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Abstract: Many studies have shown that faced with an epidemic, the effect of fear on human behavior
can reduce the number of new cases. In this work, we consider an SIS-B compartmental model
with fear and treatment effects considering that the disease is transmitted from an infected person
to a susceptible person. After model formulation and proving some basic results as positiveness and
boundedness, we compute the basic reproduction number R0 and compute the equilibrium points of
the model. We prove the local stability of the disease-free equilibrium when R0 < 1. We study then
the condition of occurrence of the backward bifurcation phenomenon when R0 ≤ 1. After that, we
prove that, if the saturation parameter which measures the effect of the delay in treatment for the
infected individuals is equal to zero, then the backward bifurcation disappears and the disease-free
equilibrium is globally asymptotically stable. We then prove, using the geometric approach, that the
unique endemic equilibrium is globally asymptotically stable whenever the R0 > 1. We finally perform
several numerical simulations to validate our analytical results.
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1. Introduction

Many studies in the pathology field have shown that the effect of fear on human immunity has a
direct impact on how the body produces antibodies. In human populations, the fear effect is done by
media coverage of the bad effect of the disease [1,2]. The current episode of the COVID-19 pandemic is
an example of how media coverage can produce a fear impact in populations. A typical example of the
effect of fear on the human population’s life after the beginning of the SARS outbreak is the dramatic
decrease in the birth rate in Hong Kong (November 2002 to June 2003). Indeed, between 2002 to 2003,
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the birth rate fell from 8,742 to 8,436 [3].
Since late 2019, the world has been preoccupied with facing a pandemic that has swept the entire

world. Hundreds of thousands of people are infected every day, and tens of thousands of them die. Life
stopped against her will and intense fear spread among the people. Gradually, studies on this pandemic
began to expand. Many treatment protocols appeared and scientists around the world began studies
to find a vaccine against this pandemic. Currently, vaccines have appeared, and a large percentage of
people have taken the vaccine(see World Health Organization and [4]).

The fear factor has played an important role in the decrease in the number of deaths in the Corona
epidemic thus far. Other research, on the other hand, focuses on the fact that stress causes an increase in
Cortisol, which weakens immunological responses in the human body. Cortisol secretion contributes
to some useful bodily processes during short periods of stress, but the problem arises when the level
of Cortisol in the body is elevated for long periods of time, as it negatively affects the work of both
(T-cells) and white blood cells, which has an impact on the body’s immunity in general [5].

Since COVID-19 has become a pandemic, a number of mathematicians have conducted numerous
studies in order to create a model and anticipate its spread. The GLM approach and Richard’s model
were used in the first study [6] to predict COVID-19 in China. Then, using Richard’s curve, [7]
estimated COVID-19 in Indonesia based on early endemic data. Other models and predictions have
been widely used, such as those based on statistical techniques [8] or those based on SIS, SIR, SI1I2R,
SEIR and their expansions [9]. Furthermore, several researchers modeled the spread of COVID-19
using fractional order in epidemic models. Fractional order derivative [10] and Caputo derivative [11]
with the Mittag-Leffler function as a nonsingular kernel type. Then [12] looked at the fractal-fractional
derivative in the Atangana-Baleanu sense to get the model’s stability, and [13] used fractal-fractional
operators to show the model’s existence and uniqueness solution. The parameters employed in any
known SIR epidemic model and its expansions, on the other hand, use crisp numbers, whereas
ambiguity in parameters and population heterogeneity are extremely likely to occur. Few works were
conducted to evaluate the fear effect on the transmission dynamics of COVID-19 [14]. In [15], Chandan
Maji formulated and study a COVID-19 mathematical model in which the fear effect is modelized on
the force of infection. He computes the basic reproduction number R0 and proves the global stability of
both equilibrium points namely the disease-free equilibrium and the endemic equilibrium. Mpeshe and
Nyerere in [16] modelized the fear effect in their model by using mass action incidence coupled with
the linear rate for fear effect. A statistical model was formulated and studied by Zhou et al. in [17].

In the present work, we consider the fact that new recruitment in the human population is very
impacted by the COVID-19 epidemic in several regions of the world. So, we modify the traditional
constant recruitment rate by including a nonlinear form of the fear effect combined with a nonlinear
treatment rate. We compute the basic reproduction numberR0 and perform the local and global stability
of equilibrium points. We also prove that there is a chance that the backward bifurcation phenomenon
appears in the model. Numerical simulations are conducted to validate our analytical results and to see
the impact of the fear effect on the disease dynamics.

To our knowledge, few no research on the impact of fear on people with Corona has been published.
As a result, we believe it is crucial to investigate this effect, which helps to lower the number of
critical situations. We also used the treatment function, which is directly linked to healthy countries’
capacities. In this paper, consider a COVID-19 SIS-B model that describes the dynamics of direct
COVID-19 transmission, including fear effect on the susceptible individuals from infected individuals,
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interactions between suspected, infected people with pathogen environment, pure death rates, vaccine
effectiveness, treatment effectiveness, adherence to health protocols, treatment function and COVID-19
related deaths.

To create efficient control tactics and policies, mathematical models must be constructed in order
to offer insights into the epidemic and make predictions about it [18]. Modeling approaches [19]
are useful for understanding and predicting the likelihood and severity of a disease outbreak and
for determining the extent to which COVID-19 disease intervention is needed. The development of
new, more sophisticated versions of COVID-19 provided us with the impetus for this study, which is
predicated on talking about how anxiety affects COVID-19 patients and how it contributes significantly
to patient mortality.

