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Abstract: In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear
perturbation and steep potential well

−
(
a + b

∫
R3
|∇u|2dx

)
∆u + λV(x)u = f (x, u) + g(x)|u|q−2u in R3,

u ∈ H1(R3),

where a and b are positive constants, λ > 0 is a parameter, 1 < q < 2, the potential V ∈ C(R3,R) and
V−1(0) has a nonempty interior. The functions f and g are assumed to obey a certain set of conditions.
The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the
concentration behavior of solutions as λ→ ∞ is also explored.
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1. Introduction

In the present paper, we investigate the existence and concentration of the solutions to a class of
nonlinear Kirchhoff-type problem

−
(
a + b

∫
R3
|∇u|2dx

)
∆u + λV(x)u = f (x, u) + g(x)|u|q−2u in R3,

u ∈ H1(R3),

(1.1)

where a, b > 0 are constants, λ > 0 is a real parameter, 1 < q < 2, f ∈ C(R3 × R,R) and the potential
V satisfies the following conditions:
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(V1) V(x) ∈ C(R3), V(x) ≥ 0 on R3, and there exists V0 > 0 such that the set {V < V0} = {x ∈ R3|V(x) <
V0} is nonempty and

|{V < V0}|
2
3 < C,

where | · | is the Lebesgue measure and C is the best constant for the embedding of D1,2(R3) in
L6(R3);

(V2) Ω∗ =intV−1(0) is nonempty and has a smooth boundary with Ω∗ = V−1(0);
(V3) there exists an open set Ω ⊂ Ω∗ such that V(x) ≡ 0 for all x ∈ Ω.

These kinds of hypotheses were first put forward by Bartsch and Wang [1] in their research on
the nonlinear Schrödinger equations, and it has attracted the attention of several researchers, e.g.,
see [2,3,9,12,13,16,27]. We note that the conditions (V1) and (V2) imply that λV represents a potential
well with the bottom V−1(0), and that its depth is controlled by λ. In view of this, we can expect to find
the solutions which are concentrated at the bottom of the potential V as the depth goes to infinity.

In recent years, the elliptic problem −
(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω
(1.2)

has been widely studied by many researchers, where a, b > 0, Ω ⊂ R3 is a smooth bounded domain and
f ∈ C(Ω × R,R). Problem (1.2) is often referred to as a nonlocal problem on account of the presence
of the term

( ∫
Ω
|∇u|2dx

)
∆u, we do not know

( ∫
Ω

|∇un|
2dx

)2
→

( ∫
Ω

|∇u|2dx
)2

from un ⇀ u in H1
0(Ω), which implies that (1.2) is no longer a pointwise identity. This phenomenon

causes some mathematical difficulties, but at the same time, it makes the research of (1.2) particularly
interesting. Moreover, problem (1.2) has a profound and interesting physical context, which is related
to the stationary analogue of the equation

utt −
(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u),

where u denotes the displacement, f (x, u) is the external force, a is the initial tension and b is related
to the inherent characteristics of the string (such as the Young’s modulus). This hyperbolic equation
generalizes the following equation:

ρ
∂2u
∂t2 −

( p0

h
+

E
2L

∫ L

0

∣∣∣∣∂2u
∂x2

∣∣∣∣dx
)∂2u
∂x2 = 0,

which is proposed by Kirchhoff in [4] as an extension of the classical D’Alembert’s wave equations
for free vibrations of elastic strings. This model takes into account the changes in length of the string
produced by transverse vibrations. For more mathematical and physical background on the Kirchhoff-
type problem, we refer the readers to [5, 6] and the references therein.
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More recently, many researchers have been devoted to investigations into the Kirchhoff-type
problem defined in the whole space R3, i.e., the following problem:

−
(
a + b

∫
R3
|∇u|2dx

)
∆u + V(x)u = f (x, u) in R3,

u ∈ H1(R3),

(1.3)

where V ∈ C(R3,R) is a potential function and f ∈ C(R3 × R,R). There have been a lot of studies on
the solutions of (1.3) under many different assumptions. See, for example, in [7], Li et al. obtained
a positive solution for (1.3) by using the cut-off technique and monotone method. In [8], Li and Ye
proved the existence of ground state solutions in the case of f (x, u) = |u|p−1u and 2 < p ≤ 3. Later
Ye [10] obtained a positive high-energy solution with superlinear nonlinearities by using the Nehari-
Pohozaev manifold. For more results about Kirchhoff-type problems, readers can see [11, 14, 15, 17]
and the references therein.

