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1. Introduction

Consider a set X consisting of at least two points. Function ρX : X×X → R+, ρX(x, y) = 0⇔ x = 0,
is called (q1, q2)-quasimetric if the following (q1, q2)-generalized triangle inequality takes place:

ρX(x, z) ≤ q1ρX(x, y) + q2ρX(y, z) ∀x, y, z ∈ X,

where q1, q2 are some positive numbers. Pair (X, ρX) is called (q1, q2)-quasimetric space [1–9]. The
expression ρX(x, y) denotes a (q1, q2)-quasi-distance exactly from the point x to the point y. If q1 =

q2 = 1, then (X, ρX) is a quasimetric space [11].
If for a (q1, q2)-quasimetric ρX the following condition holds

ρX(x, y) ≤ q0ρX(y, x) ∀x, y ∈ X

for some q0 > 0 then we refer to a (q1, q2)-quasimetric space (X, ρX) as a q0-symmetric one; for the
case when q0 = 1, we use the notion of symmetric (q1, q2)-quasimetric space. The (q2, q1)-quasimetric
ρX(x, y) = ρX(y, x) is said to be conjugate to ρX(x, y). If ρX is symmetric then ρX is symmetric too.
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The class of (q1, q2)-quasimetric spaces is suffciently wide; it includes quasimetric spaces, b-metric
spaces introduced by Bakhtin in 1989, Carnot-Carathéodory spaces with Box-quasimetrics, Lp-spaces
with p ∈ (0, 1), etc. (see [10]).

Definition 1.1. For a (q1, q2)-quasimetric space (X, ρX) we denote by R = R(ρX) the set of points
(q′1, q

′
2) ∈ R2, such that for ρX (q′1, q

′
2)-generalized triangle inequality holds.

The next Property 1.2 follows directly from the Definition 1.1.

Property 1.2 ( [1, 2]). 10 The set R = R(d) is convex and closed, and, moreover, R ⊆ {(x, y) ∈ R2 | x ≥
1, y ≥ 1};

20 The condition (1, 1) ∈ R is equivalent to the fact that ρX is a quasimetric;
30 If (q1, q2)-quasimetric is symmetric, then the set R is symmetric with respect to the bisector of the

right upper coordinate angle of the Euclidean plane.

If q′ ∈ R and q̃ ≥ q′ (in the sense that q̃1 ≥ q′1, q̃2 ≥ q′2), then q̃ ∈ R. By considering the support
lines at the boundary points of the closed convex set R we obtain that R has extreme points. (Recall
that a point x0 ∈ A is called an extreme point of a set A, if there are no points x1, x2 ∈ A, such that
x0 ∈ (x1, x2), that is, x0 = tx1 + (1 − t)x2 for some 0 < t < 1.) We easily see that each extreme point
of R is a Pareto optimal point of R (in the sense of minimization of components), but not conversely.
Extreme points of R are said to be extreme for ρX. A point q ∈ R is said to be best for ρX if q ≤ q′ for
all q′ ∈ R. See the examples of (q1, q2)-quasimetric spaces with the best points q = (q0

1, q
0
2) such that

q0
1 + q0

2 > 2, in [1, 4–6].
An important special case of symmetric (q1, q2)-quasimetric spaces are the symmetric (1, q2)-

quasimetric spaces [1]; these include Carnot groups and more general equiregular
Carnot-Carathéodory spaces (M, ρBoxM ), equipped by Box-quasimetrics ρBoxM [6–15]. Moreover, in
the general case, the constant q2 does not equal 1 [16]. Box-quasimetrics were introduced in [17].
(1, q2)-generalized triangle inequality plays a crucial role in obtaining the divergence estimates of the
equiregular Carnot-Carathéodory space (M, ρBoxM ) from its nilpotent tangent cone, see [18, 19].

Define the sets

Bo
X(x, r) = {y ∈ X | ρX(x, y) < r}, BX(x, r) = {y ∈ X | ρX(x, y) ≤ r}.

