitionistic fuzzy credibility Dombi weighted geometric (IFCDWG),
intuitionistic fuzzy credibility Dombi ordered weighted geometric (IFCDOWG), intuitionistic fuzzy
credibility Dombi hybrid geometric (IFCDHWG) operators. In Section 5, we utilized defined operators
and proposed MAGDM approach. In Section 6, effects of parameters the decision-making results are
analyzed. Finally, in Section 7, we have placed a conclusion.

2. Preliminaries

The basic concepts about the FS, IFS and FCNs are presented in this section, which will be useful
in certain studies.

Definition 2.1. [31] Suppose N be a universal set. A fuzzy set< of N is given by:

< = {(〈ř, µ< (ř))〉 |ř ∈ N}, (2.1)

where µ<(ř) : N→ [0, 1] be the membership function of<.
Definition 2.2. [1] Let N be a universal set. Then, an IFS< on set N is given as:

< = {〈(ř, µ< (ř) , υ<(ř)〉 |ř ∈ N}, (2.2)

in which µ< (ř) : N → [0, 1] and υ<(ř) : N → [0, 1] show the MG and NMG of an alternative
ř ∈ N with the condition 0 ≤ µ2

<
+ υ2

<
(ř) ≤ 1. Furthermore, the hesitation index is given by π<(ř) =

1 − µ< (ř) − υ<(ř).
Definition 2.3. [30] Let N be a universal set. Then, a FCNs on N is defined as:

= = {(ř, µ=(ř), φ=(ř)|ř ∈ N}, (2.3)

for all µ= : N → [0, 1] , φ= : N → [0, 1], are the membership degree of the element ř to N and the
degree of credibility related to µı̂(ř) respectively. Then, the pair (µ=(ř), φ=(ř)) is the FCN, such that
µ=(ř) ∈ [0, 1] , φ=(ř) ∈ [0, 1].

Definition 2.4. [30] Let =1 = (µ1, φ1) and =2 = (µ2, φ2) are two fuzzy credibility numbers. Then,
the basic relations are the following:

(1). =c
1 =

(〈
1 − µ=1(ř)

〉
,
〈
1 − φ=1(ř)

〉)
;

(2). =1 ∩ =2 =
(〈
µ=1(ř) ∧ µ=2(ř)

〉
,
〈
φ=1(ř) ∧ φ=2(ř)

〉)
;

(3). =1 ∪ =2 =
(〈
µ=1(ř) ∨ µ=2(ř)

〉
,
〈
φ=1(ř) ∨ φ=2(ř)

〉)
;

(4). =1 ⊕ =2 = (
〈
µ=1(ř) + µ=2(ř) − µ=1(ř)µ=2(ř)

〉
,
〈
φ=1(ř) + φ=2(ř) − φ=1(ř)φ=2(ř)

〉
);

(5). =1 ⊗ =2 = (
〈
µ=1(ř)µ=2(ř)

〉
,
〈
φ=1(ř)φ=2(ř)

〉
);
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(6). ψ=1 = (
〈
1 − (1 − µ1(ř)ψ

〉
,
〈
1 − (1 − φ1(ř)ψ

〉
);

(7). =ψ1 = (µ1(ř)ψ, φ1(ř)ψ).
Definition 2.5. [5] Let x and y are two numbers from real number R, i.e., x, y ∈ R. Then, Dombi’s

t-norm and t-conorm are defined with the assistance of an expression such that,

Dom(x, y) =
1

1 +
{(

1−x
x

)$
+

(
1−y

y

)$}1/$ , (2.4)

DomC(x, y) = 1 −
1

1 +
{(

x
1−x

)$
+

(
y

1−y

)$}1/$ ,

where, $ � 1 and (x, y) ∈ [0, 1] ∗ [0, 1].

2.1. Intuitionistic fuzzy credibility number

Definition 2.6. Let N be a universal set. Then, the IFCNs on N is defined as:

= = {(ř, (〈µ=(ř), φ=(ř)〉 , 〈υ=(ř), ϕ=(ř)〉) |ř ∈ N}, (2.5)

where the function µ=(ř), φ=(ř), υ=(ř), ϕ=(ř) : N → [0, 1] , are the MD and NMD of the
element ř to N and the degree of credibility related to µ=(ř), υ=(ř) respectively. Then, the pair
(〈µ=(ř), φ=(ř)〉 , 〈υ=(ř), ϕ=(ř)〉) is the IFCN, such that µ=(ř), υ=(ř), φ=(ř), ϕ=(ř) ∈ [0, 1], and satisfies
the condition 0 ≤ µ=(ř) + φ=(ř) ≤ 1, 0 ≤ υ=(ř) + ϕ=(ř) ≤ 1.

Definition 2.7. [30] Let =1 =
(〈
µ=1(ř), φ=1(ř)

〉
,
〈
υ=1(ř), ϕ=1(ř)

〉)
and =2 =(〈

µ=2(ř), φ=2(ř)
〉
,
〈
υ=2(ř), ϕ=2(ř)

〉)
are two fuzzy credibility numbers. Then, their relation are

defined as follows:
(1). =c

1 =
(〈(

1 − µ=1(ř)
)
,
(
1 − φ=1(ř)

)〉
,
〈
1 − υ=1(ř),

(
1 − ϕ=1(ř)

)〉)
;

(2). =1 ∩ =2 =
(〈(
µ=1(ř) ∧ µ=2(ř)

)
,
(
φ=1(ř) ∧ φ=2(ř)

)〉
,
〈(
υ=1(ř) ∧ υ=2(ř)

)
,
(
ϕ=1(ř) ∧ ϕ=2(ř)

)〉)
;

(3). =1 ∪ =2 =
(〈(
µ=1(ř) ∨ µ=2(ř)

)
,
(
φ=1(ř) ∨ φ=2(ř)

)〉
,
〈(
υ=1(ř) ∨ υ=2(ř)

)
,
(
ϕ=1(ř) ∨ ϕ=2(ř)

)〉)
;

(4). =1 ⊕ =2 =

( 〈(
µ=1(ř) + µ=2(ř) − µ=1(ř)µ=2(ř)

)
,
(
φ=1(ř) + φ=2(ř) − φ=1(ř)φ=2(ř)

)〉
,〈(

υ=1(ř)υ=2(ř)
)
,
(
ϕ=1(ř)ϕ=2(ř)

)〉 )
;

(5). =1 ⊗ =2 =

( 〈(
µ=1(ř)µ=2(ř)

)
,
(
φ=1(ř)φ=2(ř)

)〉〈(
υ=1(ř) + υ=2(ř) − υ=1(ř)υ=2(ř)

)
,
(
ϕ=1(ř) + ϕ=2(ř) − ϕ=1(ř)ϕ=2(ř)

)〉
,

)
;

(6). ψ=1 = (
〈(

1 − (1 − µ1(ř)ψ
)
,
(
1 − (1 − φ1(ř)ψ

)〉
,
〈
υ1(ř)ψ, ϕ1(ř)ψ

〉
);

(7). =ψ1 =
(
µ1(ř)ψ, φ1(ř)ψ,

〈(
1 − (1 − υ1(ř)ψ

)
,
(
1 − (1 − ϕ1(ř)ψ

)〉)
.