Very recently, Du et al. [18] considered the following Kirchhoff-type problem:
−
(
a + b

∫
R3
|∇u|2dx

)
∆u + λV(x)u = f (x, u) in R3,

u ∈ H1(R3),

(1.4)

where a, b, λ > 0 are parameters and the potential V satisfies the conditions (V1) and (V2). They
showed that the existence and asymptotic behavior of ground state solutions when f (x, u) behaved
similar to |u|p−2u with 4 < p < 6. In [19], the authors obtained the existence of nontrivial solutions
for the case of f (x, u) = |u|p−2u with 4 ≤ p < 6. After that, Zhang and Du [20] obtained the positive
solutions for b small and λ large by combining the truncation technique and the parameter-dependent
compactness lemma when f (x, u) = |u|p−2u and 2 < p < 4. Furthermore, Sun and Wu [21] proved the
existence of generate multiple solutions when f (x, u) was replaced by f (x)|u|p−2u. Zhou and Zhu [22]
got the existence and asymptotic behavior of ground-state solutions to (1.4) with general convolution
nonlinearity. In particular, Choudhuri [23] obtained the existence of infinitely many solutions to a
p-Kirchhoff-type problem without the Ambrosetti-Rabinowitz condition.

Motivated by the works mentioned above, the purpose of this paper was to study the existence and
concentration of solutions for problem (1.1) with a sublinear perturbation term and steep potential
well, which is different from the papers above. In addition, as is well known, this type of problem is
characterized by its lack of compactness due to the embedding fails, which prevents us from using the
variational methods in a standard way. We will construct some inequalities in order to apply them to
recover compactness as λ is considered to be large enough.

Before stating our results we need to introduce some notations and conditions.
Throughout this paper, we denote by | · |p the usual norm of the space Lp(R3), 1 ≤ p ≤ ∞, C1,C2, ...

stand for different positive constants and g± = sup{±g, 0}. For any x ∈ R3 and r > 0, Br(x) := {y ∈ R3 :
|y − x| < r}. Moreover, if we take a subsequence of a sequence {un}, we shall denote it again as {un}.
We use o(1) to denote any quantity which tends to zero when n→ ∞.

Considering that F(x, s) =
∫ s

0
f (x, τ)dτ, which is the primitive of f , we suppose the following

hypotheses:
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( f1) f ∈ C(R3 × R,R), where f (x, s)s > 0 for all s , 0 and f (x, s) = 0 for all s ≤ 0, and it satisfies

lim
s→0+

f (x, s)
s

= 0 and lim
s→+∞

f (x, s)
s

= +∞

uniformly for x ∈ R3;
( f2) there exist γ1 > 0 and p ∈ (2, 6) such that

f (x, s) ≤ γ1(1 + sp−1) for all (x, s) ∈ R3 × R;

( f3) there exists γ2 ∈
(
0, Smin{a,1}

4C2
2(S+1)

)
such that

F(x, s) −
1
4

f (x, s)s ≤ γ2s2 for all (x, s) ∈ R3 × R,

where S and C2 are positive constants (see Remark 2.2).
Remark 1.1. Obviously, ( f1) and ( f2) imply that for any ε > 0, there exists Cε > 0 such that

0 ≤ F(x, s) ≤ ε|s|2 + Cε|s|p, f (x, s)s ≤
ε

2
|s|2 +

Cε

p
|s|p (1.5)

for all (x, s) ∈ R3×R. An example of nonlinearity in f (x, s) satisfying the hypotheses ( f1)–( f3) is given
by

f (x, s) =


h1(x)s3 + h2(x)[s − ln(s + 1)], if (x, s) ∈ R3 × (0,+∞),

0, if (x, s) ∈ R3 × (−∞, 0],

where for each i = {1, 2}, hi is some positive continuous bounded function.
The sublinear perturbation g is given by the following condition:

(g1) g ∈ L
2

2−q (R3) and there exists an open set Ωg ⊂ Ω such that g > 0 on Ωg. In addition, there exists
γ3 > 0 independent of ε such that γ3 > Cε for d(p, q) := (p−2)p−2(2−q)2−q

(p−q)p−q and K := (min{a,1})p−q

2p−q
[
γ3C

p
p

(
1+ 1
S

) p
2
]2−q

,

with g satisfying

|g+| 2
2−q

<
q[d(p, q)K]

1
p−2

C
q
2

(
1 + 1

S

) q
2
,

where Cε and Cp are given by Remarks 1.1 and 2.2 respectively.
Now we may state our main results as follows:

Theorem 1.2. Suppose that (V1)–(V3), ( f1)–( f3) and (g1) hold. Then, there exist b̂ > 0 and Λ∗ > 0 such
that b ∈ (0, b̂), problem (1.1) has at least two solutions for all λ > Λ∗.