A set U ⊂ X is said to be open if, for every point u ∈ U there is a number ru > 0 such that Bo
X(u, ru) ⊂ U.

A set is said to be closed if its complement is open. The open sets defined in this way determine a
topology on X.

A sequence of points {xi} ⊂ (X, ρX) converges to a point x0 ∈ X (we write xi → x0) if, for every
ε > 0 ball Bo

X(x0, ε) contains all points xi, starting with some of them. The point x0 is called the limit
of the sequence {xi}. Clearly, this definition may equivalently be restated in the following form: A
sequence {xi} converges to x0, if lim

i→∞
ρX(x0, xi) = 0.

A sequence {xn} in a (q1, q2)-quasimetric space (X, ρX) is called a fundamental sequence or a Cauchy
sequence, if for every ε > 0 there is an N such that for all n > m > N we have ρX(xm, xn) < ε. A
(q1, q2)-quasimetric space (X, ρX) is said to be complete if each of its fundamental sequences has a
limit (possibly non-unique).

Consider a (q1, q2)-quasimetric space (X, ρX) and a (q′1, q
′
2)-quasimetric space (Y, ρY). Let Ψ,Φ :

X → Y be mappings and α > β ≥ 0 be numbers.

AIMS Mathematics Volume 8, Issue 3, 6191–6205.



6193

Definition 1.3 ( [1–3]). A point x ∈ X is called a coincidence point of the mappings Ψ,Φ if

Ψ(x) = Φ(x).

Definition 1.4 ( [1–3]). A mapping Ψ is said to be α-covering if

BY(Ψ(x), αr) ⊆ Ψ(BX(x, r)) ∀r ≥ 0 ∀x ∈ X.

Definition 1.5. A mapping Φ is said to be β-Lipschitz if

ρY
(
Φ(x1),Φ(x2)

)
≤ βρX(x1, x2) ∀x1, x2 ∈ X.

α-covering of Ψ means that for every x0 ∈ X, y1 ∈ Y there is x1 ∈ X such that y1 = Ψ(x1),
ρX(x0, x1) ≤ ρY (Ψ(x0),y1)

α
; hence the mapping Ψ is surjective.

The Banach open mapping theorem provides a classical example of a covering mapping. Recall
that the theorem states that if X is a Banach space, Y is a normed space, and ψ is a linear, continuous,
and surjective operator, then for some α > 0 the operator ψ is α-covering. Covering mappings and
their properties have been studied in detail since the middle of the 20th Century. One of the first papers
devoted to this issue was the paper [20] by L. M. Graves. In this paper, the covering property of linear
mappings in Banach spaces were used to derive conditions for smooth mappings to be locally covering.
Subsequently, Milyutin [21] obtained a theorem that provides sufficient covering conditions.

Theorem 1.6 ( [21]). Let X be a complete metric space, Y be a linear metric space with a translation-
invariant metric ρY , ψ : X → Y be continuous and α-covering, φ : X → Y be β-Lipschitz, and β < α.
Then the mapping ψ + φ is (α − β)-covering.

This result is commonly called the Milyutin theorem on Lipschitz perturbations of covering
mappings. Subsequently, the covering property and its stability under perturbations was a subject of
numerous studies (see, for instance, [22–25]). Another problem to which the covering mappings
theory is applicable is the coincidence points problem. Sufficient conditions for the existence of
coincidence points stated in terms of covering mappings were proved by Arutyunov in [26] on metric
spaces. In [26] there were also obtained conditions for existence of coincidence points of set-valued
mappings. In [27, 28] the stability of coincidence points was investigated. The discussed above and
some other results of covering mappings theory has applications in investigations of control
systems [29], implicit differential equations (see [30, 31]), Volterra equations (see [32]). The theory of
coincidence points of both single-valued and set-valued mappings of metric spaces plays an important
role in analysis (see [33]). This theory is applied to the study of inclusions (see [34]). We note the
following recent interesting works on the theory of coincidence points [35–37].

