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1. Introduction

We are not individuals but a collection of living things [1]. Up to 10 million microbes inhabit
every square centimeter of skin [2]. Surface-dwelling microbes even play a crucial role in maintaining
the homeostasis of the host microbial community [3]. At the same time, our teeth, throat, and
esophagus are even more infested with microbes, which accumulate thousands of times more than the
surface of the skin. The human body has a large number of microorganisms living in the gut, and the
vast majority of them are beneficial to us. A correct view of their value and continuous research and
discovery is the proper attitude of human beings towards the microbes in the body. Researchers have
long applied various methods to study the role of the microbiome in living organisms and achieved
significant results. In addition to the application of biological methods [4], the application of
mathematical methods is undoubtedly a great help for this research direction [5, 6].

The flow characteristics of chemostat model are very suitable for simulating the flow ecological
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environment. And the culture of microorganisms in the chemostat can be regulated by controlling
the concentration of nutrients. Combined with the features of intestinal circulation, the chemostat
model can be used to further investigate the microbial system in the intestinal tract. Presently, research
on chemostat models has been further improved [9–11], and researchers have studied ecosystems with
different types of functional responses through chemostat models, such as Monod-Haldane [12,13,23],
Lotka-Volterra [14], Holling II [16], etc. In spite of this, few papers have applied the chemostat model
to specific ecological environment. This paper proposes that, it is an innovation to apply the chemostat
model to the characterization of intestinal microorganisms. In addition, based on the study of reaction
function in the above literature and the characteristics of intestinal microorganisms, we adopted Holling
II functional response function. In the gut, microbes circulate with material and may attach to the folds
in the intestinal wall as they flow, or they may fall off the wall. It is an innovative point of this
paper to consider and study the impact of the migration between the flowing microorganisms and the
microorganisms on the intestinal wall as the microorganisms on the two plates. This phenomenon can
be described by adding a migration term to the model. In [7], the authors considered the variable flow
rate, microbial decomposition, and other factors to construct a detailed intestinal chemostat model.

Inevitably, microbial survival in the gut is affected by uncertainties such as body temperature, water
supply and pH-value.

In stochastic biological models, scholars use Brownian motion to describe the perturbation of the
system caused by uncertain factors and have made important achievements [8, 17, 18, 21, 22]. On
the basis of deterministic models, many authors consider the linear disturbance of mortality, which
further enrich the content of the models [15,25,27,29]. In addition, bilinear perturbation and nonlinear
perturbation have been considered in [24, 28], respectively. In [26], stochastic models perturbed by
Lévy noise are concerned. From what has been discussed above, we assume that uncertain factors can
cause an impact on microbial growth, that is, environmental disturbance, mainly interferes with the
consumption function. Then the following chemostat model with nonlinear perturbation, intraspecific
competition and migration is established.

dS (t) =

[
D(S 0 − S (t)) −

aS (t)
m + S (t)

(x1(t) + x2(t))
]

dt −
σaS (t)

m + S (t)
(x1(t) + x2(t))dB(t),

dx1(t) =

[
x1(t)

(
bS (t)

m + S (t)
− αx1(t) − βx2(t)

)
− vx1(t) − Dx1(t) + r2x2(t) − r1x1(t)

]
dt

+
σbS (t)x1(t)

m + S (t)
dB(t),

dx2(t) =

[
x2(t)

(
bS (t)

m + S (t)
− αx1(t) − βx2(t)

)
− vx2(t) − r2x2(t) + r1x1(t)

]
dt

+
σbS (t)x2(t)

m + S (t)
dB(t).

(1.1)

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0 contains all P-null sets). At the same time, there
are the corrective coefficients of Wong-Zakai in the model, and the same calculation results can be
obtained by using Itô integral and Stratonovich integral [30]. The function B(t) is independent standard
Brownian motion defined on this complete probability space with B(0) = 0 and σ > 0 represents for
the intensity of the white noise. And other parameters are defined in the Table 1.
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Table 1. Parameter definition.

Parameters Paraphrase
S (t) ≥ 0 the concentration of nutrients in the intestine at time t
x1(t) ≥ 0 the amount of bacteria in the gut at time t
x2(t) ≥ 0 the amount of bacteria on the wall at time t

D ≥ 0 input and output flow rate
S 0 ≥ 0 the initial concentration of nutrients
a ≥ 0 the maximum rate of nutrient uptake by microorganisms
b ≥ 0 the effective rate of nutrient uptake by microorganisms
m ≥ 0 the half-saturation constant
r1 ≥ 0 the rate at which microbe attaches to the wall
r2 ≥ 0 the rate at which microbe detaches from wall
α ≥ 0 intra-specific competition rate of the gut population of microbe
β ≥ 0 intra-specific competition rate of wall population of microbe
v ≥ 0 the mortality of the microbial

The characteristics of the proposed model are the application of the chemostat model to simulate
the intestinal environment, and the introduction of microbial migration, interspecific competition and
nonlinear disturbance on the basis of the classical chemostat model. Compared with [7], we consider
the effect of environmental disturbance on the microbial response function based on the corresponding
autonomous model.

