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Abstract: The dynamic signal transmission process can be regarded as an anti-periodic process,
and fractional-order inertial neural networks are widely used in signal processing and other fields, so
anti-periodicity is also regarded as an important dynamic feature of inertial neural networks. This
paper mainly studies the existence and Mittag-Leffler stability of anti-periodic solutions for a class of
fractional-order inertial BAM neural networks with time-delays. By introducing variable substitution,
the model with two different fractional-order derivatives is transformed into a model with only one
fractional-order derivative of the same order. Using the properties of fractional-order calculus, the
relationship between the fractional-order integral of the state function with and without time-delays
is given. Firstly, the sufficient conditions for the boundedness and the Mittag-Leffler stability of the
solutions for the system are derived. Secondly, by constructing the sequence solution of the function for
the system and applying Ascoli-Arzela theorem, the sufficient conditions for the existence and Mittag-
Leffler stability of the anti-periodic solution are given. Finally, the correctness of the conclusion is
verified by a numerical example.
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1. Introduction

As a special case of periodic solutions, the existence and stability of anti-periodic solutions are
extremely important in the dynamic behavior of nonlinear differential equations. Their phenomena
are widely found in various physical phenomena [1–5]. In recent years, the scholars have obtained
many results on the existence and stability. For example, [6–8] studied the stability of inertial BAM
neural networks and Cohen-Grossberg BAM neural networks. [9, 10] studied the global exponential
stability of anti-periodic solutions for BAM neural networks. The global exponential stability of the
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anti-periodic solution of Cohen-Grossberg neural networks is determined by [11]. The existence and
stability of anti-periodic solutions of BAM type Cohen-Grossberg neural networks are studied by [12].
The existence and stability of anti-periodic solutions of inertial neural networks are studied by [13].
Almost anti-periodic solution of inertial neural networks with leakage and time-varying delays on
timescales is studied in [14]. The paper [15] discussed the anti-periodic dynamics on high-order inertial
Hopfield neural networks with time-varying delays. The paper [16] studied the anti-periodicity on
high-order inertial Hopfield neural networks with mixed delays.

From [9–16], it can be seen that the models are all models with integer derivative. In recent years,
the study of periodic solutions of fractional-order neural networks has been attracted, some important
results have been obtained, such as: asymptotic periodic solutions, s-asymptotic periodic solutions,
almost periodic solutions of fractional-order neural networks in [17–21].

Fractional-order calculus is a generalization of integer-order. Fractional-order differential equations
are considered as a powerful tool for modeling practical problems in biology, chemistry, physics,
medicine, economics and other sciences.

With the further study of the periodicity of nonlinear differential equations, many scholars have
paid attention to the anti-periodic problem, which is another characteristic of periodic changes, such
as [22–24]. The phenomena are widely seen in biology, economics, medicine, physics and many other
disciplines. Because the fractional-order inertial neural networks models are the nonlinear differential
equations, which are widely used in signal processing, fluid mechanics, biology and other fields.
According to the data we have consulted, there have been many achievements in the research on
the global asymptotic stability, Mittag-Leffler stability, single stability and multi stability of periodic
solutions of fractional-order inertial neural networks, such as [17–21]. However, the research results
on the anti-periodic dynamic behavior of fractional-order inertial neural networks have not been seen
yet. In this paper, we study the stability of the anti-periodic solutions of a class of fractional-order
inertial BAM neural networks. It is a new topic worthy of study, which will provide a new criterion for
theoretical analysis in the exploration of dynamic behavior and practical application. The following
are the main innovations of this article:

1) The fractional-order inertial BAM neural networks model with two different fractional-order
derivatives is transformed into a model with only one fractional-order derivative with the same order
through appropriate variable replacement;

2) When the time variable changes in the finite interval with less than or equal to time-delays and
in the infinite interval with more than or equal to time-delays, the relationship between the fractional-
order integral of the state function with and without time-delay is derived;

3) By constructing the function sequence solutions of the system, we can derive that it converges
uniformly to a continuous function by applying Ascoli-Arzela theorem, then the sufficient conditions
for judging the existence and Mittag-Leffler stability of the anti-periodic solutions for the system are
given;

4) The results given provides a new theoretical reference for further research on the theory and
practical application of fractional-order inertial BAM neural networks with time-delays.

We Consider a class of fractional-order inertial BAM neural networks with time-delays:
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
D2α

t xi(t) = −ciDα
t xi(t) − αixi(t) +

n∑
j=1

ai j f j(y j(t)) +
n∑

j=1
bi j f j(y j(t − τi j)) + Ii(t),

D2α
t y j(t) = −d jDα

t y j(t) − β jy j(t) +
n∑

i=1
g ji fi(xi(t)) +

n∑
i=1

h ji fi(xi(t − σ ji)) + J j(t),
(1.1)

where t ≥ 0, i, j = 1, 2, · · · , n. Dα
t is the Riemann-Liouville fractional-order derivative of order α,

0 < α < 1, xi(t) and y j(t) represent the state of ith and jth neurons of t. ci > 0, d j > 0, αi > 0,
β j > 0, ai j, bi j, g ji, h ji respectively represent the connection weights between neurons, fi(·) represents
the excitation function of the ith neuron, Ii(t) and J j(t) represent the external input of the ith and jth
neurons at time t, τi j and σ ji represent the signal transmission delay of the ith neuron and the jth neuron
at the time t and satisfies 0 < τi j ≤ τ, 0 < σ ji ≤ σ.