On the concentration of nontrivial solutions we have the following result.
Theorem 1.3. Let u(1)

λ and u(2)
λ be two solutions of problem (1.1) given by Theorem 1.2 and Ω = Ω∗.

Then, u(1)
λ → u(1)

0 and u(2)
λ → u(2)

0 in Eλ as λ→ ∞, where u(1)
0 , u(2)

0 ∈ H1
0(Ω) are two nontrivial solutions

of  −
(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u) + g(x)|u|q−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.6)

The outline of this paper is as follows. In Section 2, some definitions and preliminary results are
introduced. In Sections 3 and 4, we prove Theorems 1.2 and 1.3.
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2. Preliminaries

In this section, we will establish the variational framework for problem (1.1) and prove some useful
lemmas. We recall the definition of the Hilbert space H1(R3) endowed with the standard scalar product
and norm

〈u, v〉H1 =

∫
R3

(∇u∇v + uv)dx, ||u||H1 = 〈u, u〉
1
2
H1 .

C denotes the best Sobolev constant

C := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫
R3 |u|6dx)

1
3

,

whereD1,2(R3) := {u ∈ L6(R3) : ∇u ∈ L2(R3)} is the Sobolev space with the norm

||u||D1,2(R3) =
( ∫
R3
|∇u|2dx

) 1
2
.

Let
E =

{
u ∈ H1(R3) :

∫
R3

V(x)u2dx < +∞
}

be equipped with the inner product and norm

〈u, v〉 =

∫
R3

(∇u∇v + V(x)uv)dx, ‖u‖ = 〈u, u〉
1
2 .

For λ > 0, we also need the following inner product and norm

〈u, v〉λ =

∫
R3

(∇u∇v + λV(x)uv)dx, ‖u‖λ = 〈u, u〉
1
2
λ .

If λ ≥ 1, then ||u|| ≤ ||u||λ. Set Eλ = (E, ||u||λ), we have the following results.
Lemma 2.1. Suppose that V(x) satisfies (V1). Then, E is continuously embedded in H1(R3).
Proof. From the condition (V1) and the Sobolev inequality, we have∫

R3
u2dx =

∫
{V<V0}

u2dx +

∫
{V≥V0}

u2dx

≤ |{V < V0}|
2
3
( ∫
R3
|u|6dx

) 1
3

+
1
V0

∫
R3

V(x)u2dx

≤
|{V < V0}|

2
3

C

( ∫
R3

u2dx +

∫
R3
|∇u|2dx

)
+

1
V0

∫
R3

V(x)u2dx,

which implies that∫
R3

u2dx ≤
C

C − |{V < V0}|
2
3

( |{V < V0}|
2
3

C

∫
R3
|∇u|2dx +

1
V0

∫
R3

V(x)u2dx
)

≤
max{|{V < V0}|

2
3 , CV0
}

C − |{V < V0}|
2
3

∫
R3

(|∇u|2 + V(x)u2)dx. (2.1)
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This show that

||u||2H1 ≤

(
1 +

max{|{V < V0}|
2
3 , CV0
}

C − |{V < V0}|
2
3

)
||u||2, (2.2)

which implies that E is continuously embedded in H1(R3). This ends the proof. �
Remark 2.2. (i) Let

S =
C − |{V < V0}|

2
3

|{V < V0}|
2
3

and Λ =
C

V0|{V < V0}|
2
3

.

For all λ ≥ Λ, by using the same conditions and techniques in (2.1) and (2.2), we obtain∫
R3
|u|2dx ≤

1
S
||u||2λ and ||u||2H1 ≤

(
1 +

1
S

)
||u||2λ.

(ii) The embedding Eλ ↪→ Lp(R3) is continuous for p ∈ [2, 6], and Eλ ↪→ Lp
loc(R

3) is compact for
p ∈ [2, 6), namely, for all u ∈ Eλ and λ ≥ Λ, there are constants Cp such that

|u|p ≤ Cp||u||H1 ≤ Cp

(
1 +

1
S

) 1
2
||u||λ. (2.3)

Considering problem (1.1), we have the energy functional Iλ : Eλ → R given by

Iλ(u) =
1
2

(
a
∫
R3
|∇u|2dx +

∫
R3
λVu2dx

)
+

b
4

( ∫
R3
|∇u|2dx

)2
−

∫
R3

F(x, u)dx −
1
q

∫
R3

g(x)|u|qdx.