Definition 2.8. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
be a IFCNs. Then, the score function

S (=ı̂) are described:

S (=ı̂) = [µ=ı̂(ř) − φ=ı̂(ř) − υ=ı̂(ř) − ϕ=ı̂(ř)]/4, where =ı̂ ∈ [−1, 1]. (2.6)

Definition 2.9. Let we have two IFCNs =1 =
(〈
µ=1(ř), φ=1(ř)

〉
,
〈
υ=1(ř), ϕ=1(ř)

〉)
and =2 =(〈

µ=2(ř), φ=2(ř)
〉
,
〈
υ=2(ř), ϕ=2(ř)

〉)
, $ � 1,ψ � 0. Then, Dombi’s t-norm and t-conorm operation of

IFCNs are defined as follows:

(1). =1 ⊕ =2 =



1 − 1

1+

{(
µ1

1−µ1

)$
+

(
µ2

1−µ2

)$}1/$ , 1 − 1

1+

{(
φ1

1−φ1

)$
+

(
φ2

1−φ2

)$}1/$

 , 1

1+

{(
1−υ1
υ1

)$
+

(
1−υ2
υ2

)$}1/$ ,
1

1+

{(
1−ϕ1
ϕ1

)$
+

(
1−ϕ2
ϕ2

)$}1/$




;
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(2). =1 ⊗ =2 =



 1

1+

{(
1−µ1
µ1

)$
+

(
1−µ2
µ2

)$}1/$ ,
1

1+

{(
1−φ1
φ1

)$
+

(
1−φ2
φ2

)$}1/$

 ,1 − 1

1+

{(
υ1

1−υ1

)$
+

(
υ2

1−υ2

)$}1/$ , 1 − 1

1+

{(
ϕ1

1−ϕ1

)$
+

(
ϕ2

1−ϕ2

)$}1/$




;

(3). ψ.=1 =



1 − 1

1+

{
ψ
(

µ1
1−µ1

)$}1/$ , 1 − 1

1+

{
ψ
(

φ1
1−φ1

)$}1/$

 , 1

1+

{
ψ
(

1−υ1
υ1

)$}1/$ ,
1

1+

{
ψ
(

1−ϕ1
ϕ1

)$}1/$




;

(4). =ψ1 =



 1

1+

{
ψ
(

1−µ1
µ1

)$}1/$ ,
1

1+

{
ψ
(

1−φ1
φ1

)$}1/$

 ,1 − 1

1+

{
ψ
(

υ1
1−υ1

)$}1/$ , 1 − 1

1+

{
ψ
(

ϕ1
1−ϕ1

)$}1/$




.

Theorem 2.1. Let =1 =
(〈
µ=1(ř), φ=1(ř)

〉
,
〈
υ=1(ř), ϕ=1(ř)

〉)
and =2 =(〈

µ=2(ř), φ=2(ř)
〉
,
〈
υ=2(ř), ϕ=2(ř)

〉)
, be two IFCNs. Then, we have the following equations:

(1). =1 ⊕ =2 = =2 ⊕ =1;
(2). =1 ⊗ =2 = =2 ⊗ =1;
(3). ψ(=1 ⊕ =2) = ψ=1 ⊕ ψ=2, ψ � 0;
(4). (=1 ⊗ =2)ψ = =

ψ
1 ⊗ =

ψ

2;
(5). ψ1= ⊕ ψ2= = (ψ1 ⊕ ψ2)=;
(6). =ψ1 ⊗ =ψ2 = =(ψ1⊗ψ2).

Proof. Proof is obvious.

3. Intuitionistic fuzzy credibility Dombi averaging operators

In this section, using the above operational laws, we proposed IFC Dombi averaging operators.

3.1. Intuitionistic fuzzy credibility Dombi weighted averaging operator

Definition 3.1. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be IFCNs. Then,

intuitionistic fuzzy credibility Dombi weighted average (IFCDWA) operator is a mapping =n → =,

such that:

IFCDWA%(=1,=2, ...,=n) =

n⊕
ı̂=1

(%ı̂=ı̂), (3.1)

where % = (%1, %2, ..., %n)T are the weight vector of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1.

Theorem 3.1. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be the set of IFCNs. Then,

the aggregated value by using the intuitionistic fuzzy credibility Dombi weighted averaging (IFCDWA)

AIMS Mathematics Volume 8, Issue 3, 6520–6542.



6526

operator is also a IFCNs, defined as:

IFCDWA%(=1,=2, ...,=n) =
n⊕̂
ı=1

(%ı̂=ı̂)

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




,

(3.2)

where % = (%1, %2, ..., %n)T be the weight vector of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1.

Proof. This theorem is proved by using mathematical induction principle:

Let n = 2, bases on the operations of IFCNs, we get result in left hand side

IFCDWA%(=1,=2) = =1 ⊕ =2

=
(〈
µ=1(ř), φ=1(ř)

〉
,
〈
υ=1(ř), ϕ=1(ř)

〉)
⊕

(〈
µ=2(ř), φ=2(ř)

〉
,
〈
υ=2(ř), ϕ=2(ř)

〉)
.

For right hand side we get



1 − 1

1+

{(
µ1

1−µ1

)$
+

(
µ2

1−µ2

)$}1/$ , 1 − 1

1+

{(
φ1

1−φ1

)$
+

(
φ2

1−φ2

)$}1/$

 , 1

1+

{(
1−υ1
υ1

)$
+

(
1−υ2
υ2

)$}1/$ ,
1

1+

{(
1−ϕ1
ϕ1

)$
+

(
1−ϕ2
ϕ2

)$}1/$




=



1 − 1

1+

{∑2
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑2
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑2
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑2
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




show that it is true for n = 2.

Now, for n = k, we have

IFCDWA%(=1,=2, ...,=k) =
n⊕̂
ı=1

(%ı̂=ı̂)

=



1 − 1

1+

{∑k
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑k
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑k
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑k
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




.
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For n = k + 1, then we have,

IFCDWA%(=1,=2, ...,=k,=k+1) =
n⊕̂
ı=1

(%ı̂=ı̂) ⊕ (%k+1=k+1)

=



1 − 1

1+

{∑k
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑k
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑k
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑k
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




⊕



1 − 1

1+

{
%ı̂

(
µk+1

1−µk+1

)$}1/$ , 1 − 1

1+

{
%ı̂

(
φk+1

1−φk+1

)$}1/$

 , 1

1+

{
%ı̂

(
1−υk+1
υk+1

)$}1/$ ,
1

1+

{
%ı̂

(
1−ϕk+1
ϕk+1

)$}1/$





=



1 − 1

1+

{∑k+1
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑k+1
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑k+1
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑k+1
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




.

Thus, the result is true for n = k + 1. As a result of the above proof, it is clear that it is true for any
value of n.