The organizational structure of the paper is as follows. In Section 2, we provide the lemmas and
partial proofs used in the argument of this paper. In Section 3, we verify the existence and uniqueness
of global positive solution and the boundedness of solution of the system (1.1). Section 4 presents all
the research results for the proposed system. In the first subsection, sufficient conditions for microbial
extinction are proved. Then, the condition of persistence in mean of the system is given. Next, the
existence of ergodic stationary distribution is established. Finally, the behavior of system (1.1) is
simulated numerically in Section 5, and the conclusions are given.

2. Preliminaries

We let R+ = {x ∈ R : x > 0}. If f (t) is an intergrable function on [0,+∞), let 〈 f (t)〉 = 1
t

∫ t

0
f (θ)dθ.

Here we give the common lemmas of stochastic differential equations which will be used in the proof
below.

Lemma 2.1 (Stationary distribution [20]). Let X(t) be a homogenous Markov process in El ( El denotes
l-dimensional Euclidean space), and it is described by the following stochastic differential equation

dX(t) = b(X)dt +

k∑
r=1

gr(X)dBr(t).

The diffusion matrix is defined as follows

A(x) = (ai j(x)), ai j(x) =

k∑
r=1

gi
r(x)g j

r(x).
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If there is a bounded open set U ⊂ Rn with regular that satisfies the following conditions.
(i) For any x ∈ U, ε ∈ Rn, there is a constant ς > 0, satisfying that:∑n

i, j=1 ai j(x)εiε j ≥ ς |ε|
2.

(ii) For any x ∈ Rn \ U, there is a C1,2 function V, such that LV < 0.
Then, the Markov process X(t) exists a stationary distribution ψ(·).

Lemma 2.2 (Existence and uniqueness of global positive solutions). For any initial value
(S (0), x1(0), x2(0)) ∈ R3

+, there is a unique positive solution (S (t), x1(t), x2(t)) of system (1.1) on t ≥ 0
and the solution will remain in R3

+ with probability one.

Proof. Since the coefficients of the system (1.1) satisfy the local Lipschitz conditions, then for any
given initial value (S (0), x1(0), x2(0)) ∈ R3

+, there exists a unique local solution (S (t), x1(t), x2(t)) on
t ∈ [0, τe), where τe is the explosion time. Now we just need to prove τe = ∞ a.s..

Let k0 > 0 be so sufficiently large that any initial value S (0), x1(0) and x2(0) lying within the interval[
1
k0
, k0

]
. For any integer k satisfying k ≥ k0, define the stopping time as follows:

τk = inf
{

t ∈ [0, τe) : min{S (t), x1(t), x2(t)} ≤
1
k

or max{S (t), x1(t), x2(t)} ≥ k
}
,

with inf ∅ = ∞ (where ∅ denotes the empty set). It is easy to get that τk is increasing as k → ∞. Let
τ∞ = limk→∞ τk, hence τ∞ ≤ τk a.s.. Next, we only need to verify τ∞ = ∞ a.s.. If this statement is false,
then there exist two constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.

Thus there is an integer k1 ≥ k0 such that

P{τk ≤ T } ≥ ε, k ≥ k1.

Define a C2-function I: R3
+ → R+ as follows,

I(S (t), x1(t), x2(t)) = (S − 1 − lnS ) + (x1 − 1 − lnx1) + (x2 − 1 − lnx2) +
x2

1

2
+

x2
2

2
. (2.1)

Clearly,
I > 0.