Moreover, for all u, v ∈ Eλ, it is easy to see that Iλ ∈ C1(Eλ,R) and

〈I′λ(u), v〉 =
(
a + b

∫
R3
|∇u|2dx

) ∫
R3
∇u∇vdx +

∫
R3
λVuvdx −

∫
R3

f (x, u)vdx −
∫
R3

g(x)|u|q−2uvdx.

Hence, if u ∈ Eλ is a critical point of Iλ, then u is a solution of problem (1.1).
Next, we give the following variant of the mountain pass theorem (see [24]) where we consider

the Cerami condition. Let X be a Banach space and I ∈ C1(X,R). We recall that a sequence {un} ⊂

X is said to be a Cerami sequence (in short (Ce)c sequence) at the level c ∈ R if I(un) → c and
(1 + ||un||X)||I′(un)||X∗ → 0, where X∗ denotes the dual space of X.
Lemma 2.3. Let X be a real Banach space. Suppose that I ∈ C1(X,R), I(0) = 0 and
(A1) there exist α, ρ > 0 such that I(u) ≥ α provided ||u||X = ρ;
(A2) there exists e ∈ X with ||e||X > ρ such that I(e) < 0.

Define
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Then, there exists a sequence {un} ⊂ X such that

I(un)→ c ≥ α and (1 + ||un||X)||I′(un)||X∗ → 0.
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3. Proof of Theorem 1.2

In the next lemma we check that Iλ satisfies the mountain pass geometry introduced in Lemma 2.3.
Lemma 3.1. Suppose that (V1), (V2), ( f1) and ( f2) are satisfied. In addition, there exists b̂ > 0 such that
b ∈ (0, b̂). Then, Iλ satisfies Lemma 2.3 of (A1) and (A2) for all λ ≥ Λ.
Proof. We can use the condition (g1), (1.5), (2.3) and the Hölder inequality to obtain

Iλ(u) =
1
2

(
a
∫
R3
|∇u|2dx +

∫
R3
λVu2dx

)
+

b
4

( ∫
R3
|∇u|2dx

)2
−

∫
R3

F(x, u)dx −
1
q

∫
R3

g(x)|u|qdx

≥
1
2

(
a
∫
R3
|∇u|2dx +

∫
R3
λVu2dx

)
− ε

∫
R3

u2dx −Cε

∫
R3
|u|pdx −

1
q

∫
R3

g(x)|u|qdx

≥
min{a, 1}

2
||u||2λ − εC

2
2

(
1 +

1
S

)
||u||2λ −CεC

p
p

(
1 +

1
S

) p
2
||u||pλ −

|g+| 2
2−q

q

( ∫
R3
|u|2dx

) q
2

≥
[min{a, 1}

2
− εC2

2

(
1 +

1
S

)]
||u||2λ − γ3C

p
p

(
1 +

1
S

) p
2
||u||pλ −

C
q
2

(
1 + 1

S

) q
2
|g+| 2

2−q

q
||u||qλ

:=
[min{a, 1}

2
− εC2

2

(
1 +

1
S

)]
(||u||2λ − P||u||pλ − Q||u||qλ).

Let B =
C

q
2

(
1+ 1
S

) q
2
|g+ | 2

2−q

q and D = γ3C
p
p

(
1 + 1

S

) p
2 . Again from the condition (g1), we see that min{a,1}

2 >(
Bp−2D2−q

d(p,q)

) 1
p−q , then we can take ε ∈

(
0, Smin{a,1}

2C2
2(S+1) −

S

C2
2(S+1)

(
Bp−2D2−q

d(p,q)

) 1
p−q

)
, and by Lemma 3.1 in [25], it is

easy to see that there is tP > 0 such that, for ρ := tP = ||u||λ,

Iλ(u) ≥ α :=
[min{a, 1}

2
− εC2

2

(
1 +

1
S

)]
Ψ(tP) > 0,

where Ψ(t) = t2 − Ptp − Qtq, P,Q > 0, which finishes the proof (A1).
In order to prove (A2), notice from the assumption ( f1) that

lim
u→+∞

F(x, u)
u2 = +∞.