In their recent papers [1–3,10], Arutyunov and Greshnov introduced (q1, q2)-quasimetric spaces and
studied their properties; they studied covering mappings from one (q1, q2)-quasimetric space to another
and obtained sufficient conditions for the existence of coincidence points of two mappings between
such spaces provided that one of them is covering and the other satisfies the Lipschitz condition. These
results were extended to multi-valued mappings. Also it was proved that the coincidence points are
stable under small perturbations of the mappings. The development of the theory of coincidence points
of mappings on (q1, q2)-quasimetric spaces initiated interest in the study of more general f -quasimetric
spaces [4] and in generalizing Banach’s fixed point theorem to such spaces [38].
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Let’s formulate the results from [1, 2], we will deal with further.
As usual, gph(F) = {(x, y) ∈ X × Y | y ∈ F(x)} is the graph of the mapping F : (X, ρX) → (Y, ρY).

We say that a mapping F closed if, for all sequences {xi} ⊂ X and {yi} ⊂ Y converging to points x0 and
y0 respectively, such that (xi, yi) ∈ gph(F) for all i, it holds that (x0, y0) ∈ gph(F).

Given a function f : X×X → R+ of two variables and a point (x1, x2) ∈ X×X, we write lim
y→x1

f (y, x1)

for its lower limit in the first variable at the point (x1, x2). This limit is defined as the infimum of the
lower limits inf lim

yi→x1

f (yi, x2), where the infimum is taken over all sequences {yi} that converge to x1.

The lower limit lim
y→x2

f (x1, y) in the second variable is defined in a similar way.

Given any u ∈ [0, 1) and any positive integer n, we write S (u, n) for the sum of n terms of the

geometric progression
n−1∑
i=0

ui and, therefore, S (u, n) = 1−un

1−u . We shall assume that S (u, 0) = 0 and

β0 = 1 for β = 0. For all q0, q1, q2 ≥ 1 we put

m0 = min{ j ∈ N | q2β
j < α j}

and under the assumption that q2
0β < α, we put

n0 = min{ j ∈ N | q1(q2
0β) j < α j}.

Theorem 1.7 (On the existence of coincidence points [1, 2]). Assume that the (q1, q2)-quasimetric
space (X, ρX) is complete. Let the mapping Ψ be α-covering and closed, while the mapping Φ be β-
Lipschitz. Fix an arbitrary point x0 ∈ X. Then the mappings Ψ and Φ have a coincidence point ξ, such
that

lim
η→ξ

ρX(x0, η) ≤
q2

1α
m0−1S

(
q2

β

α
,m0 − 1

)
+ q1(q2β)m0−1

αm0 − q2βm0
ρY(Ψ(x0),Φ(x0)). (1.1)

If the space (X, ρX) is q0-symmetric, then ξ satisfies the estimate

ρX(x0, ξ) ≤
q3

1α
m0−1S

(
q2

β

α
,m0 − 1

)
+ q2

1(q2β)m0−1

αm0 − q2βm0
ρY(Ψ(x0),Φ(x0)), (1.2)

and if, additionally, q2
0β < α, then ξ also satisfies the estimates

ρX(x0, ξ) ≤ q0q2
2

q2α
n0−1S

(
q1q2

0
β

α
, n0 − 1) + (q1q2

0β)n0−1

αn0 − q1(q2
0β)n0

ρY(Ψ(x0),Φ(x0)), (1.3)

lim
η→ξ

ρX(x0, η) ≤ q0q2
q2α

n0−1S
(
q1q2

0
β

α
, n0 − 1) + (q1q2

0β)n0−1

αn0 − q1(q2
0β)n0

ρY(Ψ(x0),Φ(x0)). (1.4)

Let X = Y and Ψ be the identity mapping, i.e., Ψ(x) ≡ x. Then α = 1, the condition β < 1 means
that Φ is a contraction mapping, and the coincidence point becomes a fixed point.