The following is a breakdown of the paper’s structure. In the next section (Section 2), we will
explain the mathematical model and clarify all the hypotheses and parameters it contains. We offer
some preliminaries regarding model system in Section 3, such as the positivity, boundedness of
solutions, the expression of the system’s basic reproduction number, the existence of steady states.
The local stability of steady states analysis will also discussed in this section. Numerical simulations,
used to demonstrate the analytical findings, are perform in Section 4. In the final portion, there is a
brief discussion and conclusion.

2. Model formulation

In this section, we will describe and examine a COVID-19 model with fear impact combined with
recovery rate, both in saturation form. We look at the entire human population sizes at time t, which
comprises susceptible people S (t) and infected individuals I(t), designated by N(t). The compartment
B(t) represents the pathogen population at time t.

The model implies that new recruits (including babies, travel, and so on) enter the susceptible
population at a constant rate A at any given time. The model assumes that new recruits (denoted by

A) people are impacted by the fear with a fear function
1

1 + αI(t)
, with a level of fear α. Thus the

new expression of the recruitment rate is
A

1 + αI(t)
. The parameters β, γ, and δ describe the infection

rate parameter, vaccine effectiveness parameter, and effectiveness of obedience in implementing health
protocols, respectively. The death rates of S , I are µ1, µ2 and µ3 is the rate of death of the virus due
to sterilization with sterile substances or by the sun or the death of the virus naturally after a certain
period of time. The Infection rate of free-virus in the environment is denoted by π. As a result, we

consider that the recovery rate has reached its limit, and
aI(t)

b + I(t)
is the infected compartment recovery

with hospital treatment [20]. The maximum recovery per unit of time is a, and the infected size at
50% saturation is b, h(b) = a/2 which is a metric for how quickly saturation occurs. The parameter
µI represents the COVID-19-related death rate. The virus concentration is increased at a rate ε is the
Pathogen shed rate of infected individual by infected people.

In the above Figure 1 we can see a flowchart of all variables. The originality in this model is
the study of the effect of fear of people infected with COVID-19 on people who are susceptible to
infection using the fear function. As well as studying the effect of therapeutic protocols and their
impact on disease control using the treatment function. On the other hand, the absence of compartment
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B through continuous cleaning using sterilizers and detergents may contribute in one way or another
to controlling and eliminating the disease.

Figure 1. Flowchart of the deterministic model 2.1.

The model is mathematically stated as follows:



dS
dt

(t) =
A

1 + αI(t)
− β(1 − γ)(1 − δ)S (t)I(t) − πS (t)B(t) − (µ1 + γ + δ)S (t) +

aI(t)
b + I(t)

,

dI
dt

(t) = β(1 − γ)(1 − δ)S (t)I(t) + πS (t)B(t) −
(
µ2 + µI +

a
b + I(t)

)
I(t),

dB
dt

(t) = εI(t) − µ3B(t),

(2.1)

with initial conditions S (0) > 0, I(0) ≥ 0, B(0) ≥ 0.

Remark 2.1. Through the foregoing, we would like to show that (I(t)) is the community that contains
individuals infected with COVID-19, who are actually carriers of the disease and can transmit the
disease to any uninfected individual, while (B(t)) is the environmental elements that contain the
COVID-19 virus, such as water or Hard surfaces, food, etc., which studies have shown that the virus
can settle in for a period of time, and it can transmit the COVID-19 to susceptible people.

It is assumed that model parameters are non-negative and their biological meaning is described in
Table 1.
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Table 1. Model parameters and their description.

The Parameter Environmental Interpretation

A The recruitment rate
β Infection rate parameter by I

γ Vaccine effectiveness parameter
δ Effectiveness of obedience in implementing health protocols
α The level of fear
π Infection rate parameter by B

µ1, µ2 The natural death rate parameters from S , I and B

µ3 The rate of death of the virus due to sterilization with sterile
substances or by the sun or the death of the virus naturally after a certain period of time.

a The ratio of the maximum medical resource supplied
per unit time to the saturation factor of the delayed in treatment

1
b

The stand for the saturation factor that measure

the effect of the delay in treatment for the infected individuals
µI Death rate parameter due to corona varies
ε Pathogen shed rate of infected individual.

We set x = (S , I, B)t the vector of state variables and Σ =
{
x ∈ R3 : x ≥ 0R3

}
. System (2.1) can be

taking the following compact form:
dx
dt

= f (x) = ( f1(x), f2(x), f3(x))t ,

x(0) = (S 0, I0, B0),
(2.2)

where f : R3 → R3 is a continuously differentiable function on R3. According to [21, Theorem
III.10.VI], for x(0) ∈ Σ, a unique solution of (2.1) exists, at least locally, and remains in Σ for its
maximal interval of existence [21, Theorem III.10.XVI]. Hence model (2.1) is biologically well-
defined.

3. Mathematical analysis

3.1. Positivity and boundedness of solutions

In this part, we study some elementary results about model (2.1), such as positivity and boundedness
of model (2.1).

Theorem 3.1. The solutions (S (t), I(t), B(t)), ∀t, of system (2.1) with initial conditions S (0) > 0, I(0)
and B(0) are always positive.