The initial conditions of (1.1) are given as follows:{
xi(s) = φ1i(s), Dα

t xi(s) = φ2i(s), −δ ≤ s ≤ 0,
y j(s) = ψ1 j(s), Dα

t y j(s) = ψ2 j(s), −δ ≤ s ≤ 0,
(1.2)

where i, j = 1, 2, · · · , n, and φ1i(s), φ2i(s), ψ1 j(s), ψ2 j(s) are continuous and bounded in [−δ, 0], δ =
max{σ, τ}.

2. Preliminaries

Definition 2.1. [25] Let q > 0 be any positive real number, the fractional-order integral (Riemann-
Liourille integral) of f (t) with q order is defined as

D−q
t f (t) =

1
Γ(q)

∫ t

0
(t − r)q−1 f (r)dr,

where Γ(·) is a Γ function, that is Γ(s) =
∫ +∞

0
e−xxs−1dx, s > 0.

Definition 2.2. [25] Let q > 0 be any positive real number, n−1 ≤ q < n, Riemann-Liourille fractional-
order derivative is defined as

Dq
t f (t) =

1
Γ(n − q)

dn

dtn

∫ t

0

f (s)
(t − s)q−n+1 ds.

Definition 2.3. [25] The Mittag-Leffler function with a parameter q is defined as

Eq(z) =
+∞∑
k=0

zk

Γ(kq + 1)
,

where the real part Re(q) > 0 of the complex number q, z is a complex number, and Γ(·) is a Γ function.
Definition 2.4. Let XT(t), X

T
(t) be two solutions of system (1.1) with initial conditions{
xi(s) = φ1i(s), Dα

t xi(s) = φ2i(s), −σ ≤ s ≤ 0,
y j(s) = ψ1 j(s), Dα

t y j(s) = ψ2 j(s), −τ ≤ s ≤ 0,

and {
xi(s) = φ1i(s), Dα

t xi(s) = φ2i(s), −σ ≤ s ≤ 0,
y j(s) = ψ1 j(s), Dα

t y j(s) = ψ2 j(s), −τ ≤ s ≤ 0.
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If there are two normal numbers ρ1 > 0 and ρ2 > 0, which satisfy

∥X(t) − X(t)∥ ≤ [M(φ − φ)Eq(−ρ1tq)]ρ2 , t ≥ 0,

then, the solution of system (1.1) is said to be globally Mittag-Leffler stable, where

X(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T,

X(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T,

φ(t) = (φ11(t), φ12(t), · · · , φ1n(t), ψ11(t), ψ12(t), · · · , ψ1n(t))T,

φ(t) = (φ11(t), φ12(t), · · · , φ1n(t), ψ11(t), ψ12(t), · · · , ψ1n(t))T,

M(φ − φ) ≥ 0,M(0) = 0.

Eq(·) is a Mittag-Leffler function with one parameter.
Definition 2.5. If u(t) ∈ C(R), u(t + ω) = −u(t) for t ∈ R, then, u(t) is an anti-periodic function, where
ω is a positive number.
Lemma 2.1. [26] If x(t) ∈ R is continuous and differentiable in [0, δ] (δ > 0), and 0 < q < 1,
n − 1 < p < n, n ∈ Z+, then,
(1) Dp

t Dq
t x(t) = Dp+q

t x(t);
(2) D−q

t Dq
t x(t) = x(t).

Lemma 2.2. [27] If r(t) is derivable and r′(t) is continuous, then,

1
2

Dq
t r2(t) ≤ r(t)Dq

t r(t), 0 < q ≤ 1.

Lemma 2.3. [26] Let u(t) be a continuous function which is defined in [0,+∞), if there exist constants
d1 > 0 and d2 > 0, such that u(t) ≤ −d1D−q

t u(t) + d2, t ≥ 0, then,

u(t) ≤ d2Eq(−d1tq),

where 0 < q < 1 and Eq(·) is the Mittag-Leffler function with one parameter.
The discussion is based on the assumptions below for i, j = 1, 2, ..., n.
H1. The function f j(·) is continuous and bounded which satisfies the Lipschitz condition, that is,

there exist constants l j > 0, f̄ j > 0, satisfing

| f j(u) − f j(v)| ≤ l j|u − v|, | f j(u)| ≤ f̄ j, u, v ∈ R,

and
f j(u) = − f j(−u), u ∈ R.

H2. Ii(t) and J j(t) are bounded, that is, there exist constants Īi > 0 and J̄ j > 0, satisfing

|Ii(t)| ≤ Īi, |J j(t)| ≤ J̄ j.

H3. There exists a constant ω > 0, satisfing Ii(t + ω) = −Ii(t), J j(t + ω) = −J j(t).
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For system (1.1), we introduce variable replacement:{
ui(t) = Dα

t xi(t) + γixi(t),
v j(t) = Dα

t y j(t) + γ jy j(t),
γi > 0, γ j > 0, i, j = 1, 2, · · · , n.

From Lemma 2.1, system (1.1) can be transformed into

Dα
t xi(t) = −γixi(t) + ui(t),

Dα
t ui(t) = −(αi + γ

2
i − γici)xi(t) − (ci − γi)ui(t) +

n∑
j=1

ai j f j(y j(t)) +
n∑

j=1
bi j f j(y j(t − τi j)) + Ii(t),

Dα
t y j(t) = −γ jy j(t) + v j(t),

Dα
t v j(t) = −(β j + γ

2
j − γ jd j)y j(t) − (d j − γ j)v j(t) +

n∑
i=1

g ji fi(xi(t)) +
n∑

i=1
h ji fi(xi(t − σ ji)) + J j(t).