Theorem 3.2. (Idempotency). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
be a set of IFCNs are all

identical where (ı̂ = 1, ..., n) such as =ı̂ = =, ∀ı̂. Then,

IFCDWA%(=1,=2, ...,=n) = =. (3.3)

Proof. Since, =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
= =, where (ı̂ = 1, ..., n). Then, we have,

IFCDWA%(=1,=2, ...,=ı̂) =
n⊕̂
ı=1

(%ı̂=ı̂)

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




=


(
1 − 1

1+
{(

µ
1−µ

)$}1/$ , 1 − 1

1+
{(

φ
1−φ

)$}1/$

)
,(

1
1+{( 1−υ

υ )$}1/$
, 1

1+
{( 1−ϕ

ϕ

)$}1/$

)


=


(
1 − 1

1+
µ

1−µ
, 1 − 1

1+
φ

1−φ

)
,(

1
1+ 1−υ

υ

, 1
1+

1−ϕ
ϕ

)


= (〈µ=(ř), φ=(ř)〉 , 〈υ=(ř), ϕ=(ř)〉)
= =,
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thus, IFCDWA%(=1,=2, ...,=n) = =, holds.
Theorem 3.3. (Boundedness). Suppose =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set

of IFCNs and =− = min(=1,=2, ...,=n) and =+ = max(=1,=2, ...,=n). Then,

=− ≤ IFCDWA%(=1,=2, ...,=ı̂) ≤ =+. (3.4)

Proof. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a number of IFCNs. Let

=− = min(=1,=2, ...,=ı̂) =
(〈
µ−
=ı̂

(ř), φ−
=ı̂

(ř)
〉
,
〈
υ−
=ı̂

(ř), ϕ−
=ı̂

(ř)
〉)

and =+ = max(=1,=2, ...,=n) =(〈
µ+
=ı̂

(ř), φ+
=ı̂

(ř)
〉
,
〈
υ+
=ı̂

(ř), ϕ+
=ı̂

(ř)
〉)
. We have, µ−

=ı̂
(ř) = min

ı̂
(µ=ı̂(ř)), φ−

=ı̂
(ř) = min

ı̂
(φ=ı̂(ř)), υ−

=ı̂
(ř) =

max
ı̂

(υ=ı̂(ř)), ϕ−
=ı̂

(ř) = max
ı̂

(ϕ=ı̂(ř)) and µ+
=ı̂

(ř) = max
ı̂

(µ=ı̂(ř)), φ+ = max
ı̂

(φ=ı̂(ř)), υ+
=ı̂

(ř) =

min
ı̂

(υ=ı̂(ř)), ϕ+
=ı̂

(ř) = min
ı̂

(ϕ=ı̂(ř)). Hence, we have the subsequent inequalities,

1 − 1

1+

∑n
ı̂=1 %ı̂

 µ−
=ı̂

(ř)

1−µ−
=ı̂

(ř)

$


1/$ ≤ 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µ=ı̂

(ř)

1−µ=ı̂
(ř)

)$}1/$ ≤ 1 − 1

1+

∑n
ı̂=1 %ı̂

 µ+
=ı̂

(ř)

1−µ+
=ı̂

(ř)

$


1/$ ,

1 − 1

1+

∑n
ı̂=1 %ı̂

 φ−
=ı̂

(ř)

1−φ−
=ı̂

(ř)

$


1/$ ≤ 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φ=ı̂

(ř)

1−φ=ı̂
(ř)

)$}1/$ ≤ 1 − 1

1+

∑n
ı̂=1 %ı̂

 φ+
=ı̂

(ř)

1−φ+
=ı̂

(ř)

$


1/$ ,

1

1+

∑n
ı̂=1 %ı̂

 1−υ−
=ı̂

(ř)

υ−
=ı̂

(ř)

$


1/$ ≤
1

1+

{∑n
ı̂=1 %ı̂

(
1−υ=ı̂

(ř)

υ=ı̂
(ř)

)$}1/$ ≤
1

1+

∑n
ı̂=1 %ı̂

 1−υ+
=ı̂

(ř)

υ+
=ı̂

(ř)

$


1/$ ,

1

1+

∑n
ı̂=1 %ı̂

 1−ϕ−
=ı̂

(ř)

ϕ−
=ı̂

(ř)

$


1/$ ≤
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕ=ı̂

(ř)

ϕ=ı̂
(ř)

)$}1/$ ≤
1

1+

∑n
ı̂=1 %ı̂

 1−ϕ+
=ı̂

(ř)

ϕ+
=ı̂

(ř)

$


1/$ .

Therefore,
=− ≤ IFCDWA%(=1,=2, ...,=n) ≤ =+.

Theorem 3.4. (Monotonicity). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
and =∗ı̂ =(〈

µ∗
=ı̂

(ř), φ∗
=ı̂

(ř)
〉
,
〈
υ∗
=ı̂

(ř), ϕ∗
=ı̂

(ř)
〉)

(ı̂ = 1, ..., n) be a number of IFCNs, if =ı̂ ≤ =
′

ı̂, for all ı̂. Then,

IFCDWA%(=1,=2, ...,=n) ≤ IFCDWA%(=
′

1,=
′

2, ...,=
′

n). (3.5)

Proof. Since, it’s given µ=ı̂(ř) ≤ µ∗
=ı̂

(ř), φ=ı̂(ř) ≤ φ∗
=ı̂

(ř), υ=ı̂(ř) ≤ υ∗
=ı̂

(ř) and ϕ=ı̂(ř) ≤ ϕ∗
=ı̂

(ř) for all ı̂.
Then,

1 − µ∗
=ı̂

(ř) ≤ 1 − µ=ı̂(ř)
n∏
ı̂=1

(
1 − µ=ı̂(ř)

)%ı̂ ≤ 1 −
n∏
ı̂=1

(
1 − µ∗

=ı̂
(ř)

)%ı̂
=⇒

1 − n∏
ı̂=1

(
1 − µ=ı̂(ř)

)%ı̂ ≤ 1 − n∏
ı̂=1

(
1 − µ∗

=ı̂
(ř)

)%ı̂ ,
and

1 − φ∗
=ı̂

(ř) ≤ 1 − φ=ı̂(ř)
n∏
ı̂=1

(
1 − φ=ı̂(ř)

)%ı̂ ≤ 1 −
n∏
ı̂=1

(
1 − φ∗

=ı̂
(ř)

)%ı̂
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=⇒

1 − n∏
ı̂=1

(
1 − φ=ı̂(ř)

)%ı̂ ≤ 1 − n∏
ı̂=1

(
1 − φ∗

=ı̂
(ř)

)%ı̂ .
Similarly, we can show that υ=ı̂(ř) ≤ υ∗

=ı̂
(ř) and ϕ=ı̂(ř) ≤ ϕ∗

=ı̂
(ř). Thus, we obtain

1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$





≤



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µ∗
ı̂

1−µ∗
ı̂

)$}1/$ , 1 − 1

1+

{∑k+1
ı̂=1 %ı̂

(
φ∗
ı̂

1−φ∗
ı̂

)$}1/$

 , 1

1+

{∑k+1
ı̂=1 %ı̂

(
1−υ∗

ı̂
υ∗
ı̂

)$}1/$ ,
1

1+

{∑k+1
ı̂=1 %ı̂

(
1−ϕ∗

ı̂
ϕ∗
ı̂

)$}1/$




.