Proof. As mentioned in the study of [22], considering the non-linear system of model (2.1), we take
from the first equation,

dS
dt
≥ −

[
β(1 − γ)(1 − δ)I(t) + πB(t) + (µ1 + γ + δ)

]
S (t).
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Integrating this equation by separation of variables, gives

ln(S ) ≥ −
[
β (1 − γ) (1 − δ) I(t) + πB(t) + (µ1 + γ + δ)

]
t.

So on,

S (t) ≥ S (0) exp
(
−

[
β(1 − γ)(1 − δ)I(t) + πB(t) + (µ1 + γ + δ)

]
t
)
.

Thus,

S (t) ≥ 0.

Similarly, it can also been shown that I(t) ≥ 0 and B(t) ≥ 0. �

Theorem 3.2. All the solutions of (2.1) are bounded.

Proof. Following [23] and looking at our model (2.1), the reader will notice that it consists of two
separate parts, which are human i.e, (S (t), I(t)) and pathogen i.e, B(t) populations. Now, it’s obvious
from human population that:

d
dt

(S (t) + I(t)) =
A

1 + αI(t)
− (µ1 + γ + δ)S (t) − (µ2 + µI)I(t) ≤ A − κ(S (t) + I(t)),

where

κ = min {µ1 + γ + δ, µ2 + µI} .

Then

lim sup
t→∞

(S + I) ≤
A
κ
.

From the pathogen class we obtain

dB
dt
≤
εA
κ
− µ3B(t),

therefore,

B(t) ≤
εA
κµ3

.

So, the solutions of model (2.1) are bounded. Through the above discussion, it will be possible to
obtain the following two areas:

ΥH =

{
(S , I) ∈ R2

+ : S + I ≤
A
κ

}
and ΥB =

{
B ∈ R : B ≤

εA
κµ3

}
.

Let consider int (Υ) refers to the interior of the region Υ where Υ = ΥH ×ΥB. Υ is a positively invariant
according to model (2.1). So, the model (2.1) is well posed. �
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3.2. The basic reproduction number

Model (2.1) admits a the following trivial equilibrium point x0 =

(
A

(µ1 + γ + δ)
, 0, 0

)
. According

to the same appraoch described by Van den Driessche and Watmough in [24], the basic reproduction
number of COVID-19 model (2.1) is defined as

R0 =
Ab(επ + β(1 − δ)(1 − γ)µ3)
µ3(µ1 + γ + δ)(b(µ2 + µI) + a)

. (3.1)

3.3. Steady states

Setting the right-hand side of system (2.1) equal to zero and solve each equation in term of I gives:

B∗ =
ε

µ3
I∗, S ∗ =

I∗a
b + I∗

+
A

I∗α + 1
B∗π + δ1γ1I∗β + k2

,
(3.2)

where I∗ is a solution of the following equation:

I
(
c0I3 + c1I2 + c2I + c3

)
= 0, (3.3)

with

c0 = −k1αb (επ + δ1γ1µ3β) , c1 = −k1b (αbεπ + επ + δ1γ1µ3αbβ + δ1γ1µ3β + k2µ3α) ,

c2 = k2µ3 (a + k1b)R0

1 −
Rc︷                                  ︸︸                                  ︷(

k1b
A

+
k2µ3 (α(k1b + a) + k1)

A(επ + βδ1γ1µ3)

) ,
c3 = (R0 − 1) k2µ3b (k1 b + a) ,

(3.4)

and k1 = µ2 + µI , k2 = µ1 + γ + δ, γ1 = 1 − γ, δ1 = 1 − δ.
We note that coefficients c0 and c1 are always negative. Coefficient c3 is negative (resp. positive) if

and only if R0 < 1 (resp. R0 > 1). The coefficient c2 is negative (resp. positive) if and only if Rc > 1
(resp. Rc < 1).

Equation (3.3) has a trivial solution I = 0. Replacing I = 0 in (3.2), we obtain the disease-free
equilibrium point x0. Now we consider that I > 0. According to the Descartes’ rule of sign, we are
able to claim the following result:

Theorem 3.3. COVID-19 model (2.1) admits:

(i) the disease-free equilibrium x0 as unique biological feasible steady state if and only if R0 ≤ 1 and
Rc > 1;

(ii) a co-existence between the disease-free equilibrium x0 and two endemic equilibrium points as the
only possible three steady states if R0 < 1 and Rc < 1;

(iii) a co-existence between the disease-free equilibrium x0 and an endemic equilibrium as the only
two steady states if R0 = 1 and Rc < 1;

(iv) a co-existence between the disease-free equilibrium x0 and an endemic equilibrium point as the
two only possible steady states if R0 > 1.
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3.4. Local stability analysis of the disease-free equilibrium and backward bifurcation condition

Let us denote by x∗ = (S ∗, I∗, B∗) an arbitrary steady state of model (2.1). The Jacobian matrix
of (2.1) evaluated at x∗ is given by

J (x∗) =


−βγ1δ1I∗ − πB∗ − k2, −

αA
(1 + αI∗)2 − βγ1δ1S ∗ +

ab
(b + I∗)2 , −πS ∗

βγ1δ1I∗ + πB∗, βγ1δ1S ∗ − k1 −
ab

(b + I∗)2 , πS ∗

0, ε, −µ3

 . (3.5)

At the disease-free equilibrium, i.e, I∗ = 0, the characteristic equation of J (x0) is given by

(X + k2)

P(X)︷                   ︸︸                   ︷(
$2X2 +$X +$0

)
= 0, (3.6)

where

$2 = b (επ + δ1γ1µ3β) ,

$1 = ((µ3 + k1) b + a) επ +
((
δ1γ1µ

2
3 + (1 − R0) δ1k1γ1µ3

)
b + (1 − R0) δ1γ1µ3a

)
β,

$0 = (1 − R0) µ3 (k1b + a) (επ + δ1γ1µ3β) .