Applying Itô’s formula yields

LI =

(
1 −

1
S

) [
DS 0 − DS −

aS
m + S

(x1 + x2)
]

+
σ2a2

2(m + S )2 (x1 + x2)2

+

(
1 −

1
x1

+ x1

) [
bS x1

m + S
− (v + D)x1 − αx2

1 − βx1x2 + r2x2 − r1x1

]
+
σ2b2S 2(1 + x2

1)
2(m + S )2

+

(
1 −

1
x2

+ x2

) [
bS x2

m + S
− vx2 − αx1x2 − βx2

2 − r2x2 + r1x1

]
+
σ2b2S 2(1 + x2

2)
2(m + S )2
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= DS 0 − DS −
aS

m + S
(x1 + x2) −

DS 0

S
+ D +

a
m + S

(x1 + x2) +
σ2a2

2(m + S )2 (x1 + x2)2

+
bS x1

m + S
− (v + D)x1 − αx2

1 − βx1x2 + r2x2 − r1x1 −
bS

m + S
+ (v + D + r1)

+ αx1 + βx2 −
r2x2

x1
+

bS x2
1

m + S
− (v + D)x2

1 − αx3
1 − βx2

1x2 + r2x1x2 − r1x2
1

+
bS x2

m + S
− vx2 − αx1x2 − βx2

2 − r2x2 + r1x1 −
bS

m + S
+ (v + r2) + αx1 + βx2 −

r1x1

x2

+
bS x2

2

m + S
− vx2

2 − αx1x2
2 − βx3

2 − r2x2
2 + r1x1x2 +

σ2a2

2(m + S )2
(x1 + x2)2

+
σ2b2S 2

2(m + S )2

(
2 + x2

1 + x2
2

)
≤ DS 0 + 2D + 2v + r1 + r2 +

( a
m

+ b + 2α
)

x1 +

( a
m

+ 2β + b
)

x2 + (r1 + r2)x1x2

+ bx2
1 + bx2

2 − αx3
1 − βx3

2 − (v + D + r1)x2
1 − βx2

1x2 − (v + r2)x2
2 − αx1x2

2

+
σ2a2

2m2
(x1 + x2)2 +

σ2b2

2

(
2 + x2

1 + x2
2

)
≤ DS 0 + 2v + 2D + r1 + r2 + σ2b2 + h1 := κ,

where

h1 = max
{( a

m
+ b + 2α

)
x1 +

( a
m

+ b + 2β
)

x2 + (r1 + r2)x1x2 + bx2
1 + bx2

2 − αx3
1

−βx3
2 − (v + D + r1)x2

1 − (v + r2)x2
2 − βx2

1x2 − αx1x2
2 +

σ2a2

2m2
(x1 + x2)2

+
σ2b2

2

(
x2

1 + x2
2

)}
,

then

LI ≤ DS 0 + 2v + 2D + r1 + r2 + σ2b2 + h1 := κ, (2.2)

where κ is a positive constant.
The proof is completed. �

Lemma 2.3 (Boundedness). For any initial value (S (0), x1(0), x2(0)) ∈ R3
+, the solution

(S (t), x1(t), x2(t)) of the stochastic system (1.1) is bounded. And it satisfies

lim sup
t→∞

[
S (t) +

a
b

x1 (t) +
a
b

x2 (t)
]
≤ ω, a.s., (2.3)

where ω = max
{

DS 0
µ
, S (0) + a

b x1(0) + a
b x2(0)

}
.

Proof. Denote
Y(t) = S (t) +

a
b

x1(t) +
a
b

x2(t),
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then from the system (1.1), we obtain

dY(t) =

[
DS 0 − DS −

a
b

vx1 −
a
b

Dx1 −
a
b
αx2

1 −
a
b
βx1x2 −

a
b

vx2 −
a
b
αx1x2 −

a
b
βx2

2

]
dt

≤

[
DS 0 − DS −

a
b

vx1 −
a
b

Dx1 −
a
b

vx2

]
dt

≤

[
DS 0 − µ

(
S +

a
b

x1 +
a
b

x2

)]
dt, (2.4)

where µ = min {D, v}, Y(t) is the solution of (2.4). And it has the following form

Y(t) ≤ ω.

Furthermore,

lim sup
t→+∞

x1(t) 6
bω
a
, lim sup

t→+∞

x2(t) 6
bω
a
.

The proof is completed. �

3. Main results

3.1. Extinction

In this subsection, we establish threshold condition for intestinal microbial extinction.
Define a parameter

R∗1 =
bS 0

m + S 0
−

σ2b2S 2
0

4(m + S 0)2 − v, R∗2 =
1
σ2 − v.

Theorem 3.1. (1) If bS 0
m+S 0

< 2
σ2 and R∗1 < 0, then microbials tend to extinction almost surely.

(2) If bS 0
m+S 0

≥ 2
σ2 and R∗2 < 0, then microbials tend to extinction almost surely.

Proof. Through the system, we can get,

d(x1 + x2) =

[
−vx1 − Dx1 + x1

(
bS

m + S
− αx1 − βx2

)
− vx2 + x2

(
bS

m + S
− αx1 − βx2

)]
dt

+
σbS

m + S
(x1 + x2) dB(t).

