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1. Introduction

Consider the general frame work of system of linear equations

Ax = b, (1.1)

where A ∈ Rn×n is the coefficients matrix, b ∈ Rn is a constant vector and x ∈ Rn is an unknown
vector. Various problems arising in different fields such as computer science, electrical engineering,
mechanical engineering and economics are modeled in this general frame work of system of linear
equations (1.1).

Importance of the methods for systems of linear equations can not be denied due to the requirement
of solutions of systems occurring in almost all fields. Babylonians first introduced the system of linear
equations with two unknowns about 4000 years ago. Later on Cramer [1] gave the idea for solving
the systems of linear equations by using determinants. In the nineteenth century, Gauss introduced
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a method to solve the linear system (1.1) by elimination of variables one by one and later on using
backward substitutions. There also exist many other methods in the literature to solve (1.1). Usually,
these methods are classified into two categories, called direct and iterative methods.

The objective of a direct method is to get an exact solution in minimal number of operations. While,
an iterative method starts with an initial guess and produces an infinite sequence of approximations in
the direction of exact solution. This sequence can be limited by using a suitable stopping criteria.
Direct methods involve the Gauss elimination method, Gauss-Jordan elimination method, Cholasky
method, LU decomposition method [2]. Large and sparsely populated systems often arise in solving
partial differential equations numerically or dealing with optimization problems. For such cases the
conjugate gradient method is implemented and also suggested for sparse systems [3]. Direct methods
are ineffective for a system consisting on a large number of equations, mostly when the coefficient
matrix is sparse.

Iterative methods consist on successive approximations that are used to gain approximate solution
for system (1.1) at each step, starting with a given initial approximation. Moreover, iterative methods
can be further categorized into stationary and non-stationary methods. Stationary methods are older
and more straightforward methods involving an iteration matrix that remains constant throughout the
whole iterations during calculation. Examples of stationary iterative methods are the Jacobi method,
Gauss-Seidel method, Successive Over Relaxation method [2]. The computations in non-stationary
methods involve information that changes at each iteration. These iterative methods are used to derive
the inner products of residuals [2].

We observe that in any iterative method the system may be represented in the form of x = Px + c,
and the iterative scheme x(k+1) = Px(k) + c is suggested by using an initial approximation x(0) to obtain
the best approximate solution. The iterative method is convergent if and only if ρ(P) < 1, where ρ(P)
is spectral radius of P. In order to obtain the iterative scheme we partition A = (ai j) as A = D − L −U,
where D = diag(aii), L and U are strictly, lower and upper triangular matrices respectively.

Jacobi method and Gauss-Seidel method are the classical methods which are used for the diagonally
dominant systems by spiting the coefficient matrix into three matrices. In Jacobi method, the iterative
scheme [2] can be expressed as:

x(k) = D−1(L + U)x(k−1) + D−1b, (1.2)

and similarly, for Gauss-Seidel method [2], the iterative scheme is suggested as:

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b. (1.3)

If the coefficient matrix A is strictly diagonally dominant, the Jacobi and Gauss-Seidel methods
converge for any x0. However Gauss-Seidel method converges rapidly as compare to Jacobi
method [2, 4].

The Successive Over-Relaxation (SOR) techniques

x(k) = (D − wL)−1((1 − w)D + wU)x(k−1) + w(D − wL)−1b, (1.4)

are nicely addressed in literature [2, 5, 6]. Requirement for the parameter w for SOR is that it lies
between zero and two and for each particular matrix the optimal value of w is discussed very
comprehensively [7].
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In 1978, the accelerated over-relaxation (AOR) method was initially presented by Hadjidimos as a
modification of the successive over-relaxation (SOR) method with two parameters [8]. In mostly
cases, the AOR technique improves the Jacobi, Gauss-Seidel, and SOR methods [8–11]. Significance
of AOR method can be seen in [9, 12–14]. For the convergence of AOR method sufficient
conditions are discussed [15–19]. Various aspects of applications of AOR method can also be studied
in [20–23]. We also see in literature the preconditioned AOR technique to improve the convergence
rate of AOR method [24–29]. While Krylov subspace techniques [3, 30–32] are recognized as one of
the most significant and effective iterative approaches to solve the sparse linear systems because they
are inexpensive to be implemented and are able to fully exploit the sparsity of the coefficient matrix.
Krylov subspace techniques are extremely slow or fail to converge when the coefficient matrix of the
system is ill-conditioned and excessively indefinite which is the drawback of these schemes.