(3.7)

Solutions of Eq (3.6) is X = −k2 and those of P(X). Since all coefficient of P(X) is always positive
whenever R0 < 1, it follows that solutions of P(X) has roots with negative real parts. Thus we conclude
that all the eigenvalues of the Jacobian matrix of model (2.1) evaluated at the disease-free equilibrium
have negative real parts, which means that the disease-free equilibrium is locally asymptotically stable
whenever the basic reproduction number is less than one (R0 < 1). Thus, we claim the following result.

Lemma 3.1. The disease-free equilibrium x0 is locally asymptotically stable if R0 < 1, and unstable
otherwise.

Item (ii) indicates the possibility of the appearance of the backward bifurcation phenomenon in
the model (2.1) since the disease-free equilibrium can co-exist with two endemic equilibrium points
whenever the basic reproduction number is less than one [25]. For further investigations on the subject,
we will check the case (ii) of Theorem 3.3 by solving together equations R0 < 1 and Rc < 1 in terms
of A. We obtain that the case (ii) of Theorem 3.3 holds whenever,

(
k1b

[
επ + β(1 − δ)(1 − γ)µ3

]
+ k2µ3 [α(bk1 + a)]

επ + β(1 − δ)(1 − γ)µ3

)
︸                                                            ︷︷                                                            ︸

Amin

< Abif <

Amax︷                              ︸︸                              ︷(
µ3k2(bk1 + a)

b(επ + β(1 − δ)(1 − γ)µ3)

)
. (3.8)

We then claim the following result, which is a direct consequence of the item (ii) of Theorem 3.3.

Corollary 3.1. If the condition (3.8) holds, then model (2.1) undergoes a backward bifurcation.
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3.5. Global stability analysis of steady states

3.5.1. Global stability of the disease-free equilibrium in a particular case

Letting us consider that the saturation parameter b that measures the effect of the delay in treatment
for the infected individuals is equal to zero, that is b = 0. Thus, considering only the infected
compartments of system (2.1), we obtain

dI
dt

(t)
dB
dt

(t)

 = (F − V)
(

I(t)
B(t)

)
−M(S , I, B), (3.9)

where F =

δ1γ1Aβ
k2

Aπ
k2

0 0

, V =

(
k1 0
−ε µ3

)
, and M(S , I, B) =

(
(βγ1δ1I + πB) (S 0 − S ) + a

0

)
. In Υ,

S 0 ≥ S (t) for all t > 0. Then, it follows thatM(S , I, B) ≥ 0R2 . This means that
dI
dt

(t)
dB
dt

(t)

 ≤ (F − V)
(

I(t)
B(t)

)
.

Note that

V−1 =

( 1
k1

0
ε

k1 µ3

1
µ3

)
≥ 0R2×2 .

We also have F ≥ 0. Thus, from [26, Theorem 2.1], there exists a Lyapunov function for
system (2.1) expressed as L (S , I, B) = u′V−1 (I, B)′ where u′ is the left eigenvector of the nonnegative
matrix V−1Z corresponding to the eigenvalue R0. This implies that,

dL
dt

= (R0 − 1) u′ (I, B) − u′V−1M (I, B) ≤ 0.

Since M (S , I, B) ≥ (0, 0)′, it follows that
dL
dt

< 0 whenever R0 < 1, with
dL
dt

= 0 if and only if

(I, B) = (0, 0). It follows that the largest invariant set contained in
{

(S , I, B) ∈ R3
+ :

dL
dt

= 0
}

is {x0}.

Thus, from LaSalle Invariance Principle [27], every solution of (2.1) with initials conditions in Υ

converge to x0 when t −→ +∞. That is (I, B) −→ (0, 0), and S −→ S 0 when t −→ +∞, which is
equivalent to (S , I, B) −→ (S 0, 0, 0) when t −→ +∞. Thus, the disease-free equilibrium x0 is globally
asymptotically stable in Υ whenever R0 < 1. We thus claim what follows:

Theorem 3.4. If the saturation parameter b that measures the effect of the delay in treatment for the
infected individuals is equal to zero, that is b = 0, then the disease-free equilibrium x0 is globally
asymptotically stable in Υ whenever R0 < 1.

3.5.2. Global stability of the endemic equilibrium point

Our goal here is to prove the global stability of the unique endemic equilibrium x∗ when R0 > 1,
using the geometric approach [28]. To this aim, we’ll start with a quick overview of the procedure’s
general mathematical foundation, as devised by Li and Muldowney [28, 29].
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Suppose the map f (w) is a C1 function for w in an open subset P ⊂ Rn, and consider the following
autonomous dynamical system:

w
′

= f (w). (3.10)

Let w(t,w0) be the solution to Eq (3.10) satisfying (0,w0) = w0 . Now we’re going to make some
fundamental assumptions:

(a) There is a tiny absorption set K ⊂ P available;
(b) In a simply connected P, the ordinary differential system (3.10) has a single steady state w∗.