(2.1)

3. Results

Theorem 3.1. For the system (1.1), assume that H1 and H2 are true, if

η1 = min
1≤i≤n
{γi − |αi + γ

2
i − γici|, ci − γi − 1} > 0, η2 = min

1≤ j≤n
{γ j − |β j + γ

2
j − γ jd j|, d j − γ j − 1} > 0,

then, the solutions xi(t), y j(t) of (1.1) and Dα
t xi(t), Dα

t y j(t) (i, j = 1, 2, · · · , n) are bounded in [0,T ] (T <

+∞).

Proof. According to the first two formulas in (2.1), we can get
Dα

t |xi(t)| ≤ −γi|xi(t)| + |ui(t)|,

Dα
t |ui(t)| ≤ |αi + γ

2
i − γici||xi(t)| − (ci − γi)|ui(t)| +

n∑
j=1

(|ai j| + |bi j|) f̄ j + Īi.
(3.1)

According to Lemma 2.1, we can get from (3.1) that

|xi(t)| + |ui(t)| ≤ −γiD−αt |xi(t)| + D−αt |ui(t)| + |αi + γ
2
i − γici|D−αt |xi(t)|

−(ci − γi)D−αt |ui(t)| + D−αt [
n∑

j=1

(|ai j| + |bi j|) f̄ j + Īi]

≤ −(γi − |αi + γ
2
i − γici|)D−αt |xi(t)| − (ci − γi − 1)D−αt |ui(t)|

+[
n∑

j=1

(|ai j| + |bi j|) f̄ j + Īi]
Tα

Γ(α + 1)

≤ −η1D−αt [|xi(t)| + |ui(t)|] + m1, (3.2)

where m1 = [
n∑

j=1
(|ai j| + |bi j|) f̄ j + Īi] Tα

Γ(α+1) . According to Lemma 2.3 and (3.2), we have

|xi(t)| + |ui(t)| ≤ m1Eα(−η1tα), t > 0,

so xi(t) and ui(t) are bounded. Due to Dα
t xi(t) = −γixi(t) + ui(t), when xi(t) and ui(t) are bounded, and

Dα
t |xi(t)| ≤ −γi|xi(t)| + |ui(t)| ≤ (γi + 1)m1Eα(−η1tα),
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so Dα
t xi(t) are bounded.

Similarly, it can be deduced from the last two formulas of (2.1) that

|y j(t)| + |v j(t)| ≤ m2Eα(−η2tα), Dα
t |y j(t)| ≤ (γ j + 1)m2Eα(−η2tα),

where m2 = [
n∑

i=1
(|g ji| + |h ji|) f̄i + J̄ j] Tα

Γ(α+1) . So y j(t) and Dα
t y j(t) are bounded. □

Theorem 3.2. Assume that the condition H1 is true, if

η = min{min
1≤i≤n
{2γi − |1 − αi − γ

2
i + γici| −

n∑
j=1

(|g ji| + |h ji|)li, 2ci − 2γi − |1 − αi − γ
2
i + γici| −

n∑
j=1

(|ai j| +

|bi j|)l j}, min
1≤ j≤n
{2γ j−|1−β j−γ

2
j+γ jd j|−

n∑
i=1

(|ai j|+|bi j|)l j, 2d j−2γ j−|1−β j−γ
2
j+γ jd j|−

n∑
i=1

(|g ji|+|h ji|)li}} > 0,

then the solutions of system (1.1) are globally Mittag-Leffler stable.

Proof. Let X(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T and X(t) = (x1(t), x2(t), · · · , xn(t), y1(t),
y2(t), · · · , yn(t))T be two solutions of system (1.1) with the initial value xi(s) = φ1i(s), Dα

t xi(s) =
φ2i(s), yi(s) = ψ1i(s), Dα

t xi(s) = ψ2i(s) and xi(s) = φ1i(s), Dα
t xi(s) = φ2i(s), yi(s) = ψ1i(s), Dα

t yi(s) =
ψ2i(s) . Let zi(t) = xi(t)−xi(t), wi(t) = yi(t)−yi(t), pi(t) = ui(t)−ui(t), qi(t) = vi(t)−vi(t), i = 1, 2, · · · , n.
According to (2.1), we get

Dα
t zi(t) = −γizi(t) + pi(t),

Dα
t pi(t) = −(αi + γi

2 − γici)zi(t) − (ci − γi)pi(t)

+
n∑

j=1
ai j( f j(y j(t)) − f j(y j(t))) +

n∑
j=1

bi j( f j(y j(t − τi j)) − f j(y j(t − τi j))),

Dα
t w j(t) = −γ jw j(t) + q j(t),

Dα
t q j(t) = −(β j + γ j

2 − γ jd j)w j(t) − (d j − γ j)q j(t)

+
n∑

i=1
g ji( fi(xi(t)) − fi(xi(t))) +

n∑
i=1

h ji( fi(xi(t − σ ji)) − fi(xi(t − σ ji))).

(3.3)

According to Lemma 2.2 and (3.3), we have

Dα
t z2

i (t) ≤ −2γiz2
i (t) + 2zi(t)pi(t),

Dα
t p2

i (t) ≤ −2(αi + γi
2 − γici)zi(t)pi(t) − 2(ci − γi)p2

i (t)

+2|pi(t)|[
n∑

j=1
|ai j|l j|w j(t)| +

n∑
j=1
|bi j|l j|w j(t − τi j)|],

Dα
t w2

j(t) ≤ −2γ jw2
j(t) + 2w j(t)q j(t),

Dα
t q2

j(t) ≤ −2(β j + γ j
2 − γ jd j)q j(t)w j(t) − 2(d j − γ j)q2

j(t)

+2|q j(t)|[
n∑

i=1
|g ji|li|zi(t)| +

n∑
i=1
|h ji|li|zi(t − σ ji)|].