Applying Itô’s formula gives

d ln (x1(t) + x2(t)) =

{
1

x1 + x2

[
−v (x1 + x2) − Dx1 + (x1 + x2)

(
bS

m + S
− αx1 − βx2

)]
−

σ2b2S 2

2 (x1 + x2)2 (m + S )2
(x2

1 + x2
2)
}

dt +
σbS

m + S
dB(t)

≤

[
−v −

Dx1

x1 + x2
+

(
bS

m + S
− αx1 − βx2

)
−

σ2b2S 2

4(m + S )2

]
dt +

σbS
m + S

dB(t)

≤

[
−v +

bS
m + S

−
σ2b2S 2

4(m + S )2

]
dt +

σbS
m + S

dB(t). (3.1)
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Consider the function

g(S ) =
bS

m + S
−

σ2b2S 2

4(m + S )2 .

Obviously, when bS
m+S = 2

σ2 , g(S ) gets the maximum. Otherwise, S ≤ S 0. Therefore, the maximum
value of g(S ) is discussed in the following two cases.
Case 1. If bS 0

m+S 0
< 2

σ2 ,

g(S ) ≤
bS 0

m + S 0
−

σ2b2S 2
0

4(m + S 0)2 .

Combining (3.1), we get

d ln (x1(t) + x2(t)) ≤
[

bS 0

m + S 0
−

σ2b2S 2
0

4(m + S 0)2 − v
]

dt +
σbS

m + S
dB(t). (3.2)

Integrating from 0 to t and dividing by t on both sides of (3.2) give

ln(x1(t) + x2(t))
t

≤
bS 0

m + S 0
−

σ2b2S 2
0

4(m + S 0)2 − v +
1
t

∫ t

0

σbS (τ)
m + S (τ)

dB(τ) +
ln (x1(0) + x2(0))

t
.

According to the strong law of large numbers [19], we obtain

lim
t→∞

1
t

∫ t

0

σbS (τ)
m + S (τ)

dB(τ) = 0.

So we can get

lim sup
t→∞

ln(x1(t) + x2(t))
t

≤
bS 0

m + S 0
−

σ2b2S 2
0

4(m + S 0)2 − v < 0,

which means
lim
t→∞

(x1(t) + x2(t)) = 0.

Case 2. If bS 0
m+S 0

≥ 2
σ2 ,

g(S ) ≤
1
σ2 .

Combining (3.1), we get

d ln (x1(t) + x2(t)) ≤
[

1
σ2 − v

]
dt +

σbS
m + S

dB(t). (3.3)

Similar to Case 1, we can obtain

lim sup
t→∞

ln(x1(t) + x2(t))
t

≤
1
σ2 − v < 0,

which means
lim
t→∞

(x1(t) + x2(t)) = 0.

�
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3.2. Persistence in mean

In this subsection, we examine the conditions sufficient for microbes to persist over time.
Define

R∗ =
2bS 0

m + S 0
− 2v − D − r1 − r2 − σ

2b2 −
4b2ω2(α + β)
(m + S 0)Da

.

Theorem 3.2. If R∗ > 0, then for any initial value (S (t), x1(t), x2(t)) ∈ R3
+, the system (1.1) is persistent

in mean.

Proof. Integrating the equations of the system (1.1) from 0 to t and dividing t on both sides yield

ε(t) ,
b(S (t) − S (0))

at
+

x1(t) − x1(0)
t

+
x2(t) − x2(0)

t

≥
bDS 0

a
−

2b2ω2(α + β)
a2 −

bD
a
〈S (t)〉 − (v + D) 〈x1(t)〉 − v 〈x2(t)〉 .

Then we can get

〈S (t)〉 ≥ S 0 −
2bω2(α + β)

Da
−

a(v + D)
Db

〈x1(t)〉 −
av
Db
〈x2(t)〉 −

a
Db

ε(t). (3.4)

Applying Itô’s formula gives

d (ln x1 + ln x2) =

[
−v − D +

bS
m + S

− αx1 − βx2 +
r2x2

x1
− r1 −

σ2b2S 2

2(m + S )2 − v +
bS

m + S

−αx1 − βx2 − r2 +
r1x1

x2
−

σ2b2S 2

2(m + S )2

]
dt +

2σbS
m + S

dB(t)

≥

[
−2v − D − r1 − r2 − 2αx1 − 2βx2 +

2bS
m + S

−
σ2b2S 2

(m + S )2

]
dt +

2σbS
m + S

dB(t)