Corollary 1.8 (Fixed-point theorem for a contraction mapping). A closed contraction mapping of a
complete (q1, q2)-quasimetric space to itself has a fixed point, and this point is unique.

An extended version of Theorem 1.7 is proved in [1, Theorem 4.5].
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Theorem 1.9 ( [1, 2]). Let the space (X, ρX) be complete, the mapping Ψ be α-covering and closed,
and the mapping Φ be β-Lipschitz. Fix an arbitrary point x0 ∈ X.

10 Let q1 = 1. Then the mappings Ψ and Φ have a coincidence point ξ such that

lim
η→ξ

ρX(x0, η) ≤
α − β + q2β

α(α − β)
ρY(Ψ(x0),Φ(x0)). (1.5)

20 Let the space (X, ρX) be q0-symmetric, q2
0β < α, q2 = 1. Then there exists a coincidence point ξ,

such that

ρX(ξ, x0) ≤ q0
q1q2

0β + α − q2
0β

α(α − q2
0β)

ρY(Ψ(x0),Φ(x0)). (1.6)

The bounds (1.1)–(1.6) from the Theorem 1.7 and Theorem 1.9 are the estimates of divergence of
coincidence point of α-covering and closed and β-Lipschitz mappings from an arbitrary point x0 ∈ X.

Examples showing that the bounds (1.3)–(1.6) are unimprovable have been found in [1]. So the
problem of finding the optimal bounds in (1.3)–(1.6) is directly related to finding optimal values of
the constants q1, q2. Let us consider (1, q2)-quasimetric spaces, in particular, Carnot groups G
equipped with symmetric Box-quasimetric ρBoxG ; from this point of view the problem of finding of
minimal values of q2 becomes relevant, see (1.5) and (1.6). Further, we will use the term exact value
that implies such value of the constant q2 that for every number q′2, q′2 < q2, the (1, q′2)-generalized
triangle inequality does not hold for ρBoxG . Note that the exact values of the constant q2 for the
(1, q2)-generalized triangle inequality of Box-quasimetrics were obtained: on the canonical
Heisenberg groups Hn

α, n ∈ N, and the canonical Engel group Eα,β in [16], on some low-dimensional
2-step canonical Carnot groups in [39]. (See the definition of canonical finite-dimensional Lie group
in [39, 40].)

The aim of this paper is to find the exact value of the constant q2 on some (n + 1)-dimensional
2-step canonical Carnot group Dn with the 1-dimensional centre of a special kind (see the
Definition 2.2). The main result of our work is Theorem 3.7 where the exact values for q2 on Dn are
obtained. Using Theorem 3.7 we prove Theorem 3.9 which is the best version of the Theorem 1.9.
The exact estimates obtained in the Theorem 3.9 can be used in optimal control problems, in
particular, to obtain theorems Milyutin type theorems in sub-riemannian geometry. The proof of the
Theorem 3.7 is based on some special combinatorial theorems, with which we find the maximum of
some special bilinear function f (A, B), where A, B belong to the set of all vertices of a standard unit
n-dimensional cube (Theorem 3.1, Property 3.5); these results and methods of their proofs can be
used in optimization problems of arbitrary functions over vertices of polytopes (see [41]).

2. Preliminaries

In this section, we recall some basic definitions and notations which will be required in proving our
main results.

A Lie algebra is called graduated [42], if it decomposes into a direct sum of vector subspaces

V =
r⊕

i=1
Vi, and, moreover, [Vi,Vk] ⊂ Vi+k, if i + k ≤ r, and [Vi,Vk] = 0, if i + k > r. Note that a

graduated algebra is always nilpotent of degree r. r-step stratifed Lie algebra V [43] is a Lie algebra
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nilpotent of degree r, that has a stratifcation, i. e.

