Mathematics
http://www.aimspress.com/journal/Math

Research article

Some Schläfli type modular equations of composite degrees

D. Anu Radha and B. R. Srivatsa Kumar*

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576 104, India

* Correspondence: Email: srivatsa.kumar@manipal.edu.

Abstract

S. Ramanujan documented several modular equations of degrees in his notebooks. These identities are used to evaluate Weber's class in variants, continued fractions and many more. In the present work, we establish modular equations of composite degrees using the known identities.

Keywords: Dedekind η-function; modular equations; q-identity; theta-function
Mathematics Subject Classification: Primary 11F03, 11F27, 14H42

1. Introduction

Ramanujan [4, pp. 204-237], [7] recorded 23 interesting modular equations that we describe now. The q-shifted factorial is defined as

$$
f(-q):=(q ; q)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad|q|<1 .
$$

Ramanujan's modular equations contain quotients of the function $f(-q)$ at certain arguments. For example, [4, p.206], Let

$$
P:=\frac{f(-q)}{q^{1 / 3} f\left(-q^{5}\right)} \quad \text { and } \quad Q:=\frac{f\left(-q^{2}\right)}{q^{1 / 3} f\left(-q^{10}\right)} .
$$

Then, we have

$$
\begin{equation*}
P Q+\frac{5}{P Q}=\left(\frac{Q}{P}\right)^{3}+\left(\frac{P}{Q}\right)^{3} . \tag{1.1}
\end{equation*}
$$

Many authors, after the publication of [4], discovered several new modular equations of nature (1.1). For the wonderful work, one may refer to [1,2,6,9,11-16]. Ramanujan's contributions in the area of modular equations are immense and he found several classical modular equations. An article by M.

Hanna [5] summarizes centuries of work on modular equations and presents in various forms. In fact, Ramanujan [8] devoted more space in his notebooks to modular equations than to any other topic. He documented more than 200 different modular equations. Most of his work on modular equations can be found in Chapters 18-21 and in 100 pages of unorganized material in his second notebook [7]. Inspired by the above work, in this paper we obtain some $P-Q$ type modular equations. Before concluding this section, we define some basic definitions and modular equations. The purpose of this paper is to prove four new modular equations of the type (1.1). In Section 2, we list four preliminary results which we need in our main results. Section 3 is devoted to proving modular equations.

If $|a b|<1$, Ramanujan's general theta function $f(a, b)$ is stated as follows

$$
f(a, b):=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} .
$$

The above identity enjoys the Jacobi's triple product identity [3], we have

$$
f(a, b):=(-a,-b, a b ; a b)_{\infty} .
$$

The two particular facts of $f(a, b)$ [3], are as follows

$$
\varphi(q):=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}
$$

and

$$
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty} .
$$

It is fair that for any complex number τ, if $q=e^{2 i \pi \tau}$ then $f(-q)=e^{-i \pi \tau / 12} \eta(\tau)$, where $\eta(\tau)$ is the classical Dedekind η-function with $\operatorname{Im}(\tau)>0$ and defined as

$$
\eta(\tau):=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)=e^{\pi i \tau / 12} \prod_{n=1}^{\infty}\left(1-e^{2 n \pi i \tau}\right) .
$$

After Ramanujan, we define

$$
\chi(q)=\left(-q ; q^{2}\right)_{\infty} .
$$

A modular equation of degree n is an equation relating α and β that is stated as

$$
n \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-\alpha\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right)}=\frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-\beta\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \beta\right)},
$$

where

$$
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n} \quad|z|<1,
$$

represents an ordinary hypergeometric function with

$$
(\alpha)_{k}=\frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}
$$

and $(\alpha)_{m}=\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+m-1)$ is the Pochhammer notation. Then, we say that β is degree n over α and call the ratio

$$
m:=\frac{z_{1}}{z_{n}}
$$

the multiplier, with $z_{1}={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right)$ and $z_{n}={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \beta\right)$.