Hence, from the above equation we prove that, IFCDWA
(
=1, ...,=n

)
≤ IFCDWA

(
=∗1, ...,=

∗
n

)
.

3.2. Intuitionistic fuzzy credibility Dombi ordered weighted averaging operator

Definition 3.2. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then, the

intuitionistic fuzzy credibility Dombi ordered weighted averaging (IFCDOWA) operator of dimension
n is a function IFCDOWA : =n → =, such as

IFCDOWA%(=1,=2, ...,=n) =

n⊕
ı̂=1

(%ı̂=τ(ı̂)), (3.6)

where % = (%1, %2, ..., %n)T be the corresponding weight vector of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and∑n
ı̂=1 %ı̂ = 1, and the permutation (τ(1), ..., τ(n)) of (ı̂ = 1, ..., n), for which =τ(ı̂−1) ≥ =τ(ı̂)∀ı̂ = 1, ..., n.
Theorem 3.5. Let =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then,

intuitionistic fuzzy credibility Dombi ordered weighted averaging (IFCDOWA) operator of dimension
n and mapping IFCDOWA : =n → =, such that

IFCDOWA%(=1,=2, ...,=n) =
n⊕̂
ı=1

(%ı̂=τ(ı̂))

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µτ(ı̂)

1−µτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φτ(ı̂)

1−φτ(ı̂)

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υτ(ı̂)
υτ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕτ(ı̂)
ϕτ(ı̂)

)$}1/$




,

(3.7)

with the corresponding weight vector % = (%1, %2, ..., %n)T of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1,

and the permutation (τ(1), ..., τ(n)) of (ı̂ = 1, ..., n), for which =τ(ı̂−1) ≥ =τ(ı̂)(ı̂ = 1, ..., n).
Theorem 3.6. (Idempotency). Let =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) are identical,

i.e., =ı̂ = =, for all n. Then,
IFCDOWA%(=1,=2, ...,=n) = =. (3.8)
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Theorem 3.7. (Boundedness). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a number

of IFCNs and =− = min(=1,=2, ...,=n) and =+ = max(=1,=2, ...,=n). Then,

=− ≤ IFCDOWA%(=1,=2, ...,=n) ≤ =+. (3.9)

Theorem 3.8. (Monotonicity). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a number

of IFCNs, if =ı̂ ≤ =
′

ı̂ for all ı̂. Then,

IFCDOWA%(=1,=2, ...,=n) ≤ IFCDOWA%(=
′

1,=
′

2, ...,=
′

n). (3.10)

3.3. Intuitionistic fuzzy credibility Dombi hybrid weighted averaging operator

Definition 3.3. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then, the

intuitionistic fuzzy credibility Dombi hybrid weighted averaging (IFCDHWA) operator of dimension
n and function IFCDHWA : =n → = with correlated weight vector % = (%1, %2, ..., %n)|%ı̂ � 0 and∑n
ı̂=1 %ı̂ = 1. Therefore, IFCDHWA operator can be evaluated as:

IFCDHWA%(=1,=2, ...,=n) =
n⊕̂
ı=1

(%ı̂=∗τ(ı̂))

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µ∗τ(ı̂)

1−µτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φ∗
τ(ı̂)

1−φτ(ı̂)

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υ∗

τ(ı̂)
υ∗
τ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕ∗

τ(ı̂)
ϕ∗
τ(ı̂)

)$}1/$




,

(3.11)

where % = (%1, %2, ..., %n)T be the corresponding weight vector of =ı̂(ı̂ = 1, ..., n)|%ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1,

and =τ(ı̂) is the ı̂th biggest weighted intuitionistic fuzzy credibility values =∗ı̂ (=
∗
ı̂ = nwı̂=ı̂, ı̂ = 1, ..., n)

and w = (w1,w2, ...,wn)T be the weight vector of =ı̂ with wı̂ � 0 and
∑n
ı̂=1 wı̂ = 1, where the balancing

coefficient is n.

4. Intuitionistic fuzzy credibility Dombi geometric operators

In this section, using the above operational laws, we proposed IFC Dombi geometric operators.

4.1. Intuitionistic fuzzy credibility Dombi weighted geometric operator

Definition 4.1. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a IFCNs. Then, the

intuitionistic fuzzy credibility Dombi weighted geometric (IFCDWG) operator is a mapping =n → =,

such as:

IFCDWG%(=1,=2, ...,=n) =

n⊗
ı̂=1

(=ı̂)%ı̂ , (4.1)

where % = (%1, %2, ..., %n)T be the weight vector of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1.

Theorem 4.1. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be the set of IFCNs. Then, the

aggregated value by using the intuitionistic fuzzy credibility Dombi weighted geometric (IFCDWG)
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operator is also a IFCNs, defined as:

IFCDWG%(=1,=2, ...,=n) =
n⊗̂
ı=1

(=ı̂)%ı̂

=



 1

1+

{∑n
ı̂=1 %ı̂

(
1−µı̂
µı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−φı̂
φı̂

)$}1/$

 ,1 − 1

1+

{∑n
ı̂=1 %ı̂

(
υı̂

1−υı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
ϕı̂

1−ϕı̂

)$}1/$

 ,


(4.2)

where % = (%1, %2, ..., %n)T be the weight vector of %ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1.

Proof. Proof is same as the proof of the Theorem (3.1) .
Theorem 4.2. (Idempotency). Let =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
be a set of IFCNs are all

identical where (ı̂ = 1, ..., n) such as =ı̂ = =, for all ı̂. Then,

IFCDWG%(=1,=2, ...,=n) = =. (4.3)

Theorem 4.3 (Boundedness). Suppose =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set

of IFCNs and =− = min(=1,=2, ...,=n) and =+ = max(=1,=2, ...,=n). Then,

=− ≤ ı̂FCDWG%(=1,=2, ...,=ı̂) ≤ =+. (4.4)

Theorem 4.4. (Monotonicity). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
and =∗ı̂ =(〈

µ∗
=ı̂

(ř), φ∗
=ı̂

(ř)
〉
,
〈
υ∗
=ı̂

(ř), ϕ∗
=ı̂

(ř)
〉)

(ı̂ = 1, ..., n) be a number of IFCNs, if =ı̂ ≤ =
′

ı̂, for all ı̂. Then,

IFCDWG%(=1,=2, ...,=n) ≤ IFCDWG%(=
′

1,=
′

2, ...,=
′

n). (4.5)

4.2. Intuitionistic fuzzy credibility Dombi ordered weighted geometric operator

Definition 4.2. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then, the

intuitionistic fuzzy credibility Dombi ordered weighted geometric (IFCDOWG) operator of dimension
n is a mapping IFCDOWG : =n → =, such as