V =

r⊕
i=1

Vi, Vi+1 = [V1,Vi], [V1,Vr] = {0}.

An r-step Carnot algebra [43] is a graduated Lie algebra V , which has a stratifcation; a simply
connected Lie group G, corresponding to an r-step Carnot algebra V , is called an r-step Carnot group.

Let N =
r∑

i=1
ni, ni = dim Vi, and the basis of the left-invariant vector fields {X1, . . . , XN} of the Carnot

group G is ordered such that the values of the first n1 of them form at every point u ∈ G the basis
of the subspace V1(u), the values of the next n2 of them form at every point u ∈ G the basis of the
subspace V2(u), and so on. We assign to every vector field Xk a natural number j = deg Xk, defined by
the inclusion Xk ∈ V j.

Definition 2.1 ( [12–15, 17]). A Box-quasimetric ρBoxG is defined as

ρBoxG (u,w) = max{|ai|
1

deg Xi | i = 1, . . . ,N}, w = exp
( N∑

i=1

aiXi

)
(u) ∀u,w ∈ G, (2.1)

where exp is standard exponential mapping.

Note that standard exponential mapping is identical on canonical Lie group. The Definition 2.1
implies that ρBoxG satisfies the identity and symmetry axioms.

A canonical 2-step group Dn with the 1-dimensional centre is defined in the standard Euclidean
space Rn+1 with the coordinate system (x1, . . . , xn, t) and the coordinate frame (O, e1, . . . , en, e) with the
help of the following commutator table

[ei, e j] = αi je,
n∑

i, j=1

α2
i j , 0, (2.2)

the rest of possible commutators of e1, . . . , en+1 equal 0. Suppose that x = (x1, . . . , xn, t),
x′ = (x′1, . . . , x

′
n, t
′). Using the Campbell-Hausdorff formula [44], with the help of (2.2) we obtain

LDn
x x′ = x · x′ =

(
x1 + x′1, . . . , xn + x′n, t + t′ +

∑
i, j=1,...,n, i< j

αi j

2
(xix′j − x jx′i)

)
. (2.3)

The values of basis left-invariant vector fields X1, . . . , Xn,T of the group Dn at every point
x = (x1, . . . , xn, t) are defined as

(X1, . . . , Xn,T )(x) =
∂LDn

u (x′1, . . . , x
′
n, t
′)

∂(x′1, . . . , x
′
n, t′)

∣∣∣∣
(x′1,...,x

′
n,t′)=(0,...,0)

.

If in (2.2) we put n = 2m, m ∈ N,
m−1∑
i=1

α2
2i,2i+1 = 0 and α2 j−1,2 j = α , 0, j = 1, . . . ,m, then we obtain

a commutator table that defines the canonical Heisenberg group Hm
α [16]. In particular, D2 = H1

α.
According to (2.1), (1, q2)-quasimetric ρBoxDn

is defined by the rule

ρBoxDn
(u,w) = max

{
|a1|, . . . , |an|, |an+1|

1
2
}
.
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Definition 2.2. Carnot group Dn is such a group Dn for which the relations αi j = 1 ∀i < j are fulfilled
in (2.2).

Let us consider some basis E0 = {e1, . . . , en} in a n-dimensional vector space Vecn.

Definition 2.3. We say that a basis E′ = {e′1, . . . , e
′
n} is affine equivalent to basis E0 on Vecn if

e′i =
∑
j=1

ci je j, i = 1, . . . , n,

where

det


c11 . . . c1n
...

. . .
...

cn1 . . . cnn

 , 0.

Let us consider skew-symmetric bilinear bracket function [x, y] : Vecn × Vecn → R. Let

[ei, e j] = ai j,

n∑
i, j=1

a2
i j , 0.

Since [x, y] is skew-symmetric then ai j = −a ji, aii = 0 for all i.

Lemma 2.4. Basis E0 = {e1, . . . , en} is affine equivalent to some basis E′ = {e′1, . . . , e
′
n} such that

[e′i , e
′
j] = bi j > 0, i < j.