≥

[
−2v − D − r1 − r2 − 2αx1 − 2βx2 +

2bS
m + S 0

− σ2b2
]

dt +
2σbS
m + S

dB(t),

from which we can obtain

ln x1(t) − ln x1(0)
t

+
ln x2(t) − ln x2(0)

t

≥ −2v − D − r1 − r2 − 2α 〈x1〉 − 2β 〈x2〉 +
2b

m + S 0
〈S 〉 − σ2b2 +

1
t

∫ t

0

2σbS (τ)
m + S (τ)

dB(τ)

≥ −2v − D − r1 − r2 − σ
2b2 − 2α 〈x1〉 − 2β 〈x2〉 +

1
t

∫ t

0

2σbS (τ)
m + S (τ)

dB(τ) +
2bS 0

m + S 0

−
4b2ω2(α + β)
(m + S 0)Da

−
2a(v + D)
D(m + S 0)

〈x1〉 −
2av

D(m + S 0)
〈x2〉 −

2a
(m + S 0)D

ε(t)

≥
2bS 0

m + S 0
− 2v − D − r1 − r2 − σ

2b2 −

(
2α +

2a(v + D)
D(m + S 0)

)
〈x1〉 −

(
2β +

2av
D(m + S 0)

)
〈x2〉

−
4b2ω2(α + β)
(m + S 0)Da

+
1
t

∫ t

0

2σbS (τ)
m + S (τ)

dB(τ) −
2a

(m + S 0)D
ε(t).
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From the strong law of large number of martingales, we have

lim
t→∞

1
t

∫ t

0

2σbS (τ)
m + S (τ)

dB(τ) = 0.

Since
lim
t→∞

ln x1(t) + ln x2(t)
t

= 0, lim
t→∞

ε(t) = 0.

When R∗ > 0 we can get

lim inf
t→∞

(〈x1〉 + 〈x2〉) ≥
1
Q

[
2bS 0

m + S 0
− 2v − D − r1 − r2 − σ

2b2 −
4b2ω2(α + β)
(m + S 0)Da

]
> 0,

where

Q = max
{

2α +
2a(v + D)
D(m + S 0)

, 2β +
2av

D(m + S 0)

}
.

This completes the proof. �

3.3. Existence of ergodic stationary distribution of system (1.1)

In this subsection, we explore sufficient conditions for the existence of a unique stationary ergodic
distribution.

Define
R =

DbS 0

2(m + S 0)
(
D + v + r1 + σ2b2

2

) (
D + v + r2 + σ2b2

2

) .
Theorem 3.3. Assume R > 1, then system (1.1) exists a unique ergodic stationary distribution.

Proof. In order to prove this theorem, it is necessary to prove that system (1.1) satisfies the conditions
in Lemma 2.1. Define

V1(S , x1, x2) = M [−c1 ln S − c2 ln x1 − c3 ln x2] +
x2

1

2
+

x2
2

2
= MV2 + V3.

V1(S , x1, x2) is a continuous function, so it exists a minimum V1min. We can get a C2-function V : R3
+ →

R+ :
V(S , x1, x2) = V1(S , x1, x2) − V1min.

Applying Itô’s formula gives

LV2 = −
c1

S

[
DS 0 − DS −

aS
m + S

(x1 + x2)
]

+
c1σ

2a2

2(m + S )2 (x1 + x2)2 −
c2

x1
[−vx1 − Dx1

+x1

(
bS

m + S
− αx1 − βx2

)
+ r2x2 − r1x1

]
+

c2σ
2b2S 2

2(m + S )2 −
c3

x2
[−vx2 − r2x2

+x2

(
bS

m + S
− αx1 − βx2

)
+ r1x1

]
+

c3σ
2b2S 2

2(m + S )2
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= −
c1DS 0

S
+ c1D +

c1a
m + S

(x1 + x2) +
c1σ

2a2

2(m + S )2 (x1 + x2)2 + c2v + c2D −
c2bS
m + S

+ c2αx1 + c2βx2 −
c2r2x2

x1
+ c2r1 +

c2σ
2b2S 2

2(m + S )2 + c3v −
c3bS
m + S

+ c3αx1 + c3βx2

+ c3r2 −
c3r1x1

x2
+

c3σ
2b2S 2

2(m + S )2

≤ −
c1DS 0

2S
−

c2bS
m + S 0

− c3D + c1D + c2

(
D + v + r1 +

σ2b2

2

)
+ c3

(
D + v + r2 +

σ2b2

2

)
+

c1σ
2a2

2m2
(x1 + x2)2 +

(c1a
m

+ c2α + c3α
)

x1 +

(c1a
m

+ c2β + c3β
)