(3.4)

From (3.4), we have

Dα
t

n∑
i=1

[z2
i (t) + p2

i (t)] + Dα
t

n∑
j=1

[w2
j(t) + q2

j(t)]

≤

n∑
i=1

{−2γiz2
i (t) + 2(1 − αi − γ

2
i + γici)zi(t)pi(t) − 2(ci − γi)p2

i (t) +
n∑

j=1

|ai j|l j(p2
i (t) + w2

j(t))
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+

n∑
j=1

|bi j|l j(p2
i (t) + w2

j(t − τi j))} +
n∑

j=1

{−2γ jw2
j(t) + 2(1 − β j − γ

2
j + γ jd j)w j(t)q j(t)

−2(d j − γ j)q2
j(t) +

n∑
i=1

|g ji|li(z2
i (t) + q2

j(t)) +
n∑

i=1

|h ji|li(q2
j(t) + z2

i (t − σ ji))}

=

n∑
i=1

{−[2γi − |1 − αi − γ
2
i + γici| −

n∑
j=1

|g ji|li]z2
i (t) − [2ci − 2γi − |1 − αi − γ

2
i + γici|

−

n∑
j=1

(|ai j| + |bi j|)l j]p2
i (t)} +

n∑
j=1

{−[2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

|ai j|l j]w2
j(t)

−[2d j − 2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

(|g ji| + |h ji|)li]q2
j(t)}

+

n∑
i=1

n∑
j=1

|bi j|l jw2
j(t − τi j) +

n∑
j=1

n∑
i=1

|h ji|liz2
i (t − σ ji). (3.5)

From (3.5), we can obtain
n∑

i=1

[z2
i (t) + p2

i (t)] +
n∑

j=1

[w2
j(t) + q2

j(t)]

≤

n∑
i=1

{−[2γi − |1 − αi − γ
2
i + γici| −

n∑
j=1

|g ji|li]D−αt z2
i (t) − [2ci − 2γi − |1 − αi − γ

2
i + γici|

−

n∑
j=1

(|ai j| + |bi j|)l j]D−αt p2
i (t)} +

n∑
j=1

{−[2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

|ai j|l j]D−αt w2
j(t)

−[2d j − 2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

(|g ji| + |h ji|)li]D−αt q2
j(t)}

+

n∑
i=1

n∑
j=1

|bi j|l jD−αt w2
j(t − τi j) +

n∑
j=1

n∑
i=1

|h ji|liD−αt z2
i (t − σ ji). (3.6)

When t ∈ [0, τi j], we have t − τi j ≤ 0, then,

D−αt w2
j(t − τi j) =

1
Γ(α)

∫ t

0
(t − s)α−1w2

j(s − τi j)ds

=
1
Γ(α)

∫ t−τi j

−τi j

(t − u − τi j)α−1w2
j(u)du

≤
w∗j
Γ(α)

∫ t−τi j

−τi j

(t − u − τi j)α−1du

=
w∗jt

α

Γ(α + 1)
≤

w∗jτ
α

Γ(α + 1)
, (3.7)

where w∗j = sup
−τ≤s≤0

{|ψ1 j(s) − ψ1 j(s)|}, j = 1, 2, · · · , n.
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When t ∈ [τi j,+∞), we have t − τi j ≥ 0, then

D−αt w2
j(t − τi j) =

1
Γ(α)

∫ t

0
(t − s)α−1w2

j(s − τi j)ds

=
1
Γ(α)

∫ t−τi j

−τi j

(t − u − τi j)α−1w2
j(u)du

=
1
Γ(α)

∫ 0

−τi j

(t − u − τi j)α−1w2
j(u)du +

1
Γ(α)

∫ t−τi j

0
(t − u − τi j)α−1w2

j(u)du

≤
w∗jτ

α

Γ(α + 1)
+

1
Γ(α)

∫ t

0
(t − u)α−1w2

j(u)du

=
w∗jτ

α

Γ(α + 1)
+ D−αt w2

j(t). (3.8)

From (3.7) and (3.8), we get

D−αt w2
j(t − τi j) ≤

w∗jτ
α

Γ(α + 1)
+ D−αt w2

j(t), (3.9)

where w∗j = sup
−τ≤s≤0

{|ψ1 j(s) − ψ1 j(s)|}, j = 1, 2, · · · , n. The same can be deduced

D−αt z2
i (t − σ ji) ≤

z∗iσ
α

Γ(α + 1)
+ D−αt z2

i (t), (3.10)

where z∗i = sup
−σ≤s≤0

{(φ1i(s) − φ1i(s))2}, i = 1, 2, · · · , n.