2. Preliminary results

Lemma 2.1. [15] Let

$$
\begin{equation*}
A_{n}=\frac{\varphi\left(q^{n}\right)}{q^{n / 4} \psi\left(q^{2 n}\right)} \tag{2.1}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
A_{1} A_{3}+\frac{16}{A_{1} A_{3}}=\left(\frac{A_{1}}{A_{3}}\right)^{2}+\left(\frac{A_{3}}{A_{1}}\right)^{2}+6 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{A_{1}}{A_{5}}\right)^{3}+\left(\frac{A_{5}}{A_{1}}\right)^{3}+10\left(\left(\frac{A_{1}}{A_{5}}\right)^{2}+\left(\frac{A_{5}}{A_{1}}\right)^{2}\right)+15\left(\frac{A_{1}}{A_{5}}+\frac{A_{5}}{A_{1}}\right)-\left(A_{1} A_{5}\right)^{2}-\frac{256}{\left(A_{1} A_{5}\right)^{2}}-20=0 \tag{2.3}
\end{equation*}
$$

Lemma 2.2. [4, Entry 69, p. 236] Let

$$
\begin{equation*}
B_{n}=\frac{f_{1}}{q^{1 / 12} f_{3}} \tag{2.4}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\left(B_{1} B_{7}\right)^{3}+\frac{27}{\left(B_{1} B_{7}\right)^{3}}=\left(\frac{B_{7}}{B_{1}}\right)^{4}-7\left(\frac{B_{7}}{B_{1}}\right)^{2}+7\left(\frac{B_{1}}{B_{7}}\right)^{2}-\left(\frac{B_{1}}{B_{7}}\right)^{4} \tag{2.5}
\end{equation*}
$$

Lemma 2.3. [4, Entry 72, p. 237] Let

$$
\begin{equation*}
B_{n}=\frac{f_{1}}{q^{1 / 2} f_{13}} \tag{2.6}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
C_{1} C_{3}+\frac{13}{C_{1} C_{3}}=\left(\frac{C_{3}}{C_{1}}\right)^{2}-3 \frac{C_{3}}{C_{1}}-3 \frac{C_{1}}{C_{3}}+\left(\frac{C_{1}}{C_{3}}\right)^{2}-3 \tag{2.7}
\end{equation*}
$$

3. Main results

Throughout this section, we use

$$
x_{n}=(P Q)^{n}+\frac{1}{(P Q)^{n}} \quad \text { and } \quad y_{n}=\left(\frac{P}{Q}\right)^{n}+\left(\frac{Q}{P}\right)^{n}
$$

Theorem 3.1. Let

$$
P:=q^{1 / 2} \frac{\varphi(q) \psi\left(q^{6}\right)}{\varphi\left(q^{3}\right) \psi\left(q^{2}\right)} \quad \text { and } \quad Q:=q^{3 / 2} \frac{\varphi\left(q^{3}\right) \psi\left(q^{18}\right)}{\varphi\left(q^{9}\right) \psi\left(q^{6}\right)}
$$

Then, we have

$$
x_{3}-16 x_{2}+37 x_{1}-x_{2} y_{2}+x_{1} y_{2}-6 x_{2} y_{1}-12 x_{1} y_{1}+12 y_{1}-44=0 .
$$

Proof. On rewriting P and Q on making use of (2.1), we obtain

$$
\begin{equation*}
P=\frac{A_{1}}{A_{3}} \quad \text { and } \quad Q=\frac{A_{3}}{A_{9}} . \tag{3.1}
\end{equation*}
$$

Also, from (2.2) and (3.1), we find that

$$
\frac{P A_{3}^{2}}{4}+\frac{4}{P A_{3}^{2}}=\frac{1}{4}\left(P^{2}+\frac{1}{P^{2}}+6\right) .
$$

On solving the above for $P A_{3}^{2} / 4$, we obtain

$$
\begin{equation*}
\frac{P A_{3}^{2}}{4}=\frac{a \pm \sqrt{a^{2}-4}}{2} \tag{3.2}
\end{equation*}
$$

where

$$
a=\frac{1}{4}\left(P^{2}+\frac{1}{P^{2}}+6\right) .
$$

Further, the identity (3.2) implies that

$$
\begin{equation*}
\frac{4}{P A_{3}^{2}}=\frac{a \mp \sqrt{a^{2}-4}}{2} . \tag{3.3}
\end{equation*}
$$