According to the preceding assumptions (a)–(b), if a point w is locally stable and all trajectories
in P converge to the same point, w, it is said to be globally stable in P. That is, there are no non
constant periodic solutions in system (3.10). It’s worth noting that the Bendixson criteria play a
vital part in determining global stability. A Bendixson criterion for n ≥ 2 is a condition provided
by field f that prevents non constance periodic solutions of equations from existing (3.10). The typical
outcomes (see [30]) provide suitable global conditions for n = 2 (i.e., the planar case). In the work
of Li and Muldowney [28], a surprising approach for showing global stability for n ≥ 3 may be
traced. They demonstrated in their study that if the criteria (a)–(b) are met and ordinary differential
system (3.10) fulfills a Bendixson condition that holds up under pressure C1 local f perturbations at all
non-equilibrium non-wandering places for system (3.10), then w∗ is globally stable in P and stable in
addition. We present the Bendixson criteria, which are based on the Lozinski measure proposed in [29]
and are robust to C1 local upsilon-perturbations. Consider the ordinary differential system (3.10) given
the following criteria (a) to (b). Let D(w) be a Cn

2 × Cn
2 matrix-valued function which is C1 for w ∈ P,

and consider
A = D f D−1 + DJ[2]D−1, (3.11)

where D f is P’s directional derivative in the vector field’s direction. f in system (3.10), and J[2] is
so-called that the second additive compound matrix of J. Consider the following amount, q2, which is
written as

q2 = lim
t→∞

sup
w0∈Ω

1
t

∫ t

0
ρ(A(s,w0))ds, (3.12)

where ρ(A) is the Lozinski measure of A with respect to vector norm |.| in RN , N = C(n, 2). (For
more information, check [31]. They established in their study [29] that if the hypothesis (a) and (b)
are satisfied, then q2 < 0, suggesting that no orbits (periodic orbits, homoclinic orbits, and heteroclinic
cycles) generate a simple closed rectifiable curve in D that is system invariant (3.10). Furthermore,
number q2 < 0 signifies the local stability of equilibrium point w under the specified hypothesis (a)–(b),
as stated in [29]. Theorem 3.3 follows as a result.

Assuming that the hypothesis (a) to (b) hold and let w = (S , I, B). Let f (w) be the vector field
of system (2.1). The second additive compound matrix J[2] of The Jacobian matrix J =

[
Ji j

]
(3×3)

=

∂ f /∂w associated with a general solution w(t) of our system (2.1) is given by

J [2] =


J11 + J22, πS , πS

ε, J11 + J33, −
αA

(1 + αI)2 − βγ1δ1S +
ab

(b + I∗)2

0, βγ1δ1I + πB, J22 + J33

 . (3.13)
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Choosing the function

P = P(S , I, B) = diag(1, I/B, I/B),

then

P f P−1 = diag
(
0,

I
′

I
−

B
′

B
,

I
′

I
−

B
′

B

)
.

So, by forward computation of (3.11) we get

A = [Ai j] =


J11 + J22, πS , πS

ε, J11 + J33 +
I
′

I
−

B
′

B
, −

αA
(1 + αI)2 − βγ1δ1S +

ab
(b + I∗)2

0, βγ1δ1I + πB, J22 + J33 +
I
′

I
−

B
′

B

 . (3.14)

The matrix A can be rewritten as a block matrix: A11 = J11 + J22, A12 = (πS , πS ), A21 = (ε, 0)T and

A22 =


J11 + J33 +

I
′

I
−

B
′

B
, −

αA
(1 + αI)2 − βγ1δ1S +

ab
(b + I∗)2

βγ1δ1I + πB, J22 + J33 +
I
′

I
−

B
′

B

 . (3.15)

Letting (u1, u2, u3) be a vector in R3
+; its norm ‖.‖ is defined as

‖(u1, u2, u3)‖ = max
t→∞
{|u1|, |u2| + |u3|} . (3.16)

We use the Lozinskii measure µ(A) in relation to the norm (3.16) as

µ(A) < sup{g1, g2}, (3.17)

where g1 = µ̂(A11) + |A12|, g2 = µ̂(A22) + |A21|, |A12|, |A22| are matrix norms in terms of I1 vector norms,
and µ̂ is the Lozinskili measure in terms of this norm I1.; then µ̂(A11) = −βγ1δ1I∗−πB∗−k2 +βγ1δ1S ∗−

k1 −
ab

(b + I∗)2 , |A12| = πS , |A21| = ε. By adding both non-diagonal components of every column of A22

to the corresponding columns of the diagonal elements, one get µ̂(A22),

A
′

22 =


−k2 − µ3 +

I
′

I
−

B
′

B
, −

αA
(1 + αI)2 − βγ1δ1S +

ab
(b + I∗)2

βγ1δ1I + πB, −
αA

(1 + αI)2 − µ3 +
I
′

I
−

B
′

B

 . (3.18)

Hence, to find µ̂(A22), as the sum of the maximum of two diagonal cells of A
′

22:

µ̂(A22) = max
{
−k2 − µ3 +

I
′

I
−

B
′

B
,−

αA
(1 + αI)2 − µ3 +

I
′

I
−

B
′

B

}
= −

αA
(1 + αI)2 − µ3 +

I
′

I
−

B
′

B
,
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provided that
αA

(1 + αI)2 ≤ k2. So, g1 = −βγ1δ1I∗ − k2 + βγ1δ1S ∗ − k1 −
ab

(b + I∗)2 , g2 = ε −
αA

(1 + αI)2 −

µ3 +
I
′

I
−

B
′

B
.