The purpose of this paper is to present a new iterative method for solving the systems of linear
equations (1.1), which is the generalization of existing methods and fast convergent than the Jacobi,
Gauss-Seidel, SOR, and AOR methods. In Section 2, generalized iterative scheme is developed for the
best approximate solution. In Section 3, convergence of the proposed iterative scheme is discussed.
Numerical and graphical results are discussed in Section 4.

2. Development of iterative scheme

In this section, we construct a generalized iterative scheme for solving the system of linear
equations (1.1). Jacobi method, Gauss-Seidel method, SOR method, and AOR method are the special
cases for this presented scheme.

System (1.1) can be written as:

wAx = wb, (2.1)

where 0 < w < 2 and

w(D − L − U)x = bw. (2.2)

We split matrix A as sum of three matrices D, L and U. Here, D is a diagonal matrix, L is the strictly
lower triangular matrix, and U is the strictly upper triangular matrix.

Above Eq (2.2) can be re-written as:

(D − rL − tU)x = [(1 − w)D + (w − r)L + (w − t)U]x + bw. (2.3)

Now (2.3) can be expressed as:

x = (D − rL − tU)−1[(1 − w)D + (w − r)L + (w − t)U]x + (D − rL − tU)−1bw, (2.4)

where 0 < t < w < r < 2.
Relation (2.4) is a fixed point formulation which allows us to suggest the following iterative

scheme.
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Algorithm 2.1. For a given initial vector x(0), find the approximate solution x(k) from the following
iterative scheme:

x(k) = (D − rL − tU)−1[(1 − w)D + (w − r)L + (w − t)U]x(k−1) + (D − rL − tU)−1bw, k = 1, 2, 3, ...

Algorithm 2.1 is the main iterative scheme that converges to the solution rapidly as compared with
other methods. This is the generalized scheme for obtaining the solution of a system of linear equations.
We present some special cases.

If t = 0, Algorithm 2.1 reduces to the following iterative scheme.

Algorithm 2.2. For a given initial vector x(0), find the approximate solution x(k) from the following
technique:

x(k) = (D − rL)−1[(1 − w)D + (w − r)L + wU]x(k−1) + (D − rL)−1bw, k = 1, 2, 3, ...

which is well-known AOR method [2, 3].
If t = 0 and w = r, the Algorithm 2.1 reduces to the following SOR method [2, 3].

Algorithm 2.3. For a given initial vector x(0), find the approximate solution x(k) from the following
technique:

x(k) = (D − wL)−1[(1 − w)D + wU]x(k−1) + (D − wL)−1bw, k = 1, 2, 3, ...

If t = 0 and w = r = 1, the Algorithm 2.1 reduces to the following scheme.

Algorithm 2.4. For a given initial vector x(0), find the approximate solution x(k) from the following
technique:

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, k = 1, 2, 3, ...

Algorithm 2.4 is Gauss-Seidel method [2, 3].
If t = r = 0 and w = 1, the Algorithm 2.1 reduces to the following scheme.

Algorithm 2.5. For a given initial vector x(0), find the approximate solution x(k) from the following
technique:

x(k) = D−1(L + U)x(k−1) + D−1b, k = 1, 2, 3, ...

Algorithm 2.5 is well-known Jacobi method [2, 3].

3. Convergence analysis

In this section, we consider the convergence analysis of the newly developed iterative scheme
mentioned as Algorithm 2.1.

x(k) = (D − rL − tU)−1[(1 − w)D + (w − r)L + (w − t)U]x(k−1) + (D − rL − tU)−1bw.
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Lemma 3.1. [2] If the spectral radius satisfies

ρ[(D − rL − tU)−1(1 − w)D + (w − r)L + (w − t)U)] ≤ 1,

then [
I − (D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]−1

exists and [
I − (D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]−1

= I +
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
+

[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]2
+ · · ·

=

∞∑
j=0

[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

] j
. (3.1)

Theorem 3.2. For a given any x(0) ∈ Rn, the sequence
{
x(k)

}∞
k=0

defined by

x(k) =
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
x(k−1) + (D − rL − tU)−1bw,

for each k ≥ 1, converges to the unique solution

x =
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
x + (D − rL − tU)−1bw,

if and only if
ρ
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
< 1.