Similarly, we can deduce

$$
\begin{equation*}
\frac{Q A_{9}^{2}}{4}=\frac{b \pm \sqrt{b^{2}-4}}{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{Q A_{9}^{2}}=\frac{b \mp \sqrt{b^{2}-4}}{2} \tag{3.5}
\end{equation*}
$$

where

$$
b=\frac{1}{4}\left(Q^{2}+\frac{1}{Q^{2}}+6\right) .
$$

Multiplying (3.2) with (3.5), (3.3) with (3.4) and employing (3.1) and after a little simplification, we obtain

$$
\begin{equation*}
4 P Q=a b \pm b \sqrt{a^{2}-4} \mp a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{P Q}=a b \mp b \sqrt{a^{2}-4} \pm a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.7}
\end{equation*}
$$

respectively. Adding (3.6) and (3.7) and then rearranging, we obtain

$$
2\left(P Q+\frac{1}{P Q}\right)-a b=-\sqrt{a^{2}-4} \sqrt{b^{2}-4}
$$

Squaring on both sides, employing a and b in the resulting equation and then consolidating, we complete the proof.

Theorem 3.2. Let

$$
P:=q \frac{\varphi(q) \psi\left(q^{10}\right)}{\varphi\left(q^{5}\right) \psi\left(q^{2}\right)} \quad \text { and } \quad Q:=q^{5} \frac{\varphi\left(q^{5}\right) \psi\left(q^{50}\right)}{\varphi\left(q^{25}\right) \psi\left(q^{10}\right)}
$$

Then, we have

$$
\begin{aligned}
x_{5} & -x_{4}\left(156-15 y_{1}\right)+x_{3}\left(225-200 y_{1}-y_{3}+15 y_{2}\right)+x_{2}\left(225 y_{1}-30 y_{2}+y_{3}\right)+x_{1}\left(226-55 y_{1}+15 y_{2}\right) \\
& +x_{1 / 2}\left(440 y_{1 / 2}-20 y_{3 / 2}\right)-x_{3 / 2}\left(300 y_{1 / 2}+110 y_{3 / 2}-10 y_{5 / 2}\right)-x_{5 / 2}\left(300 y_{1 / 2}-150 y_{3 / 2}+10 y_{5 / 2}\right) \\
& +x_{7 / 2}\left(150 y_{1 / 2}-20 y_{3 / 2}\right)+x_{9 / 2} y_{1 / 2}+30 y_{1}-1392=0
\end{aligned}
$$

Proof. On rewriting P and Q on making use of (2.3), we obtain

$$
\begin{equation*}
P=\frac{A_{1}}{A_{5}} \quad \text { and } \quad Q=\frac{A_{5}}{A_{25}} . \tag{3.8}
\end{equation*}
$$

Also, from (2.6) and (3.8), we find that

$$
\frac{P A_{5}^{2}}{16}+\frac{16}{P A_{5}^{2}}=\frac{1}{16}\left[\left(P^{3}+\frac{1}{P^{3}}\right)+10\left(P^{2}+\frac{1}{P^{2}}\right)+15\left(P+\frac{1}{P}\right)-20\right]
$$

On solving the above for $P A_{5}^{2} / 16$, we obtain

$$
\begin{equation*}
\frac{P A_{5}^{2}}{16}=\frac{a \pm \sqrt{a^{2}-4}}{2} \tag{3.9}
\end{equation*}
$$

where

$$
a=\frac{1}{16}\left[\left(P^{3}+\frac{1}{P^{3}}\right)+10\left(P^{2}+\frac{1}{P^{2}}\right)+15\left(P+\frac{1}{P}\right)-20\right] .
$$