To be mathematically and biologically reasonable, we will assume that

µ(A) ≤ sup {g1, g2} ≤ ε −
αA

(1 + αI)2 − µ3 +
I
′

I
−

B
′

B
.

Since, the sup
t→∞

I(t) =
A
k2

, it is easy to verify that

µ(A) ≤
I
′

I
−

(
k2

2αA
(k2 + αA)2 − ε

)
. (3.19)

So, from 0 to t, integrating both sides of (3.19) as

1
t

∫ t

0
µ(A) ≤

1
t

ln
I(t)
I(0)
−

(
k2

2αA
(k2 + αA)2 − ε

)
. (3.20)

Then,

lim
t→∞

sup
1
t

∫ t

0
µ(A) ≤ −

(
k2

2αA
(k2 + αA)2 − ε

)
< 0. (3.21)

Hence, the global stability of the unique endemic equilibrium point x∗ is investigated according to the
geometric approach. The following theorem gives sufficient conditions for our aim.

Theorem 3.5. The unique positive point x∗ is asymptotically stable globally whenever R0 > 1 provided
that

ε <
k2

2αA
(k2 + αA)2 < k2. (3.22)

Remark 3.1. It is important to note that we can also use the techniques developed in [32] to also
obtain the proof of the global stability of the unique endemic equilibrium point whenever the basic
reproduction number is greater than one.

4. Numerical results and simulations

For numerical simulations, we consider the parameter values consigned in Table 2.

Table 2. Parameter values used in numerical simulation.

Parameter Values Parameter Values
A 25 µ1, µ2 1/60
β 0.21 µ3 0.03
γ 0.75 a 1
δ 0.75 b 1
α 0.2 µI 10−4

π 0.5 ε 0.1

AIMS Mathematics Volume 8, Issue 3, 6447–6465.



6459

With theses values, we obtain R0 = 27.23228 > 1, Rc = 0.008620 < 1 and the polynomial (3.3)
becomes

I
(
−1.68987041 × 10−4 I3 − 0.00116649 I2 + 1.24898335 I + 1.21358086

)
= 0, (4.1)

which validates the case (iv) of Theorem 3.3. Now, we take A = 0.2 and the other parameters
have the same values consigned in Table 2. We thus obtain R0 = 0.2178582326436636 < 1,
Rc = 1.077553784778204 > 1 and the polynomial (3.3) becomes

I
(
−1.68987041 × 10−4 I3 − 0.00116649 I2 − 7.81645208 × 10−4 I − 0.03618413

)
= 0, (4.2)

which validates the case (i) of Theorem 3.3.
Setting A = 0.9180 and leave the other parameters as in Table 2, we obtain R0 = 1, Rc = 0.2347 < 1

and the polynomial (3.3) becomes

I2
(
−1.689870416666666 × 10−4 I2 − 0.001166498916666666 I + 0.035402488125

)
= 0, (4.3)

which validates as well as the case (iii) of Theorem 3.3. Now, we verify condition (3.8) (case (ii)
of Theorem 3.3). Leaving all model parameter values as in Table 2, we have Amin = 0.2155 and
Amax = 0.9180. Thus, simply choosing Abif = 0.9, we obtain R0 = 0.9803 < 1, Rc = 0.23948 < 1 and
the polynomial (3.3) becomes

I
(
−1.6898 × 10−4 I3 − 0.0011 I2 + 0.0344 I − 9.0850 × 10−4

)
= 0, (4.4)

which means that the backward bifurcation phenomenon can occurs in model (2.1).
We then illustrates the above result graphically. On Figure 2, we see that for R0 < 1, trajectories of

infected states tend to zero, i.e, to the disease free equilibrium. By cons, on Figure 5, it is clear that for
R0 > 1, trajectories of infected states tend the endemic equilibrium.
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Figure 2. Time series of infected compartments for R0 < 1.

The backward bifurcation phenomenon is depicted in Figures 3 and 4. We see that Although the
basic reproduction number is less than one, infected states tend to the endemic state.
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Figure 3. Time series of infected compartments for Rc < R0 < 1.

Figure 4. Time series of infected compartments for R0 = 1.
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Figure 5. Time series of infected compartments for R0 > 1.

We pursue this part of the work by study numerically the impact of some model parameters like α, A,
on the disease dynamics. For this aim, we vary the fear parameter α between 0 and 0.06 (0 ≤ α ≤ 0.06).
The result is depicted in Figures 6 and 7. It is clear that when the fear increases, the number of infected
individuals decrease considerably Figure 6. This prove that media campaigns which show the negative
effects of COVID-19 have a best effect to stop the spread ot the virus into human communities. Also,
Figure 7 shows that control measures consisting to limit the population movements (quarantine and
confinement) can also permit to decrease in the number of COVID-19 cases in the population.
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Figure 6. Time series of infected compartments with the variation of the fear parameter α.
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Figure 7. Time series of infected compartments with the variation of the recruitment
parameter A.
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Figure 8. The basic reproduction number function of (a) the recruitment rate A; (b) the
saturation factor.