x2 −
c3bS

m + S 0
−

c1DS 0

2S

≤ −3 3

√
c1c2c3D2bS 0

2(m + S 0)
+ c1D + c2

(
D + v + r1 +

σ2b2

2

)
+ c3

(
D + v + r2 +

σ2b2

2

)
+

c1σ
2a2

2m2
(x1 + x2)2 +

(c1a
m

+ c2α + c3α
)

x1 +

(c1a
m

+ c2β + c3β
)

x2 −
c3bS

m + S 0
−

c1DS 0

2S

= −3DS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

x1 +

(c1a
m

+ c2β + c3β
)

x2 −
c3bS

m + S 0

−
c1DS 0

2S
+

c1σ
2a2

2m2
(x1 + x2)2 ,

where c1 = S 0, c2 = DS 0

D+v+r1+σ2b2
2

and c3 = DS 0

D+v+r2+σ2b2
2

, so that

c1D = c2

(
D + v + r1 +

σ2b2

2

)
= c3

(
D + v + r2 +

σ2b2

2

)
= DS 0.

In the same way, we can get

LV3 =
bS x2

1

m + S
− αx3

1 − βx2x2
1 − vx2

1 − Dx2
1 + r2x1x2 − r1x2

1 +
σ2b2S 2x2

1

2(m + S )2 +
bS x2

2

m + S

− αx1x2
2 − βx3

2 − vx2
2 − r2x2

2 + r1x1x2 +
σ2b2S 2x2

2

2(m + S )2

≤ bx2
1 − αx3

1 − βx2x2
1 + r2x1x2 +

σ2b2

2

(
x2

1 + x2
2

)
+ bx2

2 − αx1x2
2 − βx3

2 + r1x1x2.

Then,

LV = MLV2 + LV3

≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 −
Mc3bS
m + S 0

−
Mc1DS 0

2S
+

Mc1σ
2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2

− αx3
1 − βx3

2 − αx1x2
2 − βx2

1x2,

where M is a sufficiently large constant such that

−3MDS 0

( 3√
R − 1

)
+ max{A, B,C, E, F} ≤ −2, (3.5)
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where A, B,C, E, F are defined in the following.
Define a compact bounded subset U,

U =

{
(S , x1, x2) ∈ R3

+ : ε ≤ S ≤
1
ε
, ε ≤ x1 ≤

1
ε
, ε ≤ x2 ≤

1
ε

}
,

and in the set R3
+ \ U, choosing ε small enough such that

−3MDS 0

( 3√
R − 1

)
−

c1MDS 0

2ε
+ A ≤ −1, (3.6)

−3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mε +

(
b +

σ2b2

2

)
ε2 + B ≤ −1, (3.7)

−3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2β + c3β
)

Mε +

(
b +

σ2b2

2

)
ε2 + C ≤ −1, (3.8)

−3MDS 0

( 3√
R − 1

)
−

c3Mb
(m + S 0)ε

+ A ≤ −1, (3.9)

−3MDS 0

( 3√
R − 1

)
−

α

2ε3 + E ≤ −1, (3.10)

−3MDS 0

( 3√
R − 1

)
−

β

2ε3 + F ≤ −1. (3.11)

Next, six domains are given in the following,

U1 =
{
(S , x1, x2) ∈ R3

+ : 0 < S < ε
}
,U2 =

{
(S , x1, x2) ∈ R3

+ : 0 < x1 < ε
}
,

U3 =
{
(S , x1, x2) ∈ R3

+ : 0 < x2 < ε
}
,U4 =

{
(S , x1, x2) ∈ R3

+ : S >
1
ε

}
,

U5 =

{
(S , x1, x2) ∈ R3

+ : x1 >
1
ε

}
,U6 =

{
(S , x1, x2) ∈ R3

+ : x2 >
1
ε

}
.

Case 1. If (S , x1, x2) ∈ U1,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 −
Mc1DS 0

2S

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1 − βx3

2

− αx1x2
2 − βx2

1x2

≤ −3MDS 0

( 3√
R − 1

)
−

c1MDS 0

2ε
+ A,
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where

A = sup
(S ,x1,x2)∈R3

+

{(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 − αx1x2
2 − βx2

1x2 − βx3
2

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

}
. (3.12)

Together with (3.5) and (3.6), we get LV ≤ −1.
Case 2. If (S , x1, x2) ∈ U2,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 − βx3
2

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

− αx1x2
2 − βx2

1x2

≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mε +

(
b +

σ2b2

2

)
ε2 + B,

where

B = sup
(S ,x1,x2)∈R3

+

{(c1a
m

+ c2β + c3β
)

Mx2 +
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

2

+(r1 + r2)x1x2 − αx3
1 − αx1x2

2 − βx2
1x2 − βx3

2

}
. (3.13)