Further, the identity (3.9) implies that

$$
\begin{equation*}
\frac{16}{P A_{5}^{2}}=\frac{a \mp \sqrt{a^{2}-4}}{2} \tag{3.10}
\end{equation*}
$$

Similarly, we can deduce

$$
\begin{equation*}
\frac{Q A_{25}^{2}}{16}=\frac{b \pm \sqrt{b^{2}-4}}{2} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{16}{Q A_{25}^{2}}=\frac{b \mp \sqrt{b^{2}-4}}{2} \tag{3.12}
\end{equation*}
$$

where

$$
b=\frac{1}{16}\left[\left(Q^{3}+\frac{1}{Q^{3}}\right)+10\left(Q^{2}+\frac{1}{Q^{2}}\right)+15\left(Q+\frac{1}{Q}\right)-20\right] .
$$

Multiplying (3.9) with (3.12), (3.10) with (3.11) and employing (3.8) and after a little simplification, we obtain

$$
\begin{equation*}
4(P Q)^{2}=a b \pm b \sqrt{a^{2}-4} \mp a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{P^{2} Q^{2}}=a b \mp b \sqrt{a^{2}-4} \pm a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.14}
\end{equation*}
$$

respectively. Adding (3.13) and (3.14) and then simplifying, we deduce

$$
2\left((P Q)^{2}+\frac{1}{(P Q)^{2}}\right)-a b=-\sqrt{a^{2}-4} \sqrt{b^{2}-4} .
$$

Squaring on both sides, employing a and b in the resulting equation and then streamlining, we complete the proof.

Theorem 3.3. Let

$$
P:=\frac{f_{1}}{q^{1 / 12} f_{3}} \quad \text { and } \quad Q:=\frac{f_{7}}{q^{7 / 12} f_{21}} .
$$

Then, we have

$$
\begin{aligned}
& x_{7}-x_{6}\left(7 y_{1}+27\right)+49 x_{5}+x_{4}\left(7 y_{3}-y_{4}\right)-x_{3}\left(y_{4}-14 y_{3}+49 y_{2}\right) \\
& \quad+7 x_{2}\left(y_{3}-7 y_{2}\right)-x_{1}\left(14 y_{1}-50\right) 14 y_{1}+254=0 .
\end{aligned}
$$

Proof. From (2.4) and together with P and Q, we obtain d together with P and Q, we obtain

$$
\begin{equation*}
P=\frac{B_{1}}{B_{3}} \quad \text { and } \quad Q=\frac{B_{7}}{B_{21}} . \tag{3.15}
\end{equation*}
$$

Also, from (2.5) and (3.15), we find that

$$
\frac{P^{3} B_{7}^{6}}{3 \sqrt{3}}+\frac{3 \sqrt{3}}{P^{3} B_{7}^{6}}=\frac{1}{3 \sqrt{3}}\left[\left(\frac{1}{P^{4}}-P^{4}\right)-7\left(\frac{1}{P^{2}}-P^{2}\right)\right] .
$$

On solving the above for $P^{3} B_{7}^{6} / 3 \sqrt{3}$, we obtain

$$
\begin{equation*}
\frac{P^{3} B_{7}^{6}}{3 \sqrt{3}}=\frac{a \pm \sqrt{a^{2}-4}}{2} \tag{3.16}
\end{equation*}
$$

where

$$
a=\frac{1}{3 \sqrt{3}}\left[\left(\frac{1}{P^{4}}-P^{4}\right)-7\left(\frac{1}{P^{2}}-P^{2}\right)\right] .
$$

Further, the identity (3.16) implies that

$$
\begin{equation*}
\frac{3 \sqrt{3}}{P^{3} B_{7}^{6}}=\frac{a \mp \sqrt{a^{2}-4}}{2} \tag{3.17}
\end{equation*}
$$