Proof. Without loss of generality, we put [e1, e2] = a12, where a12 > 0. Build the basis {e′1, . . . , e
′
n} step

by step.
10 Consider all brackets [e1, ei], i > 2. Suppose that there are numbers a1i ≤ 0. Then, instead the

basis E0 = {e1, . . . , en} let us consider the basis

E1 = {e1, A1e2, e3 + A1e2, . . . , en + A1e2}, A1 > 0.

And we have
[e1, ei + A1e2] = a1i + a12A1;

if A1 is a large enough number then a12A1 + a1i > 0.
20 Next, we consider the basis E1, but in order to avoid inconvenience, we will use the notation

{e1, . . . , en} for E1 and the symbols ai j. So we have

[e1, ei] = a1i, a1i > 0, i = 2, . . . , n.

Consider all brackets [e2, ei], i > 3. Suppose that there are numbers a2i ≤ 0. Then, instead the basis
E1 = {e1, . . . , en} let us consider the basis

E2 = {e1, e2, e3 + A2e1, . . . , en + A2e1}, A2 < 0.

We have
[e1, ei + A2e1] = [e1, ei] = a1i, i > 3,
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[e2, ei + A2e1] = a2i − A2a12, i > 3;

if |A2| is a large enough number then a2i − A2a12 > 0.
30 Next, we consider the basis E2, but in order to avoid inconvenience, we will use the notation

{e1, . . . , en} for E2 and the symbols ai j. We have

[e j, ei] = a ji, a ji > 0, j = 1, 2, j < i, i = 2, . . . , n.

Consider all brackets [e3, ei], i > 3. Suppose that there are numbers a3i ≤ 0. Then instead the basis
E2 = {e1, . . . , en} let us consider the basis

E3 = {e1, e2, e3 + A3e2, e4, . . . , en}, A3 > 0.

We have
[e1, e3 + A3e2] = a13 + a12A3, a13 + a12A3 > 0,

[e2, e3 + A3e2] = a23, a23 > 0,

[e3 + A3e2, ei] = a3i + a2iA3, i > 3, a3i + a2iA3 > 0,

if A3 is a large enough number.
40 Next, we consider the basis E3, but in order to avoid inconvenience, we will use the notation

{e1, . . . , en} for E3 and the symbols ai j. We have

[e j, ei] = a ji, a ji > 0, j < i, i = 2, . . . , n, j = 1, 2, 3.

Consider all brackets [e4, ei], i > 4. Suppose that there are numbers a4i ≤ 0. Then, instead the basis
E3 = {e1, . . . , en} let us consider the basis

E4 = {e1, e2, e3, e4 + A4e3, . . . , en}, A4 > 0.

We have
[ei, e4 + A4e3] = ai4 + A4ai3 > 0, i = 1, 2, 3,

[e4 + A4e3, ai] = a4i + A4a3i > 0,

if A4 is a large enough number.
The next steps are obvious. �

In some cases the basis E0 = {e1, . . . , en} is affine equivalent to such a basis E′ = {e′1, . . . , e
′
n} that

[e′i , e
′
j] = 1, i < j.

Consider, for example, the 3-dimensional case

[ei, e j] = ai j, i < j, i, j = 1, 2, 3.

Taking into account Lemma 2.4, we can assume that ai j > 0. Let
x1x2 = a12,

x2x3 = a23,

x1x3 = a13,
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then

x2
2 =

a12a23

a13
⇔ x2 =

√
a12a23

a13
,

so

x1 =

√
a12a13

a23
, x3 =

√
a13a23

a12
.

It is not difficult to see that vectors e′i = ei
xi

, i = 1, 2, 3, satisfy the identities [e′i , e
′
j] = 1, i < j,

i, j = 1, 2, 3.