IFCDOWG%(=1,=2, ...,=n) =

n⊗
ı̂=1

(=ı̂)%ı̂ , (4.6)

where % = (%1, %2, ..., %n)T be the corresponding weight vector of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and∑n
ı̂=1 %ı̂ = 1, and the permutation (τ(1), ..., τ(n)) of (ı̂ = 1, ..., n), for which =τ(ı̂−1) ≥ =τ(ı̂)∀ı̂ = 1, ..., n.
Theorem 4.5. Let =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then,

intuitionistic fuzzy credibility Dombi ordered weighted geometric (IFCDOWG) operator of dimension
n and mapping IFCDOWG : =n → =, such that

IFCDOWG%(=1,=2, ...,=n) =
n⊗̂
ı=1

(=τ(ı̂))%ı̂

=



 1

1+

{∑n
ı̂=1 %ı̂

(
1−µτ(ı̂)
µτ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−φτ(ı̂)
φτ(ı̂)

)$}1/$

 ,1 − 1

1+

{∑n
ı̂=1 %ı̂

(
υτ(ı̂)

1−υτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
ϕτ(ı̂)

1−ϕτ(ı̂)

)$}1/$




,

(4.7)
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with the corresponding weight vector % = (%1, %2, ..., %n)T of =ı̂(ı̂ = 1, ..., n) with %ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1,

and the permutation (τ(1), ..., τ(n)) of (ı̂ = 1, ..., n), for which =τ(ı̂−1) ≥ =τ(ı̂)(ı̂ = 1, ..., n).
Theorem 4.6 (Idempotency). Let =ı̂ =

(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) are identical,

i.e., =ı̂ = =, for all n. Then,
IFCDOWG%(=1,=2, ...,=n) = =. (4.8)

Theorem 4.7. (Boundedness). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a number

of IFCNs and =− = min(=1,=2, ...,=n) and =+ = max(=1,=2, ...,=n). Then,

=− ≤ IFCDOWG%(=1,=2, ...,=n) ≤ =+. (4.9)

Theorem 4.8. (Monotonicity). Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a number

of IFCNs, if =ı̂ ≤ =
′

ı̂ for all ı̂. Then,

IFCDOWG%(=1,=2, ...,=n) ≤ IFCDOWG%(=
′

1,=
′

2, ...,=
′

n). (4.10)

4.3. Intuitionistic fuzzy credibility Dombi hybrid weighted geometric operator

Definition 4.3. Let =ı̂ =
(〈
µ=ı̂(ř), φ=ı̂(ř)

〉
,
〈
υ=ı̂(ř), ϕ=ı̂(ř)

〉)
(ı̂ = 1, ..., n) be a set of IFCNs. Then, the

intuitionistic fuzzy credibility Dombi hybrid weighted geometric (IFCDHWG) operator of dimension
n and mapping IFCDHWG : =n → = with correlated weight vector % = (%1, %2, ..., %n)|%ı̂ � 0 and∑n
ı̂=1 %ı̂ = 1. Therefore, IFCDHWG operator can be evaluated as:

IFCDHWG%(=1,=2, ...,=n) =
n⊗̂
ı=1

(
=∗τ(ı̂)

)%ı̂

=



 1

1+

{∑n
ı̂=1 %ı̂

(
1−µ∗

τ(ı̂)
µ∗
τ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−φ∗

τ(ı̂)
φ∗
τ(ı̂)

)$}1/$

 ,1 − 1

1+

{∑n
ı̂=1 %ı̂

(
υ∗τ(ı̂)

1−υτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
ϕ∗
τ(ı̂)

1−ϕτ(ı̂)

)$}1/$

 ,


,

(4.11)

with the corresponding weight vector % = (%1, %2, ..., %n)T of =ı̂(ı̂ = 1, ..., n)|%ı̂ � 0 and
∑n
ı̂=1 %ı̂ = 1,

and =τ(ı̂) is the ı̂th biggest weighted intuitionistic fuzzy credibility values =∗ı̂ (=
∗
ı̂ =

(
=ı̂

)nwı̂ , ı̂ = 1, ..., n)
and w = (w1,w2, ...,wn)T be the weight vector of =ı̂ with wı̂ � 0 and

∑n
ı̂=1 wı̂ = 1, where the balancing

coefficient is n.

5. MAGDM approach for intuitionistic fuzzy credibility numbers

In this section, we defined an approach to solve a MAGDM problem of intuitionistic fuzzy
credibility information. The problems of MAGDM can also be addressed in the decision matrix
form where the columns and rows represents the attributes and alternatives respectively. That’s
why, decision-matrix (DM) is represented by Dn×m. A set

(
=1,=2, ...,=n

)
is considered which

represents n alternatives and (C1,C2, ...,Cm) represents m criteria/attributes. % j ∈ [0, 1] be the
known weight vector of m criteria/attributes such that

∑m
j=1 C j = 1. Suppose D(k) =

[
=

(k)
ı̂ j

]
n×m

={〈
µ(k)
=ı̂ j
, φ(k)
=ı̂ j

〉
,
〈
υ(k)
=ı̂ j
, ϕ(k)
=ı̂ j

〉}
n×m,

(k = 1, ..., p) , denotes the intuitionistic fuzzy credibility Dombi decision
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matrix, where the degree of alternatives is represented by =ı̂ j and Cı̂ j be the criteria contemplated by
the experts, Ek(k = 1, ..., p).

D(k)
n×m =

<1

<2

.

.

.

<ı̂



C1 . . . Cm(〈
µ(k)
=11
, φ(k)
=11

〉
,
〈
υ(k)
=11
, ϕ(k)
=11

〉)
. . .

(〈
µ(k)
=1m
, φ(k)
=1m

〉
,
〈
υ(k)
=1m
, ϕ(k)
=1m

〉)(〈
µ(k)
=21
, φ(k)
=21

〉
,
〈
υ(k)
=21
, ϕ(k)
=21

〉)
. . .

(〈
µ(k)
=2m
, φ(k)
=2m

〉
,
〈
υ(k)
=2m
, ϕ(k)
=2m

〉)
. . . . .

. . . . .(〈
µ(k)
=n1
, φ(k)
=n1

〉
,
〈
υ(k)
=n1
, ϕ(k)
=n1

〉)
. . .

(〈
µ(k)
=nm
, φ(k)
=nm

〉
,
〈
υ(k)
=nm
, ϕ(k)
=nm

〉)


.

It should be noted that all the data about the weights of DM and criteria are known in the context of
DM.

As a result, the following steps represent the MAGDM process
Step 1. Normalized the decision-metrics Dk

ı̂ j, using the following equation.

Dk
ı̂ j =


(〈
µ=ı̂ j , φ=ı̂ j

〉
,
〈
υ=ı̂ j , ϕ=ı̂ j

〉)
for benefit type attribute,(〈

υ=ı̂ j , ϕ=ı̂ j
〉
,
〈
µ=ı̂ j , φ=ı̂ j

〉)
for cost type attribute.