We substitute (3.9) and (3.10) into (3.6) to get

n∑
i=1

[z2
i (t) + p2

i (t)] +
n∑

j=1

[w2
j(t) + q2

j(t)]

≤

n∑
i=1

{−[2γi − |1 − αi − γ
2
i + γici| −

n∑
j=1

(|g ji + |h ji|)li]D−αt z2
i (t)

−[2ci − 2γi − |1 − αi − γ
2
i + γici| −

n∑
j=1

(|ai j| + |bi j|)l j]D−αt p2
i (t)}

+

n∑
j=1

{−[2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

(|ai j| + |bi j|)l j]D−αt w2
j(t)

−[2d j − 2γ j − |1 − β j − γ
2
j + γ jd j| −

n∑
i=1

(|g ji| + |h ji|)li]D−αt q2
j(t)}

+
1

Γ(α + 1)

n∑
i=1

n∑
j=1

[|bi j|l jw∗jτ
α + |h ji|liz∗iσ

α]

≤ −ηD−αt [
n∑

i=1

(z2
i (t) + p2

i (t)) +
n∑

j=1

(w2
j(t) + q2

j(t))] + M(φ − φ),
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where

M(φ − φ) =
1

Γ(α + 1)

n∑
i=1

n∑
j=1

[|bi j|l jw∗jτ
α + |h ji|liz∗iσ

α],

φ = (φ11(t), φ12(t), · · · , φ1n(t), ψ11(t), ψ12(t), · · · , ψ1n(t))T,

φ = (φ11(t), φ12(t), · · · , φ1n(t), ψ11(t), ψ12(t), · · · , ψ1n(t))T.

According to Lemma 2.3, we have

n∑
i=1

[z2
i (t) + p2

i (t)] +
n∑

j=1

[w2
j(t) + q2

j(t)] ≤ M(φ − φ)Eα(−ηtα).

Then,
n∑

i=1

z2
i (t) +

n∑
i=1

w2
i (t) ≤ M(φ − φ)Eα(−ηtα).

Using the inequality
n∑

i=1
|ai| ≤ (n

n∑
i=1

a2
i )

1
2 , we have

∥X(t) − X(t)∥ =
n∑

i=1

[|zi(t)| + |wi(t)|] ≤ 2[nM(φ − φ)Eα(−ηtα)]
1
2 . (3.11)

Obviously, M(0) = 0, M(φ − φ) ≥ 0. According to Definition 2.4, the solutions of the system (1.1) are
globally Mittag-Leffler stable. □

Theorem 3.3. Suppose that H1–H3 hold, if the conditions of Theorems 3.1 and 3.2 are satisfied, then
the system (1.1) has an anti-periodic solution which is globally Mittag-Leffler stable.

Proof. Let X(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T be any solution of system (1.1). For
any natural number k and ω > 0 which is given in H3, we can get from (2.1) that

Dα
t [(−1)k+1xi(t + (k + 1)ω)] = −γi(−1)k+1xi(t + (k + 1)ω) + (−1)k+1ui(t + (k + 1)ω),

Dα
t [(−1)k+1ui(t + (k + 1)ω)] = −(αi + γi

2 − γici)(−1)k+1xi(t + (k + 1)ω)

−(ci − γi)(−1)k+1ui(t + (k + 1)ω) +
n∑

j=1
ai j f j((−1)k+1y j(t + (k + 1)ω))

+
n∑

j=1
bi j( f j((−1)k+1y j(t + (k + 1)ω − τi j)) + Ii(t),

Dα
t [(−1)k+1y j(t + (k + 1)ω)] = −γ j(−1)k+1y j(t + (k + 1)ω) + (−1)k+1v j(t + (k + 1)ω),

Dα
t [(−1)k+1v j(t + (k + 1)ω)] = −(β j + γ j

2 − γ jd j)(−1)k+1y j(t + (k + 1)ω)

−(d j − γ j)(−1)k+1v j(t + (k + 1)ω) +
n∑

i=1
g ji fi((−1)k+1xi(t + (k + 1)ω))

+
n∑

i=1
h ji( fi((−1)k+1xi(t + (k + 1)ω − σ ji)) + J j(t).

(3.12)

It can be seen that for any natural number k,

(−1)k+1xi(t + (k + 1)ω), (−1)k+1ui(t + (k + 1)ω), (−1)k+1y j(t + (k + 1)ω), (−1)k+1v j(t + (k + 1)ω)
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are the solutions of (2.1), then,

(−1)kxi(t + kω), (−1)kui(t + kω), (−1)ky j(t + kω), (−1)kkv j(t + kω) (i, j = 1, 2, · · · , n)

are also the solutions of (2.1). This means (−1)kxi(t + kω), (−1)ky j(t + kω) are the solution of
system (1.1). From Theorem 3.1, the solutions of system (1.1) xi(t), y j(t) and Dα

t xi(t), Dα
t y j(t) are

bounded, due to
ui(t) = Dα

t xi(t) + γixi(t), v j(t) = Dα
t y j(t) + γ jy j(t),

we get (−1)kxi(t+kω), (−1)kui(t+kω), (−1)ky j(t+kω), (−1)kv j(t+kω) are also bounded, i, j = 1, 2, · · · , n.
On the other hand, due to

RL
a Dα

t g(t) =C
a Dα

t g(t) +
n−1∑
k=1

(t − a)k−α

Γ(k − α + 1)
f k(a),

where RL
a Dα

t g(t) is Riemann-Liourille fractional-order derivative, C
a Dα

t g(t) is Caputo fractional-order
derivative, that is

C
a Dα

t g(t) =
1

Γ(n − α)

∫ t

a

f (n)(τ)
(t − τ)α+1−n dτ, n − 1 < α < n.