On account of (3.5) and (3.7), we get LV ≤ −1.
Case 3. If (S , x1, x2) ∈ U3,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 − βx3
2

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

− αx1x2
2 − βx2

1x2

≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2β + c3β
)

Mε +

(
b +

σ2b2

2

)
ε2 + C,

where

C = sup
(S ,x1,x2)∈R3

+

{(c1a
m

+ c2α + c3α
)

Mx1 +
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1

+(r1 + r2)x1x2 − αx3
1 − αx1x2

2 − βx2
1x2 − βx3

2

}
. (3.14)

In view of (3.5) and (3.8), we get LV ≤ −1.
Case 4. If (S , x1, x2) ∈ U4,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 −
Mc3bS
m + S 0
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+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

− βx3
2 − αx1x2

2 − βx2
1x2

≤ −3MDS 0

( 3√
R − 1

)
−

c3Mb
(m + S 0)ε

+ A.

Considering (3.5) and (3.9), we get LV ≤ −1.
Case 5. If (S , x1, x2) ∈ U5,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

− βx3
2 − αx1x2

2 − βx2
1x2

≤ −3MDS 0

( 3√
R − 1

)
−

α

2ε3 + E,

where

E = sup
(S ,x1,x2)∈R3

+

{(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 +
Mc1σ

2a2

2m2
(x1 + x2)2

+

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 −
α

2
x3

1 − βx3
2 − αx1x2

2 − βx2
1x2

}
. (3.15)

Combining with (3.5) and (3.10), we get LV ≤ −1.
Case 6. If (S , x1, x2) ∈ U6,

LV ≤ −3MDS 0

( 3√
R − 1

)
+

(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2

+
Mc1σ

2a2

2m2
(x1 + x2)2 +

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 − αx3
1

− βx3
2 − αx1x2

2 − βx2
1x2

≤ −3MDS 0

( 3√
R − 1

)
−

β

2ε3 + F,

where

F = sup
(S ,x1,x2)∈R3

+

{(c1a
m

+ c2α + c3α
)

Mx1 +

(c1a
m

+ c2β + c3β
)

Mx2 +
Mc1σ

2a2

2m2
(x1 + x2)2

+

(
b +

σ2b2

2

)
x2

1 +

(
b +

σ2b2

2

)
x2

2 + (r1 + r2)x1x2 −
β

2
x3

2 − αx3
1 − αx1x2

2 − βx2
1x2

}
. (3.16)

Together with (3.5) and (3.11), we get LV ≤ −1.
Evidently, there exists a sufficiently small ε such that LV ≤ −1, for any (S , x1, x2) ∈ R3

+ \ U.
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In addition, the diffusion matrix of the system (1.1) is


σ2a2S 2

(m+S )2 (x1 + x2)2 0 0

0 σ2b2S 2 x2
1

(m+S )2 0

0 0 σ2b2S 2 x2
2

(m+S )2

 .

Then there exists a positive N = min
(S ,x1,x2)∈Uε

{
σ2a2S 2

(m+S )2 (x1 + x2)2,
σ2b2S 2 x2

1
(m+S )2 ,

σ2b2S 2 x2
2

(m+S )2

}
such that

3∑
i, j=1

ai, jξiξ j =
σ2a2S 2

(m + S )2 (x1 + x2)2ξ2
1 +

σ2b2S 2x2
1

(m + S )2 ξ
2
2 +

σ2b2S 2x2
2

(m + S )2 ξ
2
3 ≥ N |ξ|2 ,

where (S , x1, x2) ∈ U, ξ = (ξ1, ξ2, ξ3) ∈ R3
+. Obviously this satisfies the conditions in the Lemma 2.1.

Hence, the system (1.1) exists a unique stationary distribution. �

4. Numerical simulations

For the theoretical results obtained above, we will conduct further verification through numerical
simulation.
Example 1. We use numerical simulations to verify the conditions under which microbes would go
extinct. For details about parameter values, see Tables 2 and 3.

Table 2. Parameter settings for Figure 1(a).

Parameters S (0) x1(0) x2(0) S 0 D a b m v α β r1 r2 σ

value 0.2 0.2 0.2 0.2 1 2 4 1 0.5 0.1 0.2 0.5 0.8 1.4

Table 3. Parameter settings for Figure 1(b).

Parameters S (0) x1(0) x2(0) S 0 D a b m v α β r1 r2 σ

value 0.2 0.2 0.2 0.3 1 2 4 1 0.5 0.1 0.2 0.5 0.8 2

And the results are as follows.