So, for any ε > 0, there exists δ > 0 such that F(x, u) > u2

ε
for all u > δ. Let Rε = δ2

ε
, then F(x, u) > u2

ε

− δ2

ε
. Next, let 0 < ϕ ∈ C∞0 (R3) be fixed, we have∫

R3

F(x, tϕ)
t2 dx ≥

1
ε

∫
supp(ϕ)

|ϕ(x)|2dx −
∫

supp(ϕ)

δ2

εt2 dx.

This implies

lim
t→+∞

∫
R3

F(x, tϕ)
t2 dx ≥

1
ε

∫
supp(ϕ)

|ϕ(x)|2dx, (3.1)

since ε is arbitrary, by (3.1) we obtain

lim
t→+∞

∫
R3

F(x, tϕ)
t2 dx = +∞.
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Thus, using Fatou’s Lemma, we have that

lim sup
t→+∞

Iλ,0(tϕ)
t2 ≤

max{a, 1}
2

||ϕ||2λ −

∫
R3

lim inf
t→+∞

[F(x, tϕ)
t2 +

g(x)|ϕ|q

qt2−q

]
dx < 0,

where Iλ,0(u) = Iλ(u) for b = 0. Therefore, if limt→+∞ Iλ,0(tϕ) = −∞, then there exists e = tϕ ∈ Eλ with
||e||λ > ρ such that Iλ,0(e) < 0. Since limb→0+ Iλ(e) = Iλ,0(e), we see that there exists b̂ > 0 such that
Iλ(e) < 0 for all b ∈ (0, b̂). This ends the proof. �

Let Iλ(u)|H1
0 (Ω) be a restriction of Iλ on H1

0(Ω), that is

Iλ(u)|H1
0 (Ω) =

a
2

∫
Ω

|∇u|2dx +
b
4

( ∫
Ω

|∇u|2dx
)2
−

∫
Ω

F(x, u)dx −
1
q

∫
Ω

g(x)|u|qdx (3.2)

for all u ∈ H1
0(Ω). Define

cλ = inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) and c̃ = inf
γ∈Γ̃

max
t∈[0,1]

Iλ|H1
0 (Ω)(γ(t)),

where

Γλ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, Iλ(γ(1)) < 0} and

Γ̃ = {γ ∈ C([0, 1],H1
0(Ω)) : γ(0) = 0, Iλ|H1

0 (Ω)(γ(1)) < 0}.

Indeed, it is easily seen that c̃ is independent of λ. Furthermore, if the conditions ( f1) and ( f2) hold, then
by the proofs of Lemma 3.1, we can conclude that Iλ|H1

0 (Ω)(u) satisfies the hypothesis of the mountain
pass theorem as in Lemma 2.3. Since H1

0(Ω) ⊂ Eλ for all λ > 0, one has 0 < α ≤ cλ ≤ c̃ for all λ ≥ Λ.
Now, we can take M > c̃. Thus

0 < α ≤ cλ ≤ c̃ < M for all λ ≥ Λ. (3.3)

In view of Lemmas 2.3 and 3.1 there exists {un} ⊂ Eλ such that

Iλ(un)→ cλ and (1 + ||un||λ)||I′λ(un)||E∗λ → 0, (3.4)

where cλ is given by (3.3).
Lemma 3.2. Suppose that (V1), (V2) and ( f1)–( f3) are satisfied. Then, the sequence {un} defined by (3.4)
is bounded in Eλ for all λ ≥ Λ.
Proof. By using the condition ( f3) and (2.3), we have

cλ + o(1) =Iλ(un) −
1
4
〈I′λ(un), un〉

=
1
4

(
a
∫
R3
|∇un|

2dx +

∫
R3
λVu2

ndx
)
−

∫
R3

[
F(x, un) −

1
4

f (x, un)un

]
dx

−
(1
q
−

1
4

) ∫
R3

g(x)|un|
qdx
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≥
min{a, 1}

4
||un||

2
λ − γ2

∫
R3
|un|

2dx −
(4 − q)|g+| 2

2−q

4q

( ∫
R3
|un|

2dx
) q

2

≥
[min{a, 1}

4
− γ2C

2
2

(
1 +

1
S

)]
||un||

2
λ −
C

q
2(4 − q)

(
1 + 1

S

) q
2
|g+| 2

2−q

4q
||un||

q
λ,

we can deduce that {un} is bounded in Eλ for n large enough. This ends the proof. �
We are now ready to give the following compactness conditions for Iλ.

Lemma 3.3. Suppose that (V1), (V2), (g1), ( f1) and ( f2) are satisfied. Then, there exist positive constants
β,C > 0 such that Iλ satisfies the (Ce)c condition in Eλ for all λ ≥ max

{
Λ, 8C2

βV0

}
.