So that we can get xi(t), y j(t), ui(t), v j(t) (i, j = 1, 2, · · · , n) are differentiable, then we obtain the
function sequence (−1)kxi(t + kω), (−1)kui(t + kω), (−1)ky j(t + kω), (−1)kv j(t + kω) is equicontinuity
and uniform boundedness. Using the Ascoli-Arzela theorem, we can select a subsequence {kω}k∈N ,
such that {(−1)kxi(t + kω)}k∈N , {(−1)ky j(t + kω)}k∈N , {(−1)kui(t + kω)}k∈N , {(−1)kv j(t + kω)}k∈N (N =
1, 2, · · · , n, · · · ) uniformly converge to continuous functions x∗i (t), y∗j(t), u∗i (t), v∗j(t) on any compact
set in [0,+∞), that is,

lim
k→+∞

(−1)kxi(t + kω) = x∗i (t), lim
k→+∞

(−1)ky j(t + kω) = y∗j(t),

lim
k→+∞

(−1)kui(t + kω) = u∗i (t), lim
k→+∞

(−1)kv j(t + kω) = v∗j(t).

Let
X∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t), y∗1(t), y∗2(t), · · · , y∗n(t))T,

U∗(t) = (u∗1(t), u∗2(t), · · · , u∗n(t), v∗1(t), v∗2(t), · · · , v∗n(t))T.

We can prove that X∗(t) and U∗(t) are anti-periodic functions. In fact,

X∗(t) = lim
k→+∞

(−1)kX(t + ω + kω) = − lim
k→+∞

(−1)k+1X(t + (k + 1)ω) = −X∗(t),

U∗(t) = lim
k→+∞

(−1)kU(t + ω + kω) = − lim
k→+∞

(−1)k+1U(t + (k + 1)ω) = −U∗(t),

from this, X∗(t) and U∗(t) are the ant-periodic functions. Because

lim
k→+∞

(−1)k+1xi(t + (k + 1)ω) = x∗i (t), lim
k→+∞

(−1)k+1y j(t + (k + 1)ω) = y∗j(t),

lim
k→+∞

(−1)k+1ui(t + (k + 1)ω) = u∗i (t), lim
k→+∞

(−1)k+1v j(t + (k + 1)ω) = v∗j(t).
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When fi(·) is continuous, it can be inferred from (3.12) that

Dα
t x∗i (t) = −γix∗i (t) + u∗i (t),

Dα
t u∗i (t) = −(αi + γ

2
i − γici)x∗i (t) − (ci − γi)u∗i (t) +

n∑
j=1

ai j f j(y∗j(t)) +
n∑

j=1
bi j f j(y∗j(t − τi j)) + Ii(t),

Dα
t y∗j(t) = −γ jy∗j(t) + v∗j(t),

Dα
t v∗j(t) = −(β j + γ

2
j − γ jd j)y∗j(t) − (d j − γ j)v∗j(t) +

n∑
i=1

g ji fi(x∗i (t)) +
n∑

i=1
h ji fi(x∗i (t − σ ji)) + J j(t).

(3.13)
That is, X∗(t) and U∗(t) are the anti-periodic solutions of (2.1). This means X∗(t) is the anti-periodic
solution of system (1.1). According to (3.11), we have

∥X(t) − X∗(t)∥ ≤ 2[nM(φ − φ∗)Eα(−ηtα)]
1
2 ,

where X∗(t) is with the initial value φ∗ = (φ∗11(s), φ∗12(s), · · · , φ∗1n(s), ψ∗11(s), ψ∗12(s), · · · , ψ∗1n(s))T, −δ ≤
s ≤ 0, δ = max{τ, σ}, M(φ − φ∗) ≥ 0, M(0) = 0. Therefore, the system (1.1) has an anti-periodic
solution which is Mittag-Leffler stable. □

4. Numerical example

Example 1. Consider the following fractional-order inertial BAM neural networks with time-delays:
D2α

t xi(t) = −ciDα
t xi(t) − αixi(t) +

2∑
j=1

ai j f j(y j(t)) +
2∑

j=1
bi j f j(y j(t − τi j)) + Ii(t),

D2α
t y j(t) = −d jDα

t y j(t) − β jy j(t) +
2∑

i=1
g ji fi(xi(t)) +

2∑
i=1

h ji fi(xi(t − σ ji)) + J j(t),
(4.1)

for t ≥ 0, i, j = 1, 2. The parameters settings are as follows: α = 0.85, fi(xi) = 1
50 (|xi+1|−|xi−1|), τi j =

σi j = 1, i, j = 1, 2. I1(t) = 0.01 cos(t), I2(t) = 0.01 cos(t), J1(t) = 0.03 sin(t), J2(t) = 0.01 sin(t),
α1 = 2.5, α2 = 2.6, β1 = 2.5, β2 = 3, c1 = 2.5, c2 = 2.6, d1 = 2.8, d2 = 2.6, a11 = 0.4, a12 =

0.5, a21 = 0.5, a22 = 0.8, b11 = −0.1, b12 = 0.1, b21 = 0.2, b22 = 0.2, g11 = 0.6, g12 = 0.5, g21 =

0.5, g22 = 0.6, h11 = 0.1, h12 = 0.5, h21 = 0.4, h22 = 0.2.
We choose li = 1, i = 1, 2, ω = π, γ1 = 1.25, γ2 = 1.35. After calculation, we get

η1 = min
1≤i≤n
{γi − |αi + γ

2
i − γici|, ci − γi − 1} = 0.25 > 0,

η2 = min
1≤ j≤n
{γ j − |β j + γ

2
j − γ jd j|, d j − γ j − 1} = 0.0375 > 0,

η = min{min
1≤i≤n
{2γi−|1−αi−γ

2
i +γici|−

n∑
j=1

(|g ji|+ |h ji|)li, 2ci−2γi−|1−αi−γ
2
i +γici|−

n∑
j=1

(|ai j|+ |bi j|)l j},

min
1≤ j≤n
{2γ j−|1−β j−γ

2
j+γ jd j|−

n∑
i=1

(|ai j|+|bi j|)l j, 2d j−2γ j−|1−β j−γ
2
j+γ jd j|−

n∑
i=1

(|g ji|+|h ji|)li}} = 0.4875 > 0.