Similarly, we can deduce

$$
\begin{equation*}
\frac{Q^{3} B_{7}^{6}}{3 \sqrt{3}}=\frac{b \pm \sqrt{b^{2}-4}}{2} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3 \sqrt{3}}{Q^{3} B_{7}^{6}}=\frac{b \mp \sqrt{b^{2}-4}}{2} \tag{3.19}
\end{equation*}
$$

where

$$
b=\frac{1}{3 \sqrt{3}}\left[\left(\frac{1}{Q^{4}}-Q^{4}\right)-7\left(\frac{1}{Q^{2}}-Q^{2}\right)\right] .
$$

Multiplying (3.16) with (3.19), (3.17) with (3.18) and employing (3.22) and after a little simplification, we obtain

$$
\begin{equation*}
4 P Q=a b \pm b \sqrt{a^{2}-4} \mp a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{P Q}=a b \mp b \sqrt{a^{2}-4} \pm a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.21}
\end{equation*}
$$

respectively. Adding (3.20) and (3.21) and then reframing, we have

$$
2\left(P Q+\frac{1}{P Q}\right)-a b=-\sqrt{a^{2}-4} \sqrt{b^{2}-4}
$$

Squaring on both sides and then rearranging, we deduce

$$
\left((P Q)^{3}+\frac{1}{(P Q)^{3}}\right)^{2}-a b\left((P Q)^{3}+\frac{1}{(P Q)^{3}}\right)+a^{2}+b^{2}-4=0
$$

Finally, employing a and b in the above and then re-framing the terms, we obtain the required result.

Theorem 3.4. Let

$$
P:=q \frac{f_{1} f_{39}}{f_{3} f_{13}} \quad \text { and } \quad Q:=q^{3} \frac{f_{3} f_{117}}{f_{9} f_{39}}
$$

Then, we have

$$
\begin{aligned}
x_{3}-4 x_{2}+10 x_{1} & -3 x_{1 / 2}\left(2 y_{1 / 2}+y_{3 / 2}\right)+x_{1}\left(6 y_{1}+y_{2}\right)+3 x_{3 / 2}\left(3 y_{1 / 2}+y_{3 / 2}\right) \\
& -x_{2}\left(3 y_{1}+y_{2}\right)-3 x_{5 / 2} y_{1 / 2}-14=0 .
\end{aligned}
$$

Proof. From (2.6) and together with P and Q, we obtain

$$
\begin{equation*}
P=\frac{C_{1}}{C_{3}} \quad \text { and } \quad Q=\frac{C_{3}}{C_{9}} . \tag{3.22}
\end{equation*}
$$

Also, from (2.7) and (3.22), we find that

$$
\frac{P C_{3}^{2}}{\sqrt{13}}+\frac{\sqrt{13}}{P C_{3}^{2}}=\frac{1}{\sqrt{13}}\left(\frac{1}{P^{2}}-\frac{3}{P}-3 P+P^{2}-3\right) .
$$

On solving the above for $P C_{3}^{2} / \sqrt{13}$, we obtain

$$
\begin{equation*}
\frac{P C_{3}^{2}}{\sqrt{13}}=\frac{a \pm \sqrt{a^{2}-4}}{2} \tag{3.23}
\end{equation*}
$$

where

$$
a=\frac{1}{\sqrt{13}}\left(\frac{1}{P^{2}}-\frac{3}{P}-3 P+P^{2}-3\right) .
$$

Further, the identity (3.23) implies that

$$
\begin{equation*}
\frac{\sqrt{13}}{P C_{3}^{2}}=\frac{a \mp \sqrt{a^{2}-4}}{2} . \tag{3.24}
\end{equation*}
$$

Similarly, we can deduce

$$
\begin{equation*}
\frac{Q C_{9}^{2}}{2}=\frac{b \pm \sqrt{b^{2}-4}}{2} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{Q C_{9}^{2}}=\frac{b \mp \sqrt{b^{2}-4}}{2} \tag{3.26}
\end{equation*}
$$

where

$$
b=\frac{1}{\sqrt{13}}\left(\frac{1}{Q^{2}}-\frac{3}{Q}-3 Q+Q^{2}-3\right)
$$

Multiplying (3.23) with (3.25), (3.24) with (3.26) and employing (3.22) and after a little simplification, we obtain