Proof. Let {un} be a (Ce)c sequence. By Lemma 3.2, we see that, up to a subsequence, {un} is bounded
in Eλ. Passing to a subsequence again if necessary, we may assume that there exist u ∈ Eλ and A ∈ R
such that 

un ⇀ u weakly in Eλ,

un → u strongly in Lp
loc(R

3), for all p ∈ [2, 6),
un → u a.e. in R3,

(3.5)

and

A2 = lim
n→∞

∫
R3
|∇un|

2dx ≥
∫
R3
|∇u|2dx. (3.6)

Set vn = un − u. By the condition (g1), (3.5) and the Brezis-Lieb Lemma [26], one has∫
R3
|∇vn|

2dx =

∫
R3
|∇un|

2dx −
∫
R3
|∇u|2dx + o(1), (3.7)

A2 + o(1) =

∫
R3
|∇un|

2dx =

∫
R3
|∇vn|

2dx +

∫
R3
|∇u|2dx + o(1) (3.8)

and

o(1) =

∫
R3

g(x)|vn|
qdx =

∫
R3

g(x)|un|
qdx −

∫
R3

g(x)|u|qdx + o(1). (3.9)

Define

Φλ(u) =
1
2

(
a
∫
R3
|∇u|2dx +

∫
R3
λVu2dx

)
+

b
2

A2
∫
R3
|∇u|2dx −

∫
R3

F(x, u)dx −
1
q

∫
R3

g(x)|u|qdx.

Now, we claim that Φ′λ(u) = 0. Indeed, from I′λ(un)→ 0, we have

(a + bA2)
∫
R3
∇u∇vdx +

∫
R3
λVuvdx −

∫
R3

f (x, u)vdx −
∫
R3

g(x)|u|q−2uvdx = 0

for any v ∈ Eλ, which implies that Φ′λ(u) = 0. Next we prove that un → u strongly in Eλ. Then, {vn}

satisfies exactly one of the following conditions:

(B1) lim
n→∞

sup
y∈R3

∫
Br(y)
|vn|

2dx > 0;

(B2) lim
n→∞

sup
y∈R3

∫
Br(y)
|vn|

2dx = 0.
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Suppose that the case (B1) holds. Then, there exists a constant β > 0 such that

lim
n→∞

sup
y∈R3

∫
Br(y)
|vn|

2dx = β > 0. (3.10)

In view of the weakly lower semi-continuity of the norm, we have

||u||λ ≤ lim inf
n→∞

||un||λ. (3.11)

Since the sequence {un} is bounded in Eλ, there exists a positive constant C (independent of λ) such
that

lim sup
n→∞

||un||λ ≤ C. (3.12)

Then, by (3.11) and (3.12), one has

lim sup
n→∞

||vn||λ = lim sup
n→∞

||un − u||λ ≤ 2C. (3.13)

Define

AR := {x ∈ R3 \ BR : V(x) ≥ V0} and FR := {x ∈ R3 \ BR : V(x) < V0}.

Then, we can take λ ≥ 8C2

βV0
, one gets∫

AR

v2
ndx ≤

1
λV0

∫
AR

λVv2
ndx ≤

||vn||
2
λ

λV0
. (3.14)

Applying (3.13) and (3.14) leads to

lim sup
n→∞

∫
AR

v2
ndx = lim sup

n→∞

||vn||
2
λ

λV0
≤
β

2
.

By using the condition (V1), |FR| → 0 as R→ ∞. Combining (2.3) and the Hölder inequality, we get∫
FR

v2
ndx ≤ |FR|

p−2
p
( ∫

FR

vp
ndx

) 2
p
≤ C2

p

(
1 +

1
S

)
||vn||

2
λ|FR|

p−2
p ,

which implies that

lim sup
n→∞

∫
FR

v2
ndx ≤ C2

p

(
1 +

1
S

)
lim sup

n→∞
||vn||

2
λ|FR|

p−2
p

≤ 4C2
C

2
p

(
1 +

1
S

)
|FR|

p−2
p → 0

for any p ∈ [2.6) as R→ ∞. From R→ ∞ and vn → 0 in Lp
loc(R

3) with p ∈ [2, 6), we have

β = lim
n→∞

sup
y∈R3

∫
Br(y)
|vn|

2dx ≤ lim sup
n→∞

∫
R3
|vn|

2dx
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= lim sup
n→∞

( ∫
BR

|vn|
2dx +

∫
Bc

R

|vn|
2dx

)
= lim sup

n→∞

( ∫
AR

|vn|
2dx +

∫
FR

|vn|
2dx

)
≤
β

2
,

which contradicts (3.10), where Bc
R := {x ∈ R3 : |x| ≥ R}. Thus, if the case (B2) holds, by the Lions