Figure 8 shows the basic reproduction number in terms of the recruitment rate (panel left) and the
saturation Factor (right panel). We see that Ro IS an increasing function of these two model parameters.
Indeed when A > 0.96, then Ro > 1 and Figure 9 shows the 3D representation as well as the contour
plot of the basic reproduction number, function of the recruitment rate A and the saturation factor b.
We note that these two parameter plays an important role in the disease dynamics. Indeed, increasing
b while decreasing A permits to decrease in the value of the basic reproduction number, and thus, the
number of new cases.
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Figure 9. 3-D plot of the basic reproduction number, function of the recruitment rate A and
the saturation factor b, and the corresponding contour plot.

5. Conclusions

In this study, we looked into a mathematical SIS-B model of COVID-19 with a fear impact and
saturated treatment function. We investigated dynamical behavior, such as the stability of disease-
free equilibrium and endemic equilibrium, using the comparison theorem and the second additive
compound matrix theory. We often decrease the fundamental reproduction number below unity to
eradicate the disease. This criterion, however, is insufficient in our model. In fact, we discovered
a circumstance under which the model’s backward bifurcation could occur. However, if we set the
saturation parameter, which gauges the impact of delaying treatment for sick people, to zero, this
phenomena vanishes. So, using the comparison theorem, we proved that the disease-free equilibrium
is globally asymptotically stable whenever the basic reproduction is less than one. We may deduce
from the previous study, the limited treatment capacity is a major cause of backward bifurcation. As a
result, if we want to eradicate COVID-19 in a certain location, we must increase medical facilities in
hospitals, such as increasing beds and providing enough treatment medicine. We also prove the global
stability of the unique endemic equilibrium whenever R0 is greater than one, using the geometric
approach. Further methods studied in [32] can also be used to prove the global stability of the endemic
equilibrium whenever the basic reproduction number is greater than one.

To the best of our knowledge, the impact of fear on susceptible people from infected people has
not been investigated. After conducting considerable research on this topic, it was discovered that
the impact of fear on the disease dynamics has an important effort. For this aim, we vary the fear
parameter α between 0 and 0.6 (0 ≤ α ≤ 0.06). The result, depicted through numerical simulations
(see Figure 6), shows that it is clear that when the fear increases, the number of infected individuals
decreases considerably. This proves that media campaigns that show the negative effects of COVID-19
have the best effect to stop the spread of the virus into human communities.

Acknowledgments

The authors Aziz Khan and Thabet Abdeljawad would like to thank Prince Sultan University for
the support through the research lab TAS.

AIMS Mathematics Volume 8, Issue 3, 6447–6465.



6463

Conflict of interest

The authors declare no conflict of interest.

References

1. K. Bjørkdahl, B. Carlsen, Fear of the fear of the flu: Assumptions about media effects in the 2009
pandemic, Sci. Commun., 39 (2017), 291–410. https://doi.org/10.1177/1075547017709792

2. I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SI-
type model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306
(2018), 160–169. https://doi.org/10.1016/j.mbs.2018.09.014

3. The World Bank, Fertility rate, total (births per woman)-Hong Kong SAR, china, 2018. Available
from: https://data.worldbank.org

4. J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo, M. Soultsioti, et al., The
global impact of the coronavirus pandemic, Cytokine Growth Factor. Rev., 53 (2020), 1–9.
https://doi.org/10.1016/j.cytogfr.2020.05.010

5. R. Glaser, T. F. Robles, J. Sheridan, W. B. Malarkey, J. K. KiecoltGlaser, Mild
depressive symptoms are associated with amplified and prolonged inflammatory responses after
influenza virus vaccination in older adults, Arch. Gen. Psychiatry, 60 (2003), 1009–1014.
https://doi.org/10.1001/archpsyc.60.10.1009

6. K. Roosa, Y. Lee, R. Y. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman, et al., Short-term forecasts
of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020, J. Clin.
Med., 9 (2020), 596. https://doi.org/10.3390/jcm9020596

7. N. Nuraini, K. Khairudin, M. Apri, Modeling simulation of COVID-19 in Indonesia based on early
endemic data, Commun. Biomathematical Sci., 3 (2020). http://doi.org/10.5614/cbms.2020.3.1.1

8. R. C. Das, Forecasting incidences of COVID-19 using Box-Jenkins method for the period July 12-
Septembert 11, 2020: A study on highly affected countries, Chaos Solitons Fractals, 140 (2020),
110248. https://doi.org/10.1016/j.chaos.2020.110248

9. A. Ajbar, R. T. Alqahtani, Bifurcation analysis of a SEIR epidemic system with
governmental action and individual reaction, Adv. Difference Equ., 2020 (2020), 541.
https://doi.org/10.1186/s13662-020-02997-z

10. M. Sher, K. Shah, Z. A. Khan, H. Khan, A. Khan, Computational and theoretical modeling of
the transmission dynamics of novel COVID-19 under Mittag-Leffler Power law, Alex. Eng. J., 59
(2020), 3133–3147. https://doi.org/10.1016/j.aej.2020.07.014

11. M. A. Dokuyucu, E. Celik, Analyzing a novel coronavirus model (COVID-19) in the sense of
Caputo-Fabrizio fractional operator, Appl. Comput. Math. Ean Int. J., 20 (2021), 49–69.