$$
\begin{equation*}
4 P Q=a b \pm b \sqrt{a^{2}-4} \mp a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{P Q}=a b \mp b \sqrt{a^{2}-4} \pm a \sqrt{b^{2}-4}-\sqrt{a^{2}-4} \sqrt{b^{2}-4} \tag{3.28}
\end{equation*}
$$

respectively. Adding (3.27) and (3.28) and then simplifying, we have

$$
2\left(P Q+\frac{1}{P Q}\right)-a b=-\sqrt{a^{2}-4} \sqrt{b^{2}-4} .
$$

Squaring on both sides and then rearranging, we obtain

$$
(P Q)^{2}+\frac{1}{(P Q)^{2}}-a b\left(P Q+\frac{1}{P Q}\right)+a^{2}+b^{2}-2=0
$$

Finally, employing a and b in the above and then re-framing the terms, we deduce Theorem 3.4.

4. Conclusions

Motivated by earlier works, which we have cited herein, in the present paper some modular equations that are analogous to Ramanujan's identities are established. It is believed that many of the recent works (see, for example, $[1,2,10,12,13]$), which we have chosen to cite in this paper, are potentially useful for indicating directions for further research on q-series, q-polynomials, and q-differences based upon the subject matter which is related to that of our present investigation.

Conflict of interest

The authors declare no conflict of interest.

References

1. C. Adiga, T. Kim, M. S. Mahadeva Naika, H. S. Madhusudhan, On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions, Indian J. Pure Appl. Math., 35 (2004), 10471062.
2. C. Adiga, N. A. S. Bulkhali, D. Ranganatha, H. M. Srivatsa, Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions, J. Number Theory, 158 (2016), 281-297. https://doi.org/10.1016/j.jnt.2015.06.019
3. B. C. Berndt, Ramanujan's notebooks, Part III, Springer, New York, 1991.
4. B. C. Berndt, Ramanujan's notebooks, Part IV, Springer, New York, 1996.
5. M. Hanna, The modular equations, Proc. London Math. Soc., 28 (1928), 46-52. https://doi.org/10.1112/plms/s2-28.1.46
6. M. S. M. Naika, A note on cubic modular equations of degree two, Tamsui Oxf, J. Math. Sci., 22 (2006), 1-8.
7. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
8. S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
9. N. Saikia, J. Chetry, Some new modular equations in Ramanujan's alternate theory of signature 3, Ramanujan J., 50 (2019), 163-194. https://doi.org/10.1007/s11139-018-0115-7
10. H. M. Srivastava, M. P. Chaudhary, F. K. Wakene, A family of theta-function identities based upon q-binomial theorem and Heine's transformations, Montes Taurus J. Pure Appl. Math., 2 (2020), 1-6.
11. B. R. S. Kumar, Shruthi, New modular equations of signature three in the spirit of Ramanujan, Filomat, 34 (2020), 2847-2868. https://doi.org/10.2298/FIL2009847S
12. D. Anuradha, B. R. S. Kumar, Some identities on modular equations of degree 5, Publ. Inst. Math., 111 (2022), 101-110. https://doi.org/10.2298/PIM2225101A
13. B. R. S. Kumar, A. K. Rathie, N. V. U. Sayinath, Shruthi, A note on modular equations of signature 2 and their evaluations, Commun. Korean Math. Soc., 37, (2022), 31-44.
14. K. R. Vasuki, B. R. S. Kumar, A note on Ramanujan-Schläfli type mixed modular equations, S. E. Asian J. Math. Math. Sci., 5 (2006), 51-67.
15. K. R. Vasuki, B. R. S. Kumar, Certain identities for Ramanujan-Göllnitz-Gordon continued fraction, J. Comp. Appl. Math., 187 (2006), 87-95. https://doi.org/10.1016/j.cam.2005.03.038
16. K. R. Vasuki, A. A. A. Kahtan, On certain theta function identities analogous to Ramanujan's $P-Q$ eta function identities, Appl. Math., 2 (2011), 874-882. https://doi.org/10.4236/am.2011.27117
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