(5.1)

Step 2a. Using the following equation with the perimeter $ = 1, to obtain the aggregated values of
the experts for alternatives =ı̂(ı̂ = 1, ...,m).

IFCDWA%(=1,=2, ...,=n) =
n⊕̂
ı=1

(%ı̂=ı̂)

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µı̂

1−µı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φı̂

1−φı̂

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υı̂
υı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕı̂
ϕı̂

)$}1/$




.

(5.2)

Step 2b. Using the following equation with the perimeter $ = 1, to obtain the aggregated values of
the experts for =ı̂(ı̂ = 1, ...,m).

IFCDWG%(=1,=2, ...,=n) =
n⊗̂
ı=1

(=ı̂)%ı̂

=



 1

1+

{∑n
ı̂=1 %ı̂

(
1−µı̂
µı̂

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−φı̂
φı̂

)$}1/$

 ,1 − 1

1+

{∑n
ı̂=1 %ı̂

(
υı̂

1−υı̂

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
ϕı̂

1−ϕı̂

)$}1/$

 ,


.

(5.3)

Step 3a. Using the following equation with the perimeter $ = 1, to obtain the aggregated IFCN
value for alternative =ı̂(ı̂ = 1, ...,m).
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IFCDOWA%(=1,=2, ...,=n) =
n⊕̂
ı=1

(%ı̂=τ(ı̂))

=



1 − 1

1+

{∑n
ı̂=1 %ı̂

(
µτ(ı̂)

1−µτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
φτ(ı̂)

1−φτ(ı̂)

)$}1/$

 , 1

1+

{∑n
ı̂=1 %ı̂

(
1−υτ(ı̂)
υτ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−ϕτ(ı̂)
ϕτ(ı̂)

)$}1/$




.

(5.4)

Step 3b. Using the following equation with the perimeter $ = 1, to obtain the aggregated IFCN
value for alternative =ı̂(ı̂ = 1, ...,m).

IFCDOWG%(=1,=2, ...,=n) =
n⊗̂
ı=1

(=τ(ı̂))%ı̂

=



 1

1+

{∑n
ı̂=1 %ı̂

(
1−µτ(ı̂)
µτ(ı̂)

)$}1/$ ,
1

1+

{∑n
ı̂=1 %ı̂

(
1−φτ(ı̂)
φτ(ı̂)

)$}1/$

 ,1 − 1

1+

{∑n
ı̂=1 %ı̂

(
υτ(ı̂)

1−υτ(ı̂)

)$}1/$ , 1 − 1

1+

{∑n
ı̂=1 %ı̂

(
ϕτ(ı̂)

1−ϕτ(ı̂)

)$}1/$




.

(5.5)

Step 4. Find the score values S (=ı̂) (ı̂ = 1, ...,m) by using Eq. (2.6).
Step 5. Alternatives are ranked according to the score values for =ı̂(ı̂ = 1, ...,m) and the best one is

chosen.
Step 6. End.

6. Example

To develop the service quality of domestic railway trains, the Ministry of Railways (MOR) of the
government of Pakistan needs to know which railways train is the most excellent in Pakistan. After
initial information, four main domestic railway trains which are represented by =ı̂(ı̂ = 1, 2, 3, 4) are
reminded on the applicant record. They are: Allama Iqbal Express (=1), Badar Express (=2), Hazara
Express (=3), Jinnah Express (=4). To select the most excellent alternatives,four main domestic railway
trains are evaluated from four major characteristics (attributes): C1: ticketing and booking service; C2:
better and poor condition; C3: cabin service; C4: responsiveness; assume that decision-makers provide
the rating values by utilizing IFCNs, and the IFC decision matrix is presented in Tables 1–3.

We used a group of three experts with weight vectors of % = (0.2, 0.3, 0.5)T to apply and validate
our own proposed methods. Using the suggested aggregation operators, we also have a criteria
weight vector with the notation ξ = (0.26, 0.24, 0.28, 0.22)T . Additionally, in order to select the best
option from all of the available options, we will use the score and accuracy functions, respectively.
Additionally, the specifics of the criteria and alternatives were discussed above, and in this case, the
only aggregation operators that can produce the best results are those that have been suggested.
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Table 1. Intuitionistic fuzzy credibility information given by expert E1.

C1 C2 C3 C4

=1

(
〈0.8, 0.2〉 ,
〈0.3, 0.5〉

) (
〈0.6, 0.3〉 ,
〈0.4, 0.5〉

) (
〈0.5, 0.2〉 ,
〈0.1, 0.8〉

) (
〈0.4, 0.5〉 ,
〈0.6, 0.3〉

)
=2

(
〈0.4, 0.4〉 ,
〈0.7, 0.2〉

) (
〈0.3, 0.6〉 ,
〈0.5, 0.4〉

) (
〈0.3, 0.4〉 ,
〈0.6, 0.1〉

) (
〈0.6, 0.2〉 ,
〈0.2, 0.7〉

)
=3

(
〈0.6, 0.3〉 ,
〈0.5, 0.4〉

) (
〈0.2, 0.7〉 ,
〈0.4, 0.3〉

) (
〈0.7, 0.2〉 ,
〈0.4, 0.5〉

) (
〈0.3, 0.6〉 ,
〈0.7, 0.1〉

)
=4

(
〈0.3, 0.6〉 ,
〈0.8, 0.1〉

) (
〈0.7, 0.2〉 ,
〈0.3, 0.6〉

) (
〈0.4, 0.6〉 ,
〈0.2, 0.5〉

) (
〈0.8, 0.1〉 ,
〈0.4, 0.3〉

)

Table 2. Intuitionistic fuzzy credibility information given by expert E2.

C1 C2 C3 C4

=1

(
〈0.7, 0.2〉 ,
〈0.4, 0.5〉

) (
〈0.4, 0.4〉 ,
〈0.7, 0.2〉

) (
〈0.5, 0.2〉 ,
〈0.1, 0.8〉

) (
〈0.4, 0.6〉 ,
〈0.2, 0.5〉

)
=2

(
〈0.6, 0.3〉 ,
〈0.4, 0.5〉

) (
〈0.3, 0.6〉 ,
〈0.5, 0.4〉

) (
〈0.3, 0.4〉 ,
〈0.6, 0.1〉

) (
〈0.3, 0.3〉 ,
〈0.5, 0.2〉

)
=3

(
〈0.8, 0.1〉 ,
〈0.4, 0.3〉

) (
〈0.7, 0.2〉 ,
〈0.3, 0.6〉

) (
〈0.5, 0.2〉 ,
〈0.3, 0.5〉

) (
〈0.8, 0.2〉 ,
〈0.3, 0.5〉

)
=4

(
〈0.3, 0.6〉 ,
〈0.8, 0.1〉

) (
〈0.7, 0.2〉 ,
〈0.3, 0.6〉

) (
〈0.4, 0.5〉 ,
〈0.2, 0.7〉

) (
〈0.2, 0.7〉 ,
〈0.4, 0.3〉

)

Table 3. Intuitionistic fuzzy credibility information given by expert E3.