That is to say, the conditions in Theorem 3.3 are satisfied. It can be seen that system (4.1) has an anti-
periodic solution with a period of π and it is Mittag-Leffler stable.

On the other hand, we get the state of the example through numerical simulation in Figure 1. It can
be seen from the figure that it is consistent with the theoretical result of Theorem 3.3.
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Figure 1. The state variables x1(t), x2(t), y1(t), y2(t) of example at time t.

5. Conclusions

The fractional-order inertial neural networks considers the damping factor and can simulate more
complex networks systems. Therefore, compared with fractional-order neural networks without inertia
term, it has more research value in theory and application. The anti-periodic phenomena of nonlinear
differential equations appear widely in biology, physics and many other fields. The fractional-order
inertial BAM neural networks model is a system of nonlinear differential equations, which has a wide
application background. It is important to study the existence and stability of the anti-periodic solution
for the system in dynamic behaviors.

In this paper, we study the existence and Mittag-Leffler stability of anti-periodic solutions for
fractional-order inertial BAM neural networks with time-delays. It is a new topic. Studying
the existence and stability of the anti-periodic solution for the system has certain research value
in theoretical exploration. By introducing variable substitution, the BAM neural networks model
with two fractional-order derivatives of different orders is transformed into a model with only one
fractional-order neural networks of the same order. Using the fractional-order calculus properties,
the boundedness and Mittag-Leffler stability of the system solution are given. By constructing the
sequence solution of the function for the system and applying the Ascoli-Arzela theorem, the sufficient
conditions for the existence and Mittag-Leffler stability of anti-periodic solutions are obtained, and
the validity of the conclusions derived in this paper is verified by numerical simulation. We give the
sufficient conditions for the existence and stability of anti-periodic solutions for a class of fractional-
order inertial BAM neural networks, that is, the results of Theorems 3.1–3.3. From the data we have
consulted, there are no results of the study on the stability of anti-periodic solutions for fractional-order
inertial BAM neural networks. Therefore, our research topic is new, and the results obtained are also
new. The results provide theoretical criteria for further research on innovation and practical application
of system dynamic behavior.
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Using the research ideas and methods in this paper, we can further study other types of fractional-
order inertial neural networks with time-delays, such as the existence and Mittag-Leffler stability of
anti-periodic solutions for fractional-order inertial Cohen-Grossberg type BAM neural networks with
time-delays.

Acknowledgments

The work was supported by Science Project of Zhejiang Educational Department (No.
Y202145903), the Ministry of Education’s Cooperative Education Project (220603284143545),
Science Project of Shaoxing University (No. 2020LG1009) and Science Project of Shaoxing University
Yuanpei College (KY2021C04).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

1. A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel, On a class of second-order anti-periodic boundary
value problems, J. Math. Anal. Appl., 171 (1992), 301–320. https://doi.org/10.1016/0022-
247X(92)90345-E

2. S. Aizicovici, M. Mckibben, S. Reich, Anti-periodic solutions to nonmonotone evolution
equations with discontinuous nonlinearities, Nonlinear Anal., 43 (2001), 233–251.
https://doi.org/10.1016/S0362-546X(99)00192-3

3. Y. Q. Chen, J. J. Nieto, D. O’Regan, Anti-periodic solutions for fully nonlinear
first-order differential equations, Math. Comput. Model., 46 (2007), 1183–1190.
https://doi.org/10.1016/j.mcm.2006.12.006

4. H. L. Chen, Antiperiodic wavelets, J. Comput. Math., 14 (1996), 32–39.

5. Y. Q. Li, L. H. Huang, Anti-periodic solutions for a class of Liénard-type systems with
continuously distributed delays, Nonlinear Anal. Real World Appl., 10 (2009), 2127–2132.
https://doi.org/10.1016/j.nonrwa.2008.03.020

6. Z. Q. Zhang, Z. Y. Quan, Global exponential stability via inequality technique for
inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326.
https://doi.org/10.1016/j.neucom.2014.10.072

7. Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-
Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94–105.
https://doi.org/10.1016/j.neunet.2011.07.006

8. Z. Q. Zhang, J. D. Cao, D. M. Zhou, Novel LMI-based condition on global asymptotic stability
for a class of Cohen-Grossberg BAM networks with extended activation functions, IEEE Trans.
Neural Net. Learn. Syst., 25 (2014), 1161–1172. https://doi.org/10.1109/TNNLS.2013.2289855

AIMS Mathematics Volume 8, Issue 3, 6176–6190.

http://dx.doi.org/https://doi.org/10.1016/0022-247X(92)90345-E
http://dx.doi.org/https://doi.org/10.1016/0022-247X(92)90345-E
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(99)00192-3
http://dx.doi.org/https://doi.org/10.1016/j.mcm.2006.12.006
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2008.03.020
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2014.10.072
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2011.07.006
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2013.2289855


6189

9. X. Y. Fu, F. C. Kong, Global exponential stability analysis of anti-periodic solutions of
discontinuous bidirectional associative memory (BAM) neural networks with time-varying delays,
Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 807–820. https://doi.org/10.1515/ijnsns-2019-0220