3. Main results

Next, we consider the basis {e1, . . . , en} of Vecn satisfying the table

[ei, e j] = 1, ∀i < j. (3.1)

Let x =
n∑

i=1
xiei, y =

n∑
i=1

yiei; then, using (3.1), we get

f (x, y) = [x, y] =
∑
i< j

(xiy j − x jyi).

Let’s find max
x,y∈Vert(n)

f (x, y), where Vert(n) is the set of all vertices of unit n-dimensional cube in vector

space Vecn, i. e. all possible points whose coordinates consist only of numbers ±1.
Let A[n](x, y) is a (n × n)-matrix consisting of elements

(A[n])i j =


xiy j, i > j,

−xiy j, i < j,

0, i = j,

where x, y ∈ Vert(n). Denote by L(A) the number of −1 in A[n](x, y).

Theorem 3.1. 1) min
x,y∈Vert(2k)

L(A[2k](x, y)) ≥ k2 − k, 2) min
x,y∈Vert(2k+1)

L(A[2k + 1](x, y)) ≥ k2.

Denote by A′i the (n − 1) × (n − 1)-matrix that is obtained from the matrix A[n](x, y) by deleting
i-line and i-column. Denote by A′′i j (n − 1) × (n − 1)-matrix, that is obtained from the matrix A[n](x, y)
by deleting i-line and j-column.

Lemma 3.2. Let us consider the matrix A = A[2k + 2](x, y). Then

1
C2

2k+2

∑
i> j

L(A′′i j) =
L(A)(4k2 − 2k)

4(k + 1)2 − 2(k + 1)
.

Proof. We have ∑
i> j

L(A′′i j) =
∑
i, j

l(i′, j′),
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where l(i′, j′) = 0 in the case when (A′′)i′ j′ , −1, and l(i′, j′) is equal to the number of all matrices A′′i j
containing the element (A′′)i′ j′ in the case when (A′′)i′ j′ = −1. It is not difficult to see that l = l(i′, j′)
does not depend on the choice of a pair i′, j′. We have

l · N2k+2 = C2
2k+2 · N2k,

where Nk is the number of non-diagonal elements of a (k × k)-matrix, and C2
2k+2 is the number of ways

to choose two pairs of i and j lines and columns in a (2k + 2) × (2k + 2)-matrix. Then∑
i> j

L(A′′i j) =
∑
i, j

l(i′, j′) = l · N2k+2,

hence Lemma 3.2 follows. �

Lemma 3.3. Let us consider the matrix A = A[2k + 1](x, y). Then

1
k + 1

∑
i

L(A′i) =
L(A)(4k2 − 2k)

(2k + 1)2 − (2k + 1)
.

Proof. The proof of Lemma 3.3 is similar to the proof of Lemma 3.2.
�

Proof of Theorem 3.1. 1) The proof is carried out using the method of mathematical induction. The
cases k = 1, 2, 3 are clear. Suppose that for k + 1 the Theorem 3.1 does not hold, i. e. there is a matrix
A = A[2k + 2](x, y) such that

L(A) ≤ (k + 1)2 − (k + 1) − 1.

But then for matrix A there will be a matrix A′′i j for which the Theorem 3.1 does not hold too. Let A′′i j
be a matrix for which L(A′′i j) is minimal. Then using Lemma 3.2 we have

L(A′′i j) ≤
L(A)(4k2 − 2k)

4(k + 1)2 − 2(k + 1)
≤

((k + 1)2 − (k + 1) − 1)(4k2 − 2k)
4(k + 1)2 − 2(k + 1)

=
((k + 1)2 − (k + 1))(4k2 − 2k)

4(k + 1)2 − 2(k + 1)
−

4k2 − 2k
4(k + 1)2 − 2(k + 1)

=
k2(2k − 1)

2k + 1
−

2k2 − k
2(k + 1)2 − (k + 1)

.

We have
k2(2k − 1)

2k + 1
= k2

(
1 −

1
k

+
1

k(2k + 1)

)
.