C1 C2 C3 C4

=1

(
〈0.7, 0.2〉 ,
〈0.3, 0.5〉

) (
〈0.6, 0.4〉 ,
〈0.7, 0.2〉

) (
〈0.3, 0.6〉 ,
〈0.1, 0.8〉

) (
〈0.4, 0.6〉 ,
〈0.2, 0.5〉

)
=2

(
〈0.6, 0.3〉 ,
〈0.4, 0.5〉

) (
〈0.4, 0.5〉 ,
〈0.2, 0.7〉

) (
〈0.5, 0.2〉 ,
〈0.3, 0.3〉

) (
〈0.6, 0.2〉 ,
〈0.2, 0.7〉

)
=3

(
〈0.5, 0.4〉 ,
〈0.3, 0.6〉

) (
〈0.7, 0.2〉 ,
〈0.3, 0.6〉

) (
〈0.7, 0.1〉 ,
〈0.3, 0.5〉

) (
〈0.6, 0.3〉 ,
〈0.5, 0.4〉

)
=4

(
〈0.3, 0.4〉 ,
〈0.6, 0.1〉

) (
〈0.3, 0.6〉 ,
〈0.7, 0.2〉

) (
〈0.4, 0.5〉 ,
〈0.6, 0.3〉

) (
〈0.2, 0.7〉 ,
〈0.5, 0.3〉

)

Step 1. The decision matrix does not need to be normalized because all attributes are the benefit
attribute.

Step 2a. Using IFCDWA operators with the perimeter $ = 1, on Tables 1–3, we obtained Table 4.
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Table 4. Aggregated value obtained by using IFCDWA operator.

C1 C2 C3 C4

=1

(
〈0.325, 0.413〉 ,
〈0.431, 0.363〉

) (
〈0.479, 0.515〉 ,
〈0.531, 0.284〉

) (
〈0.364, 0.286〉 ,
〈0.253, 0.480〉

) (
〈0.429, 0.325〉 ,
〈0.201, 0.327〉

)
=2

(
〈0.371, 0.351〉 ,
〈0.481, 0.252〉

) (
〈0.410, 0.261〉 ,
〈0.528, 0.200〉

) (
〈0.380, 0.283〉 ,
〈0.275, 0.417〉

) (
〈0.289, 0.420〉 ,
〈0.327, 0.213〉

)
=3

(
〈0.475, 0.297〉 ,
〈0.321, 0.409〉

) (
〈0.217, 0.498〉 ,
〈0.259, 0.321〉

) (
〈0.328, 0.314〉 ,
〈0.426, 0.219〉

) (
〈0.275, 0.308〉 ,
〈0.421, 0.245〉

)
=4

(
〈0.284, 0.364〉 ,
〈0.482, 0.299〉

) (
〈0.268, 0.428〉 ,
〈0.521, 0.379〉

) (
〈0.246, 0.501〉 ,
〈0.364, 0.301〉

) (
〈0.288, 0.329〉 ,
〈0.418, 0.383〉

)

Step 2b. Using IFCDWG operators with the perimeter $ = 1, on Tables 1–3. We obtained Table 5.

Table 5. Aggregated value obtained by using IFCDWG operator.

C1 C2 C3 C4

=1

(
〈0.283, 0.511〉 ,
〈0.319, 0.432〉

) (
〈0.274, 0.265〉 ,
〈0.426, 0.317〉

) (
〈0.487, 0.238〉 ,
〈0.302, 0.346〉

) (
〈0.431, 0.428〉 ,
〈0.391, 0.317〉

)
=2

(
〈0.218, 0.329〉 ,
〈0.410, 0.267〉

) (
〈0.361, 0.470〉 ,
〈0.327, 0.535〉

) (
〈0.501, 0.298〉 ,
〈0.362, 0.241〉

) (
〈0.317, 0.206〉 ,
〈0.451, 0.241〉

)
=3

(
〈0.237, 0.396〉 ,
〈0.328, 0.408〉

) (
〈0.312, 0.298〉 ,
〈0.279, 0.420〉

) (
〈0.286, 0.321〉 ,
〈0.395, 0.387〉

) (
〈0.336, 0.427〉 ,
〈0.521, 0.251〉

)
=4

(
〈0.310, 0.267〉 ,
〈0.426, 0.383〉

) (
〈0.511, 0.327〉 ,
〈0.261, 0.285〉

) (
〈0.398, 0.217〉 ,
〈0.270, 0.422〉

) (
〈0.307, 0.231〉 ,
〈0.341, 0.523〉

)

Step 3a. Using IFCDOWA operator with the perimeter $ = 1, on the Table 4 and 5. We obtained
Table 6, the aggregated IFCN value for =ı̂(ı̂ = 1, ...,m).

Table 6. Aggregated value obtained by using IFCDOWA operator.

C1 C2 C3 C4

=1

(
〈0.327, 0.514〉 ,
〈0.486, 0.528〉

) (
〈0.342, 0.400〉 ,
〈0.472, 0.202〉

) (
〈0.468, 0.283〉 ,
〈0.376, 0.265〉

) (
〈0.583, 0.273〉 ,
〈0.331, 0.382〉

)
=2

(
〈0.292, 0.343〉 ,
〈0.526, 0.512〉

) (
〈0.453, 0.501〉 ,
〈0.273, 0.427〉

) (
〈0.531, 0.341〉 ,
〈0.376, 0.487〉

) (
〈0.287, 0.471〉 ,
〈0.436, 0.320〉

)
=3

(
〈0.365, 0.490〉 ,
〈0.551, 0.601〉

) (
〈0.480, 0.328〉 ,
〈0.331, 0.601〉

) (
〈0.318, 0.394〉 ,
〈0.492, 0.288〉

) (
〈0.327, 0.582〉 ,
〈0.521, 0.274〉

)
=4

(
〈0.364, 0.297〉 ,
〈0.523, 0.364〉

) (
〈0.355, 0.403〉 ,
〈0.472, 0.383〉

) (
〈0.522, 0.299〉 ,
〈0.612, 0.343〉

) (
〈0.283, 0.472〉 ,
〈0.542, 0.376〉

)

Step 3b. Using IFCDOWG operator with the perimeter $ = 1, on the Table 4 and 5. We obtained
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Table 7, the aggregated IFCN value for =ı̂(ı̂ = 1, ...,m).

Table 7. Aggregated value obtained by using IFCDOWG operator.