10. N. Radhakrishnan, R. Kodeeswaran, R. Raja, C. Maharajan, A. Stephen, Global exponential
stability analysis of anti-periodic of discontinuous BAM neural networks with time-varying delays,
J. Phys. Conf. Ser., 1850 (2021), 1–20. https://doi.org/10.1088/1742-6596/1850/1/012098

11. C. F. Xu, F. C. Kong, Global exponential stability of anti-periodic solutions for discontinuous
Cohen-Grossberg neural networks with time-varying delays, J. Exp. Theor. Artif. Intell., 33 (2021),
263–281. https://doi.org/10.1080/0952813X.2020.1737244

12. P. Cui, Z. B. Li, Anti-periodic solutions for BAM-type Cohen-Grossberg neural networks with time
delays, J. Nonlinear Sci. Appl., 10 (2017), 2171–2180. https://doi.org/10.22436/jnsa.010.04.69

13. Y. Q. Ke, C. F. Miao, Anti-periodic solutions of inertial neural networks with time delays, Neural
Process. Lett., 45 (2017), 523–538. https://doi.org/10.1007/s11063-016-9540-z

14. A. Arbi, N. Tahri, C. Jammazi, C. X. Huang, J. D. Cao, Almost anti-periodic solution of inertial
neural networks with leakage and time-varying delays on timescales, Circuits Syst. Signal Process.,
41 (2022), 1940–1956. https://doi.org/10.1007/s00034-021-01894-4

15. Q. Cao, X. J. Guo, Anti-periodic dynamics on high-order inertial Hopfield neural
networks involving time-varying delays, AIMS Math., 5 (2020), 5402–5421.
https://doi.org/10.3934/math.2020347

16. L. G. Yao, Q. Cao, Anti-periodicity on high-order inertial Hopfield neural networks involving
mixed delays, J. Inequal. Appl., 2020 (2020), 182. https://doi.org/10.1186/s13660-020-02444-3

17. B. S. Chen, J. J. Chen, Global asymptotical ω-periodicity of a fractional-
order non-autonomous neural networks, Neural Networks, 68 (2015), 78–88.
https://doi.org/10.1016/j.neunet.2015.04.006

18. Y. Y. Hou, L. H. Dai, S-asymptotically ω-periodic solutions of fractional-order complex-
valued recurrent neural networks with delays, IEEE Access, 9 (2021), 37883–37893.
https://doi.org/10.1109/ACCESS.2021.3063746

19. A. L. Wu, Z. G. Zeng, Boundedness, Mittag-Leffler stability and asymptotical ω-
periodicity of fractional-order fuzzy neural networks, Neural Networks, 74 (2016), 73–84.
https://doi.org/10.1016/j.neunet.2015.11.003

20. Y. K. Li, M. Huang, B. Li, Besicovitch almost periodic solutions for fractional-order quaternion-
valued neural networks with discrete and distributed delays, Math. Methods Appl. Sci., 45 (2022),
4791–4808. https://doi.org/10.1002/mma.8070

21. P. Wan, D. H. Sun, M. Zhao, H. Zhao, Monostability and multistability for almost-
periodic solutions of fractional-order neural networks with unsaturating piecewise linear
activation functions, IEEE Trans. Neural Net. Learn. Syst., 31 (2020), 5138–5152.
https://doi.org/10.1109/TNNLS.2020.2964030

22. C. J. Xu, P. L. Li, On anti-periodic solutions for neutral shunting inhibitory cellular neural
networks with time-varying delays and D operator, Neurocomputing, 275 (2018), 377–382.
https://doi.org/10.1016/j.neucom.2017.08.030

AIMS Mathematics Volume 8, Issue 3, 6176–6190.

http://dx.doi.org/https://doi.org/10.1515/ijnsns-2019-0220
http://dx.doi.org/https://doi.org/10.1088/1742-6596/1850/1/012098
http://dx.doi.org/https://doi.org/10.1080/0952813X.2020.1737244
http://dx.doi.org/https://doi.org/10.22436/jnsa.010.04.69
http://dx.doi.org/https://doi.org/10.1007/s11063-016-9540-z
http://dx.doi.org/https://doi.org/10.1007/s00034-021-01894-4
http://dx.doi.org/https://doi.org/10.3934/math.2020347
http://dx.doi.org/https://doi.org/10.1186/s13660-020-02444-3
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2015.04.006
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3063746
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2015.11.003
http://dx.doi.org/https://doi.org/10.1002/mma.8070
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2964030
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.08.030


6190

23. C. X. Huang, S. G. Wen, L. H. Huang, Dynamics of anti-periodic solutions on shunting inhibitory
cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47–52.
https://doi.org/10.1016/j.neucom.2019.05.022

24. Y. K. Li, J. L. Xiang, Existence and global exponential stability of anti-periodic solution for
Clifford-valued inertial Cohen-Grossberg neural networks with delays, Neurocomputing, 332
(2019), 259–269. https://doi.org/10.1016/j.neucom.2018.12.064

25. I. Podlubny, Fractional differential equations, New York: Academic Press, 1998.

26. L. Ke, Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order
inertial neural networks with time-delays, Neurocomputing, 465 (2021), 53–62.
https://doi.org/10.1016/j.neucom.2021.08.121

27. Y. J. Gu, H. Wang, Y. G. Yu, Stability and synchronization for Riemann-Liouville
fractional-order time-delayed inertial neural networks, Neurocomputing, 340 (2019), 270–280.
https://doi.org/10.1016/j.neucom.2019.03.005

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 3, 6176–6190.

http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.05.022
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.12.064
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.08.121
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.03.005
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Results
	Numerical example
	Conclusions