12. M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined
and isolation, Adv. Difference Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9

13. S. K. Panda, Applying fixed point methods and fractional operators in the modelling
of novel coronavirus 2019-nCoV/SARS-CoV-2, Results Phys., 19 (2020), 103433.
https://doi.org/10.1016/j.rinp.2020.103433

AIMS Mathematics Volume 8, Issue 3, 6447–6465.

http://dx.doi.org/https://doi.org/10.1177/1075547017709792
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2018.09.014
http://dx.doi.org/https://data.worldbank.org
http://dx.doi.org/https://doi.org/10.1016/j.cytogfr.2020.05.010
http://dx.doi.org/https://doi.org/10.1001/archpsyc.60.10.1009
http://dx.doi.org/https://doi.org/10.3390/jcm9020596
http://dx.doi.org/http://doi.org/10.5614/cbms.2020.3.1.1
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110248
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02997-z
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.07.014
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02882-9
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2020.103433


6464

14. H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo–Fabrizio
fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons
Fractals, 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668

15. C. Maji, Impact of media-induced fear on the control of COVID-19 outbreak: A mathematical
study, Int. J. Differ. Equ., 2021 (2021), 2129490. https://doi.org/10.1155/2021/2129490

16. S. C. Mpeshe, N. Nyerere, Modeling the dynamics of coronavirus disease pandemic
coupled with fear epidemics, Comput. Math. Methods Med., 2021 (2021), 6647425.
https://doi.org/10.1155/2021/6647425

17. L. L. Zhou, S. Ampon-Wireko, X. L. Xu, P. E. Quansah, E. Larnyo, Media attention and vaccine
hesitancy: Examining the mediating effects of fear of covid-19 and the moderating role of trust in
leadership, Plos one, 17 (2022), e0263610. https://doi.org/10.1371/journal.pone.0263610

18. S. V. Scarpino, G. Petri, On the predictability of infectious disease outbreaks, Nat. Commun., 10
(2019), 898. https://doi.org/10.1038/s41467-019-08616-0

19. A. I. K. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional
model to understand the propagation of a novel corona virus pandemic, Alex. Eng. J., 61 (2022),
7007–7027. https://doi.org/10.1016/j.aej.2021.12.042

20. X. Zhang, X. N. Liu, Backward bifurcation of an epidemic model with saturated treatment function,
J. Math. Anal. Appl., 348 (2008), 433–443. https://doi.org/10.1016/j.jmaa.2008.07.042

21. W. Walter, Ordinary Differential Equations, Springer, 1998.

22. F. Sulayman, F. A. Abdullah, M. H. Mohd, An sveire model of tuberculosis to assess the
effect of an imperfect vaccine and other exogenous factors, Mathematics, 9 (2021), 327.
https://doi.org/10.3390/math9040327

23. X. Y. Zhou, X. Y. Shi, J. Cui, Stability and backward bifurcation on a cholera epidemic
model with saturated recovery rate, Math. Methods Appl. Sci., 40 (2017), 1288–1306.
https://doi.org/10.1002/mma.4053

24. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/s0025-5564(02)00108-6

25. H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo, Bifurcation thresholds and optimal
control in transmission dynamics of arboviral diseases, J. Math. Biol., 76 (2018), 379–427.

26. Z. S. Shuai, P. van den Driessche, Global stability of infectious disease models using Lyapunov
functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642

27. J. P. La Salle, The stability of dynamical systems, In: CBMS-NSF regional conference series in
applied mathematics, 1976. https://doi.org/10.1137/1.9781611970432

28. M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math.
Anal., 27 (1996), 1070–1083. https://doi.org/10.1137/S0036141094266449

29. M. Y. Li, J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci.,
125 (1995), 155–164. https://doi.org/10.1016/0025-5564(95)92756-5

AIMS Mathematics Volume 8, Issue 3, 6447–6465.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110668
http://dx.doi.org/https://doi.org/10.1155/2021/2129490
http://dx.doi.org/https://doi.org/10.1155/2021/6647425
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0263610
http://dx.doi.org/https://doi.org/10.1038/s41467-019-08616-0
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.12.042
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2008.07.042
http://dx.doi.org/https://doi.org/10.3390/math9040327
http://dx.doi.org/https://doi.org/10.1002/mma.4053
http://dx.doi.org/https://doi.org/10.1016/s0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1137/120876642
http://dx.doi.org/https://doi.org/10.1137/1.9781611970432
http://dx.doi.org/https://doi.org/10.1137/S0036141094266449
http://dx.doi.org/https://doi.org/10.1016/0025-5564(95)92756-5


6465

30. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields, Springer, 2002.

31. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, 1965.

32. Y. K. Xie, Z. Wang, A ratio-dependent impulsive control of an siqs epidemic model with non-linear
incidence, Appl. Math. Comput., 423 (2022), 127018. https://doi.org/10.1016/j.amc.2022.127018

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 3, 6447–6465.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127018
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Mathematical analysis
	Positivity and boundedness of solutions
	The basic reproduction number
	Steady states
	Local stability analysis of the disease-free equilibrium and backward bifurcation condition
	Global stability analysis of steady states
	Global stability of the disease-free equilibrium in a particular case
	Global stability of the endemic equilibrium point


	Numerical results and simulations
	Conclusions