C1 C2 C3 C4

=1

(
〈0.427, 0.383〉 ,
〈0.341, 0.575〉

) (
〈0.502, 0.446〉 ,
〈0.483, 0.377〉

) (
〈0.521, 0.382〉 ,
〈0.378, 0.366〉

) (
〈0.428, 0.253〉 ,
〈0.381, 0.510〉

)
=2

(
〈0.298, 0.310〉 ,
〈0.418, 0.362〉

) (
〈0.436, 0.223〉 ,
〈0.354, 0.384〉

) (
〈0.263, 0.343〉 ,
〈0.490, 0.432〉

) (
〈0.354, 0.388〉 ,
〈0.428, 0.401〉

)
=3

(
〈0.373, 0.419〉 ,
〈0.481, 0.286〉

) (
〈0.309, 0.365〉 ,
〈0.531, 0.452〉

) (
〈0.471, 0.411〉 ,
〈0.495, 0.264〉

) (
〈0.427, 0.324〉 ,
〈0.263, 0.442〉

)
=4

(
〈0.526, 0.497〉 ,
〈0.461, 0.327〉

) (
〈0.332, 0.371〉 ,
〈0.511, 0.423〉

) (
〈0.384, 0.532〉 ,
〈0.345, 0.379〉

) (
〈0.426, 0.377〉 ,
〈0.554, 0.344〉

)

Step 4. Find the score values S (=ı̂) (ı̂ = 1, ...,m) by using Eq. (2.6) on Tables 6 and 7.

S (=1) = 0.382, S (=2) = 0.472, S (=3) = 0.427, S (=4) = 0.498,

and
S (=1) = 0.441, S (=2) = 0.517, S (=3) = 0.463, S (=4) = 0.549.

Step 5. Thus, the ranking of the alternatives as:

=4 > =2 > =3 > =1.

6.1. Sensitivity analysis

We must do a sensitivity analysis to evaluate the stability of our suggested method, because the
Dombi norms’ coefficient (decision method parameter) has a significant impact on the rankings. In
order to find different outcomes and to examine the ranking results, we therefore assign different
values to the parameter in the proposed aggregation operators. In Table 8, we show the ranking of
the alternatives using different values of the parameter $ and IFCDOWA operator.

Table 8. Ranking of the alternatives based on the influence of the parameter.

Parameter
Score values

S (=1) S (=2) S (=3) S (=4)
Ranking

$ = 1 0.382 0.472 0.427 0.498 =4 > =2 > =3 > =1

$ = 2 0.361 0.448 0.399 0.460 =4 > =2 > =3 > =1

$ = 3 0.336 0.435 0.363 0.448 =4 > =2 > =3 > =1

$ = 5 0.301 0.416 0.332 0.413 =4 > =2 > =3 > =1

$ = 10 0.269 0.342 0.274 0.364 =4 > =2 > =3 > =1

In Table 9, we show the ranking of the alternatives using different values of the parameter $ and
IFCDOWG operator.
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Table 9. Ranking of the alternatives based on the influence of the parameter.

Parameter
Score values

S (=1) S (=2) S (=3) S (=4)
Ranking

$ = 1 0.441 0.517 0.463 0.549 =4 > =2 > =3 > =1

$ = 2 0.437 0.499 0.448 0.530 =4 > =2 > =3 > =1

$ = 3 0.416 0.488 0.425 0.517 =4 > =2 > =3 > =1

$ = 5 0.384 0.454 0.392 0.484 =4 > =2 > =3 > =1

$ = 10 0.328 0.411 0.356 0.452 =4 > =2 > =3 > =1

The ranking results are the same when different values are assigned to the parameter in the suggested
aggregation operators, as can be seen in the above Table 8 and 9.

6.2. Comparison and discussion analysis

To verify the validity of our proposed work, we must compare our proposed method with other
existing methods in this section. As a result, there are two ways to compare: one is aggregation
operator-wise, and the other is a technique (approach)-wise. There is research being done on
aggregation operators using different types of intuitionistic fuzzy data. As a result, we must now
compare our findings to intuitionistic fuzzy data.

The data in the current approach takes the form of intuitionistic fuzzy numbers, and a set of
aggregation operators is defined based on these numbers’ operational laws. A type of different
aggregation operators [3, 6, 15], and [16] respectively. Because the data was taken in the form of
intuitionistic fuzzy credibility information, our results cannot be compared to this result. Therefore,
we disregard the MD and NMD’s credibility terms.

Table 10. Different methods and their ranking.

Method
Score values

S (=1) S (=2) S (=3) S (=4)
Ranking

Boran et al. [3] 0.521 0.562 0.538 0.573 =4 > =2 > =3 > =1

De et al. [6] 0.124 0.147 0.149 0.164 =4 > =2 > =3 > =1

Li [15] 0.241 0.286 0.250 0.308 =4 > =2 > =3 > =1

Liu et al. [16] 0.724 0.803 0.779 0.836 =4 > =2 > =3 > =1

Since, there is a significant difference between the ranking results of the proposed method and those
of the existing methods, it can be inferred from the ranking results of Table 10 that some changes in
the credibility degrees in the decision-making example are sensitive to the ranking order of the four
alternatives. The credibility scores thus show their significance and applicability in the MAGDM
problem. The usage of credibility degrees can make the decision result more credible and reasonable
in the context of IFCNs, which is an advantage of the suggested MAGDM method. The MAGDM
problem’s evaluation of credibility levels, however, is restricted by the use of a subjective rather than
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an objective evaluation method. Our research will be improved if we use an objective measurement
method or algorithm for the credibility levels.

Due to the significance of credibility degrees in MAGDM problems, all of these authors fail to
take credibility measures of fuzzy evaluation values into account when making decisions or evaluating
data. As a result, the decision information may be incomplete or miss credibility measure values
of intuitionistic fuzzy evaluation values. The intuitionistic fuzzy evaluation information and decision
results can then be made more credible and reasonable in the IFC information in the proposed MAGDM
method.

7. Conclusions

Aggregation plays an important role in decision making process. In the existing papers, the
authors have studied many aggregation operators with the intuitionistic fuzzy information. In recent
years, IFS theory has received considerable attention and have been used in MAGDM procedures
as an effective means of expressing fuzzy information. But This paper’s main contribution is the
suggestion of a new MAGDM method in which attribute values are provided as IFCNs. In order
to do this, we firstly introduced new operational laws of IFCNs based on Dombi t-norm and Dombi
t-conorm. Then, we defined intuitionistic fuzzy credibility Dombi weighted averaging (IFCDWA),
intuitionistic fuzzy credibility Dombi ordered weighted averaging (IFCDOWA) and intuitionistic fuzzy
credibility hybrid weighted averaging (IFCDHWA), intuitionistic fuzzy credibility Dombi weighted
geometric (IFCDWG), intuitionistic fuzzy credibility Dombi ordered weighted geometric (IFCDOWG)
and intuitionistic fuzzy credibility hybrid weighted geometric (IFCDHWG) operators and investigated
their properties. Further, we used the defined aggregation operators and proposed an approach fro
MAGDM problem. Finally, we provided an example, as well as a discussion of the comparative
results analysis, to demonstrate that their findings are reliable and viable. We have discussed the
sensitivity analysis of the proposed modal using different values of the parameter. To verify and check
the correctness of our proposed method we can compare with existing methods that is also be done and
give us the best result as like our proposed methods.

In the future, the proposed aggregation operator can be modified by taking the IFCNs, Hamacher
norms, Frank norms, Einstein norms, Yager norms and Bonferroni mean operators to define such a new
work for solution of decision making problems.
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