Lemma [26], vn → 0 in Lp(R3) for any p ∈ (2, 6). Then, using (1.5) and the Lebesgue dominated
convergence theorem gives ∫

R3
f (x, un)undx =

∫
R3

f (x, u)udx + o(1). (3.15)

It follows from (3.6)–(3.9) and (3.15) that

o(1) =〈I′λ(un), un〉

=a
∫
R3
|∇un|

2dx +

∫
R3
λVu2

ndx + b
( ∫
R3
|∇un|

2dx
)2

−

∫
R3

f (x, un)undx −
∫
R3

g(x)|un|
qdx − 〈Φ′λ(u), u〉

≥min{a, 1}||vn||
2
λ + bA4 − bA2

∫
R3
|∇u|2dx + o(1)

≥min{a, 1}||vn||
2
λ + o(1),

which implies that vn → 0 strongly in Eλ. This ends the proof. �
The proof of Theorem 1.2. Under the assumptions of (V1)–(V3), ( f1)–( f3) and (g1), according to
Lemmas 2.3, 3.1 and 3.2, for each b ∈ (0, b̂), set

Λ∗ := max
{ C

V0|{V < V0}|
2
3

,
8C2

βV0

}
,

then for all λ > Λ∗, there exists the (Ce)cλ sequence {un} for Iλ on Eλ. Then, by Lemma 3.3 and
0 < cλ ≤ c̃ < M, we can obtain that there exist a subsequence {un} and u(1)

λ ∈ Eλ such that un → u(1)
λ

strongly in Eλ. Furthermore, Iλ(u
(1)
λ ) = cλ ≥ α > 0 and u(1)

λ is a nontrivial solution for problem (1.1).
The second solution of problem (1.1) will be constructed by using local minimization. Now, we

show that there exists φ ∈ Eλ such that Iλ(lφ) < 0 for all l > 0 small enough. Using the condition (g1)
and (3.2), take φ ∈ H1

0(Ω) with
∫

Ω
g(x)|φ|qdx > 0, we have, for all l > 0 small enough,

Iλ(lφ) ≤
l2

2

∫
Ω

a|∇φ|2dx +
bl4

4

( ∫
Ω

|∇φ|2dx
)2
−

lq

q

∫
Ω

g(x)|φ|qdx < 0. (3.16)

It follows from Lemma 3.3 and (3.16) that the minimum of the (weakly lower semi-continuous)
functional Iλ on any closed ball in Eλ with a center 0 and radius R < ρ satisfying Iλ(u) ≥ 0 for all
u ∈ Eλ with ||u||λ = R is achieved in the corresponding open ball and thus yields a nontrivial solution
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u(2)
λ of problem (1.1) satisfying Iλ(u

(2)
λ ) < 0 and ||u(2)

λ ||λ < R. In addition, (3.16) implies that there exist
l0 > 0 and % < 0 independent of λ such that Iλ(l0φ) = % and ||l0φ||λ < R. Then, we can conclude that

Iλ(u
(2)
λ ) ≤ % < 0 < α ≤ cλ = Iλ(u

(1)
λ ).

The proof is finished.

4. Proof of Theorem 1.3

In this section, we investigate the concentration of solutions for λ→ ∞.
Proof of Theorem 1.3. Let u(i)

λ , i = 1, 2 be the nontrivial solutions of problem (1.1) obtained in
Theorem 1.2. For any sequence λn → ∞, let u(i)

n := u(i)
λn

be the critical points of Iλn , namely, I′λn
(u(i)

n ) = 0
and

Iλn(u
(2)
n ) ≤ % < 0 < α ≤ cλn = Iλn(u

(1)
n ) < M. (4.1)

Then, similar to the proof in Lemma 3.2, we have

M + o(1) >Iλn(u
(i)
n ) −

1
4
〈I′λn

(u(i)
n ), u(i)

n 〉

≥
[min{a, 1}

4
− γ2C

2
2

(
1 +

1
S

)]
||u(i)

n ||
2
λn
−
C

q
2(4 − q)

(
1 + 1

S

) q
2
|g+| 2

2−q

4q
||u(i)

n ||
q
λn
,

then, there exists constant C1 > 0 independent of λn such that

||u(i)
n ||λn ≤ C1. (4.2)

Hence u(i)
n is bounded in Eλ. Thus, we assume that u(i)

n ⇀ u(i)
0 weakly in Eλ and u(i)

n → u(i)
0 strongly in

Lp
loc(R

3) for p ∈ [2, 6). Now, we show that u(i)
n → u(i)

0 strongly in Lp(R3) for p ∈ [2, 6).
Recall the definition of AR and FR in Lemma 3.3, and that |FR| → 0 as R→ ∞ by the condition (V1).