Proof. For the proof of the statement, it is enough to show that spectral radius of iteration matrix < 1.
For this, let us consider the iterative scheme suggested in Algorithm 2.1.

x(k) =
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
x(k−1) + (D − rL − tU)−1bw,

which can be rewritten as:

x(k) =
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

] [
((D − rL − tU)−1((1 − w)D

+(w − r)L + (w − t)U))x(k−2) + (D − rL − tU)−1bw
]

+ (D − rL − tU)−1bw
...

=
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]k
x(0)

+
[[

(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)
]

x(k−1) + · · ·

+
[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]
+ I

]
(D − rL − tU)−1bw. (3.2)

Since
ρ
([

(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)
])
≤ 1,
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the matrix converges and

lim
k→∞

[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]k
x(0) = 0,

and Lemma 3.1 implies that

lim
k→∞

x(k) = 0 + lim
k→∞

 k−1∑
j=0

[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

] j
 (D − rL − tU)−1bw

=
[
I −

[
(D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]]−1
(D − rL − tU)−1bw.

As a result, the sequence x(k) converges to the vector

x =
[
I − (D − rL − tU)−1((1 − w)D + (w − r)L + (w − t)U)

]−1
(D − rL − tU)−1bw.

�

We can also view the convergence criteria of the purposed method as an application of the Banach
fixed point theorem [33]. System of linear equations can be described with the relations of parameters
in the equation form as:

x1 = (1 − wa11)x1 − (w − 2t)a12x2 − . . . − (w − 2t)a1nxn + wb1

x2 = −(w − 2r)a21x1 + (1 − wa22)x2 − . . . − (w − 2t)a2nxn + wb2
...

xn = −(w − 2r)an1x1 − (w − 2r)an2x2 − . . . + (1 − wann)xn + wbn.

(3.3)

This system is equivalent to
x = cx + d (3.4)

with d = wb and ci j =


(1 − wai j) i f i = j

−(w − 2t)ai j i f i < j

−(w − 2r)ai j i f i > j

.

The solution can be obtained by
x(k+1) = cx(k) + d. (3.5)

The iteration method is defined by

x j
(k+1) =

1
c j j

(γ −
n∑

k=1,k, j

c jkx(k)). (3.6)

Assuming that c j j , 0 for j = 1, ...n. This iteration is suggested for the jth equation of the system. It is
not difficult to verify that (3.6) can be written in the form of

c = (D − rL − tU)−1[(1 − w)D + (w − r)L + (w − t)U], (3.7)
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and
d = (D − rL − tU)−1wb. (3.8)

Here D=diag(c j j) is the diagonal matrix whose non-zero elements are of those of the principle
diagonal of A. Condition of diagonally dominant applied to c is sufficient for the convergence of
Algorithm 2.1. We can express directly in terms of the elements of A. The result is the row sum criteria
for the convergence will be

n∑
k=1,k, j

∣∣∣∣a jk

a j j

∣∣∣∣ < 1, (3.9)

or

n∑
k=1,k, j

|a jk| < |a j j|. (3.10)

This shows that convergence is guaranteed, if the elements in principle diagonal of A are sufficiently
large.

Note that all the components of a new approximation are introduced simultaneously at the end of
an iteration cycle.

4. Numerical results

In this section, we provide few numerical applications to clarify the efficiency of new developed
three parameter iterative scheme Algorithm 2.1, on some system of linear equations for 0 < t < w <

r < 2, whose coefficient matrices satisfy

max
1≤i≤n−1

ui = α and max
1≤i≤n−1

li = β, α + β ≤ 1,

where

li = max
i−1∑
j=1

| βi j |, for i = 2, 3, . . . , n,

and

ui = max
n∑

j=i+1

| αi j |, for i = 1, 2, . . . , n − 1.

In this part, we will compare our developed scheme with previous techniques as namely AOR
method, SOR method, Jacobi method and Gauss-Seidel method. All computations are calculated by
using computer programming by MATLAB. We use ε = 10−15 and the following stopping criteria is
used for computer programs as:

||x(k) − x(k−1)||

||x(k)||
≤ ε.

This stopping criteria is deduced from relative error and the infinite sequence generated by the
computer code will be chopped at the stage when this criteria is satisfied. We assume the following
examples to compare the new developed method Algorithm 2.1 (Alg 2.1) with various iterative
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methods AOR (Alg 2.2), SOR (Alg 2.3), Gauss-Seidel (Alg 2.4) and Jacobi (Alg 2.5), to analyze the
new iterative scheme’s feasibility and effectiveness.

For the numerical and graphical comparison of methods, we select some examples from the
literature.