The changes in the density of microorganisms and nutrient are shown in Figure 1, the red and
green tracks gradually approach zero. Under those parameter settings, R∗1 = −0.0511 < 0 and R∗2 =

−0.25 < 0, the threshold conditions of microbial extinction are met. Therefore, the theoretical results
are consistent with the numerical simulation results.
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< 2
σ2 and R∗1 < 0
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m+S 0

≥ 2
σ2 and R∗2 < 0

Figure 1. The trajectories of the solution of the stochastic model.

From the point of view of extinction threshold, it is easy to analyze that large noise leads to microbial
extinction. Next, we further analyze the effect of noise on the survival of gut microbes. In Example 2,
we demonstrate that the enteric microorganism could still survive for a long time under the influence
of certain noise.
Example 2. The parameters of composite number are selected to meet the conditions of microbial
persistence, that is, R∗ > 0. The correctness of the conclusion is verified by the following numerical
simulation. Parameter settings are shown in Table 4, at this point, R∗ = 0.1096 > 0, and simulation
results are shown in Figure 2.

Table 4. Parameter Settings for Example 2.

Parameters S (0) x1(0) x2(0) S 0 D a b m v α β r1 r2 σ

value 0.03 0.03 0.03 0.4 0.03 2 0.4 0.25 0.03 0.05 0.05 0.01 0.02 0.03

0 1000 2000 3000 4000

t

0.02

0.025

0.03

0.035

S

x
1

x
2

Figure 2. The trajectories of the solutions of the stochastic model and the deterministic
model.
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In addition to the trajectories indicated by the legend in Figure 2, the black dashed line, the black
solid line and the purple solid line represent the trajectories of S , x1 and x2 of the deterministic model,
respectively.

As we can see from the figure, when it is not affected by noise, that is, σ = 0, the microorganism
will survive for a long time. When affected by a certain noise, the trajectories fluctuate near the
trajectories of the corresponding deterministic model, and all of them are above the X-axis. In other
words, microbes are still persistent.
Example 3. On the basis of Example 2, with other parameters unchanged and σ = 0.7, the numerical
simulation results are shown in Figure 3.

0 100 200 300 400

t

0

0.01

0.02

0.03

0.04

0.05

x
1

x
2

x
1
d

x
2
d

Figure 3. The trajectories of x1, x2 of the stochastic model and the deterministic model.

Under the influence of high noise, the originally persistent microorganisms tend to become extinct.
Therefore, it can be concluded that the strong noise has adverse effects on the survival of
microorganisms. This conclusion is reflected in the threshold values of microbial persistence and
extinction.
Example 4. Finally, we verify the existence of stationary ergodic distribution through numerical
simulation. The density distributions of microorganisms and nutrient are shown in Figure 4. Set the
parameters as Table 5.
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Figure 4. The probability densities of S (t), x1(t) and x2(t).

Table 5. Parameter Settings for Example 4.

Parameters S (0) x1(0) x2(0) S 0 D a b m v α β r1 r2 σ

value 0.2 0.2 0.2 10 0.3 3 3 0.3 0.05 0.5 0.9 0.1 0.1 0.05
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In this case, R = 2.0535 > 1, and the theoretical results are consistent with the numerical simulation.

5. Conclusions

This paper proposes a stochastic chemostat model for intestinal microorganisms that considers
migration and intraspecific competition. The dynamic behavior of the model is analyzed by ordinary
differential theory. By constructing the Lyapunov functions, the threshold conditions of intestinal
microbial extinction and persistence in mean are obtained, and the condition for the existence of
stationary ergodic distribution is analyzed. Analysis shows that high noise increases the risk of
extinction of gut microbes. At the same time, too fast intestinal velocity will also affect the survival of
microorganisms. Now, we sum up the main results as follows.

(1) Microorganisms tend to become extinct when the following conditions are met.
(i) If bS 0

m+S 0
< 2

σ2 and R∗1 < 0, then microbials tend to extinction almost surely.
(ii) If bS 0

m+S 0
≥ 2

σ2 and R∗2 < 0, then microbials tend to extinction almost surely.
(2) If R∗ > 0, then the microorganism is persistent in mean. In addtion, we get

lim inf
t→∞

(〈x1〉 + 〈x2〉) ≥
R∗

Q
> 0.

(3) Assume R > 1, then system (1.1) exists a unique ergodic stationary distribution.

By overcoming the difficulties in Lyapunov function construction and inequality reduction, the
sufficient conditions for microbial extinction, persistence and stationary ergodic distribution were
obtained. The threshold of microbial persistence or extinction is influenced by environmental
disturbance (noise intensity). The results of numerical simulation also show that a large degree of
noise will interfere with the survival of microorganisms, so that the microorganisms that can live for a
long time tend to become extinct.
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