Then, for λn → ∞, one has∫
AR

(u(i)
n )2dx ≤

1
λnV0

∫
AR

λnV(u(i)
n )2dx ≤

C1

λnV0
→ 0. (4.3)

Thus, by the Hölder and Sobolev inequalities, (2.3), (4.2) and (4.3), we obtain∫
Bc

R

(u(i)
n )pdx =

( ∫
Bc

R

|u(i)
n |

6dx
) p−2

4
( ∫

Bc
R

|u(i)
n |

2dx
) 6−p

4

≤C
3(2−p)

4
( ∫
R3
|∇u(i)

n |
2dx

) 3(p−2)
4

( ∫
AR

(u(i)
n )2dx +

∫
FR

(u(i)
n )2dx

) 6−p
4

≤C
3(2−p)

4 ||u(i)
n ||

3(p−2)
2

λn

[ C1

λnV0
+ |FR|

p−2
p
( ∫

FR

(u(i)
n )pdx

) 2
p
] 6−p

4

≤C2

( C1

λnV0
+ C3|FR|

p−2
p
) 6−p

4
→ 0
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as λn → ∞. Then, we infer that∫
Bc

R

∣∣∣∣|u(i)
n |

p − |u(i)
0 |

p
∣∣∣∣dx ≤

∫
Bc

R

|u(i)
n |

pdx +

∫
Bc

R

|u(i)
0 |

pdx→ 0

as R→ ∞. Since u(i)
n → u(i)

0 strongly in Lp
loc(R

3) for p ∈ [2, 6), we have∫
|x|<R
|u(i)

n |
pdx −

∫
|x|<R
|u(i)

0 |
pdx→ 0.

Therefore, u(i)
n → u(i)

0 strongly in Lp(R3) for p ∈ [2, 6). Set w(i)
n := u(i)

n − u(i)
0 , use a similar argument to

the proof in Lemma 3.3, we can claim that w(i)
n → 0 strongly in Eλ.

Thus, by (4.2) and Fatou’s lemma, we have∫
R3

V(x)(u(i)
0 )2dx ≤ lim inf

n→∞

∫
R3

V(x)(u(i)
n )2dx ≤ lim inf

n→∞

||u(i)
n ||

2
λn

λn
= 0.

Hence, u(i)
0 = 0 a.e. in R3 \Ω and u(i)

0 ∈ H1
0(Ω) by the condition (V2). Given u(i)

0 ∈ H1
0(Ω), we obtain(

a + b
∫

Ω

|∇u(i)
0 |

2dx
) ∫

Ω

∇u(i)
0 ∇v(i)dx =

∫
Ω

f (x, u(i)
0 )v(i)dx +

∫
Ω

g(x)|u(i)
0 |

q−2u(i)
0 v(i)dx

for any v(i) ∈ H1
0(Ω). Finally, it follows from (4.1) that

a
2

∫
Ω

|∇u(1)
0 |

2dx +
b
4

( ∫
Ω

|∇u(1)
0 |

2dx
)2
−

∫
Ω

F(x, u(1)
0 )dx −

1
q

∫
Ω

g(x)|u(1)
0 |

qdx ≥ α > 0

and
a
2

∫
Ω

|∇u(2)
0 |

2dx +
b
4

( ∫
Ω

|∇u(2)
0 |

2dx
)2
−

∫
Ω

F(x, u(2)
0 )dx −

1
q

∫
Ω

g(x)|u(2)
0 |

qdx ≤ % < 0,

which implies that u(i)
0 , 0 and u(1)

0 , u(2)
0 . This completes the proof. �

5. Conclusions

In this paper, two nontrivial solutions are obtained for a Kirchhoff-type problem by using variational
methods. Furthermore, the concentration behavior of solutions as λ→ ∞ is also explored. The results
obtained in this paper are slightly different from previous works [7, 8, 10, 18–22]. They may not have
considered the existence and concentration of the solutions for Kirchhoff-type problems with sublinear
perturbation and steep potential well. Therefore, the results of this paper expand the previous work to
a certain extent.
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