Example 4.1. [3] We consider a problem where the loop-current approach is combined with Ohm’s
law and Kirchhoff’s voltage law. Each loop in the network is supposed to be circulated by a loop
current. Thus, the loop current I1 cycles the closed-loops a, b, c, and d in the network shown in Figure
1. As a result, the current I1 − I2 passes via the link joining b and c.

Figure 1. Network of loop-current.

From the above network as shown in Figure 1, we get a four-variable linear equations system by
letting R1 = R4 = 1Ω, R2 = 2Ω, R3 = 4Ω and V = 5volts. We get the following system of the form

4I1 − 2I2 = 5,
−2I1 + 6I2 − 2I3 = 0,
−2I2 + 6I3 − 2I4 = 0,

−2I3 + 8I4 = 0.

Table 1 displays the numerical results for Example 4.1, which indicate that Alg 2.1 is more efficient
than the other methods.

Table 1. Tabular comparison.

Methods Parameters Iterations Relative error

Alg 2.1 w = 1.02, r = 1.05, t = 0.88 14 8.9966e−18

Alg 2.2 w = 1.02, r = 1.05 28 2.8789e−16

Alg 2.3 w = 1.02 30 2.8789e−16

Alg 2.4 ... 32 4.3184e−16

Alg 2.5 ... 61 7.1973e−16

In Figure 2 the residual fall of different methods shows that new method is faster convergent than
the other methods. Figure 3 is the comparison of iterations of different algorithms that shows our
new iterative method which described in Alg 2.1 is more efficient than other methods described in
Alg 2.2–2.5.
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Figure 2. Log of residual. Figure 3. Comparison of iterations.

Example 4.2. [34] Consider the following system of the form

x1 + 0.250x2 = 0.75,
0.250x1 + x2 + 0.250x3 = 1.50,
0.250x2 + x3 + 0.250x4 = 1.50,
0.250x3 + x4 + 0.250x5 = 1.50,

0.250x4 + x5 = 1.25.

Table 2 displays the numerical results which indicate that Alg 2.1 is more efficient than the other
techniques.

Table 2. Tabular comparison.

Methods Parameters Iterations Relative error

Alg 2.1 w = 1.01, r = 1.06, t = 0.86 13 5.8249e−16

Alg 2.2 w = 1.01, r = 1.06 19 4.8541e−16

Alg 2.3 w = 1.01 23 2.4271e−16

Alg 2.4 ... 24 2.4271e−16

Alg 2.5 ... 44 7.7666e−16

The residual fall of different technique can be seen in Figure 4 which illustrate that the new method
is rapidly convergent than the other methods. Figure 5 is the comparison of iterations of different
algorithms that shows our new iterative method which described in Alg 2.1 is more efficient than other
methods described in Alg 2.2–2.5.
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Figure 4. Log of residual. Figure 5. Comparison of iterations.

Example 4.3. [2] Consider the following system of linear equations of the form

4x1 − x2 − x3 = 1,
−x1 + 4x2 − x4 = 1,
−x1 + 4x3 − x4 = 1,
−x2 − x3 + 4x4 = 1.

Table 3 displays the numerical results for Example 4.5, which indicate that Alg 2.1 is more efficient
than the other methods.

Table 3. Tabular comparison.

Methods Parameters Iterations Relative error

Alg 2.1 w = 1.05; r = 1.07; t = 0.9 15 5.5511e−16

Alg 2.2 w = 1.05; r = 1.07 19 9.9920e−16

Alg 2.3 w = 1.05 22 5.5511e−16

Alg 2.4 .... 28 4.4409e−16

Alg 2.5 .... 51 8.8818e−16

In Figure 6 the residual fall of different methods shows that New method is faster convergent than
the other methods. Figure 7 is the comparison of iterations of different algorithms that shows our
new iterative method which described in Alg 2.1 is more efficient than other methods described in
Alg 2.2–2.5.
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Figure 6. Log of residual. Figure 7. Comparison of iterations.

Example 4.4. [35] Let the matrix A be given by

ai, j =


8, if j = i;

−1, if

 j = i + 1, for i = 1, 2, . . . , n − 1;
j = i − 1, for i = 2, 3, . . . , n;

0, otherwise.

Let b = (6, 5, 5, . . . , 5, 6)T , we take n = 100.

Table 4 displays the numerical results for Example 4.4, which indicate that Alg 2.1 is more efficient
than the other techniques.

Table 4. Tabular comparison.