Inequality
k2

k(2k + 1)
−

2k2 − k
2(k + 1)2 − (k + 1)

< 0

is equivalent to inequality
2k2 > 3k + 2,

that is right for k ≥ 3. Then L(A′′i j) < k2 − k but this is contradiction.
The proof of the point 2) is similar using Lemma 3.3. �
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Corollary 3.4.
max

x,y∈Vert(2k)
f (x, y) ≤ 2k2, max

x,y∈Vert(2k+1)
f (x, y) ≤ 2k2 + 2k.

Property 3.5.

M2k = max
x,y∈Vert(2k)

f (x, y) = 2k2, M2k+1 = max
x,y∈Vert(2k+1)

f (x, y) = 2k2 + 2k.

Proof. Let x, y ∈ Vert(2k). You can see that if xi = 1, i = 1, . . . , 2k, y j = 1, j = 1, . . . , k, yl = −1,
l = k + 1, . . . , 2k, then

max
x,y∈Vert(2k)

f (x, y) = 2k2.

Let x, y ∈ Vert(2k + 1). You can see that if xi = 1, i = 1, . . . , 2k, y j = 1, j = 1, . . . , k, yl = −1,
l = k + 1, . . . , 2k + 1, then

max
x,y∈Vert(2k+1)

f (x, y) = 2k2 + 2k.

�

Using some results from work [39], we find the exact value of the constant in the (1, q2)-generalized
triangle inequality for the canonical Carnot group Dn. Let

MDn = sup
x,x′∈Vert(n)

∣∣∣∣ ∑
i, j=1,...,n, i< j

αi j

2
(xix′j − x jx′i)

∣∣∣∣,
compare with (2.3).

Theorem 3.6 ( [39]). On canonical Carnot group Dn the following formula gives the exact value of
the constant q2 in the (1, q2)-generalized triangle inequality

q2 =

1, MDn ≤ 2,
MDn

2 , MDn > 2.

Using Property 3.5 and Theorem 3.6 we get the following:

Theorem 3.7. The exact value of the constant in the (1, q2)-generalized triangle inequality for
canonical Carnot group Dn is defined by the formula q2 = Mn

2 , where

Mn =

2k2, n = 2k,

2k2 + 2k, n = 2k + 1.

Lemma 3.8. Let (X, ρX) be a symmetric (1, q)-quasimetric space. Then (X, ρX) is (q, 1)-quasimetric
space.

Proof. Obviously. �

Consider a (q′1, q
′
2)-quasimetric space (Y, ρY). The following Theorem 3.9 follows from Lemma 3.8,

Theorem 1.9 and Theorem 3.7.

Theorem 3.9. Let mapping Ψ : (Dn, ρBoxDn
) → (Y, ρY) be α-covering and closed, and the mapping

Φ : (Dn, ρBoxDn
)→ (Y, ρY) be β-Lipschitz. Fix an arbitrary point x0 ∈ Dn. The mappings Ψ and Φ have

a coincidence point ξ such that

ρX(x0, ξ) ≤
α − β + Mn

2 β

α(α − β)
ρY(Ψ(x0),Φ(x0)).
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4. Conclusions

In this paper, on some class of 2-step Carnot groups Dn with 1-dimensional centre we found the
exact values of the constants in (1, q2)-generalized triangle inequality for their Box-quasimetrics ρBoxDn

.
As a consequence, we obtained the best version of the Coincidence Points Theorem of α-covering and
β-Lipschitz mappings defined on (Dn, ρBoxDn

). The results obtained and the methods of their proofs can
be applied in fixed point theory, optimal control theory, optimization problems, quasimetric analysis,
sub-riemannian geometry.
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12. S. K. Vodopyanov, Geometry of Carnot-Carathéodory spaces and differentiability of mappings,
Contemp. Math., 424 (2007), 247–301.

13. S. G. Basalaev, S. K.Vodopyanov, Approximate differentiability of mappings of Carnot-
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