Methods Parameters Iterations Relative error

Alg 2.1 w = 1.02; r = 0.97; t = 0.50 15 3.8978e−16

Alg 2.2 w = 1.02; r = 0.97 19 7.7956e−16

Alg 2.3 w = 1.02 19 3.8978e−16

Alg 2.4 .... 20 5.1970e−16

Alg 2.5 .... 27 6.4963e−16

The residual fall of different methods can be seen in Figure 8 which illustrate that the new method
is rapidly convergent than the other methods. Figure 9 is the comparison of iterations of different
algorithms that shows our new iterative method which described in Alg 2.1 is more efficient than other
methods described in Alg 2.2–2.5.
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Figure 8. Log of residual. Figure 9. Comparison of iterations.

Example 4.5. [2, 36] Consider the system (1.1), having co-efficient matrix A is given by

ai j =


2i, if i = j and i = 1, 2, . . . , 1000;

−1, if

 j = i + 1, for i = 1, 2, . . . , 999;
j = i − 1, for i = 2, 3, . . . , 1000;

0, otherwise.

and bi = 1.5i − 6 for each i = 1, 2, . . . , 1000.

Table 5 shows the numerical results for Example 4.3, which indicate that Alg 2.1 is much more
efficient than the other techniques.

Table 5. Tabular comparison.

Methods Parameters Iterations Relative error

Alg 2.1 w = 1.021; r = 1.079; t = 0.98 13 3.6092e−17

Alg 2.2 w = 1.021; r = 1.079 18 4.3310e−16

Alg 2.3 w = 1.0219 20 2.8873e−16

Alg 2.4 .... 22 5.7747e−16

Alg 2.5 .... 41 5.7747e−16

The residual fall of different techniques can be seen in Figure 10 which illustrate that the new
method is rapidly convergent than the other methods. Figure 11 is the comparison of iterations of
different algorithms that shows our new iterative method which described in Alg 2.1 is more efficient
than other methods described in Alg 2.2–2.5.
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Figure 10. Log of residual.
Figure 11. Comparison of iterations.

In Table 6, IT stands for the number of iterations in above tabular comparison which shows that our
new iterative method work much effectively.

Table 6. Comparison table for Algorithm 2.1 with various combinations of parameters.

Parameters Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5
w r t IT IT IT IT IT
0.2 0.7 0.9 186 160 181 160 169
0.4 0.5 0.8 102 82 96 77 86
0.6 0.5 0.8 63 50 58 46 52
0.3 0.8 0.5 138 111 132 108 120
0.2 0.8 0.3 229 186 217 174 195
0.3 0.8 1.2 96 97 97 97 95
0.3 0.8 0.2 155 124 145 114 129
0.5 0.8 0.3 85 67 79 61 70
0.5 0.8 0.5 77 61 73 59 66
0.8 0.4 0.4 57 40 50 33 42
0.8 0.5 0.7 46 34 41 30 36
0.9 0.5 0.8 36 27 32 23 28
0.9 1.04 0.5 24 21 22 21 21
1.02 1.08 0.8 15 14 14 12 14
1.03 1.09 0.9 14 13 14 12 13

5. Conclusions

In this article, a new generalized iterative scheme is suggested for solving systems of linear
equations. We have studied the convergence criteria of this iterative scheme. This scheme is not only
the generalized one but also give good results as compared to the existing schemes. This iterative
scheme is also suitable for sparse matrices. Numerical results show that this scheme is more effective
than the conventional schemes. We would also like to purpose that the given scheme can be extended
for the absolute value problems of the type Ax + B|x| = b.
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Cl. Philibert, 1730.

2. R. L. Burden, J. D. Faires, Numerical analysis, Boston: PWS, 1980.

3. Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
https://doi.org/10.1137/1.9780898718003

4. D. K. Salkuyeh, Generalized Jacobi and Gauss-Seidel methods for solving linear system of
equations, Numer. Math. J. Chin. Univ., 16 (2007), 164–170.

5. R. S. Varga, Iterative analysis, Berlin: Springer, 1962.

6. D. M. Young, Iterative Solution of Large Linear Systems, Elsevier, 2014.

7. C. E. Froberg, Numerical Mathematics: Theory and computer applications, Basic Books, 1985.

8. A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 32 (1978), 149–157.
http://doi.org/10.2307/2006264

9. G. Avdelas, A. Hadjidimos, A. Yeyios, Some theoretical and computational results concerning
the accelerated overrelaxation (AOR) method, Math. Rev. Anal. Numér. Théor. Approximation, 9
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