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between IVIF-score (0,2)-ideals and IVIF-score left (right) ideals. Finally, we demonstrated how to
use the interval valued intuitionistic fuzzy score (0, 2)-ideals to identify the most suitable alternative
in a decision making problem, and also explain how it can be applied to a problem of selecting a
warehouse.

Keywords: interval-valued intuitionistic fuzzy set; uv-score function; left invertive law; semilattice;
intra-regularity
Mathematics Subject Classification: 03E72, 08A72, 91B06

1. Introduction

The idea of generalization of a commutative semigroup was first introduced by Kazim and
Naseeruddin in 1972 [11]. They named it as a left almost semigroup (LA-semigroup). It is also
called an Abel-Grassmann’s groupoid (AG-groupoid) [18]. An AG-groupoid is a non-associative and
non-commutative algebraic structure mid way between a groupoid and a commutative semigroup [15].
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An AG-groupoid with left identity is called an AG-group if it has inverses [10]. An AG-groupoid is a
groupoid S whose elements satisfy the left invertive law (ab)c = (cb)a for all a, b, c ∈ S . In [11], it
was shown that an AG-groupoid S is medial, that is, (ab)(cd) = (ac)(bd) holds for all a, b, c, d ∈ S .
A left identity may or may not exist in an AG-groupoid. The left identity of an AG-groupoid allows
the inverses of elements. If an AG-groupoid has a left identity, then it is unique [15]. The paramedial
law (ab)(cd) = (dc)(ba) holds for all a, b, c, d ∈ S in an AG-groupoid S with left identity. We can
get a(bc) = b(ac) for all a, b, c ∈ S by applying medial law with left identity. An AG-groupoid (S , ·)
together with a partial order ≤ on S that is compatible with an AG-groupoid operation, meaning that
for x, y, z ∈ S , x ≤ y ⇒ zx ≤ zy and xz ≤ yz, is called an ordered AG-groupoid [12]. Different
classes of an ordered AG-groupoid such as left regular, right regular and completely regular ordered
AG-groupoids have been characterized by using several ideals for example fuzzy interior ideals, fuzzy
left (right) ideals and soft ideals in [1, 24–28].

The algebraic structures described above are usually considered as theoretical tools with merely
no real application. In other words, to deal with real-world uncertain and ambiguous problems, the
strategies commonly used in classical mathematics are not always useful. To utilize these tools their
connection with fuzzy set theory is required. To fimiliarize the reader with fuzzy set theory we now
review the brief history of fuzzy sets and their extensions.

In 1965, Zadeh [30] proposed the concept of fuzzy sets as an extension of the classical notion of sets.
In traditional set theory, an element is either in or out of the set. Fuzzy set theory, on the other hand,
allows for a gradual determination of the membership of elements in a set, which is represented using a
membership function having a value in the real unit interval [0, 1]. Since the membership functions of
fuzzy sets constrained to values 0 or 1 are special cases of the characteristic functions of classical
sets, this shows that the fuzzy sets generalize the classical sets. In many cases, however, because
the membership function is a single-valued function, it cannot be used to represent both support and
objection evidences. The intuitionistic fuzzy set, which is a generalization of Zadeh’s fuzzy set, was
introduced by Atanassov [2]. It has both a membership and a non-membership function, allowing it
to better express the fuzzy character of data than Zadeh’s fuzzy set, which only has a membership
function. The values of the membership function and the non-membership function in an IFS are some
times difficult to describe as exact numbers in real-world decision problems. Instead, the ranges of
their values are frequently provided. In such instances, Atanassov and Gargov generalized the idea
of intuitionistic fuzzy set to interval-valued intuitionistic fuzzy set (IVIFS) [3]. In view of above
information from the literature, the motivation of this paper is based upon the following points:

• To develop a connection between AG-groupoids and fuzzy set theory by developing a technique
for ranking fuzzy numbers.
• The main difference between IFS and IVIFS is that the membership and non-membership

functions in IFS are represented by numbers while in IVIFS they are represented as intervals.
If in IVIFS the intervals of zero length (same end points) are considered they become IFS, hence
they generalize the idea of IFS. So the motivation is to develop results based upon IVIFS therefore
they also hold for IFS at the same time.

This paper consist of six sections. In Section 1, the introduction to literature regarding AG-
groupoids and fuzzy set theory is given. Section 2 covers the necessary background required to develop
understanding for the upcoming sections. IVIF-score left (right) ideals are defined and supported with
examples and visualization in Section 3. Sections 4 and 5 consist of structural properties of different
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IVIF-score ideals and their practical applications respectively. main findings and future research
direction is given in Section 6.

2. Preliminaries

A fuzzy set [30] f on a non-empty set S is an object, with grades of membership µ f (s) : S → [0, 1]
having the form

f = {(s, µ f (s))/s ∈ S }.

The membership function µ f (s) assigns each element s of f a single number form [0, 1]. However,
as the membership function is only a single-valued function, which cannot be used to express the
membership and non-membership evidences in many practical scenarios.

An intuitionistic fuzzy set (IFS) [2] F of a non empty set S is an object having the form

F = {(x, µF(x), υF(x))/x ∈ S } .

The functions µF : S −→ [0, 1] and υF : S −→ [0, 1] denote the degree of membership and the degree
of non-membership of x in F respectively such that for all x ∈ S , we have

0 ≤ µF(x) + υF(x) ≤ 1.

An interval-valued intuitionistic fuzzy set (IVIFS) [3] I of a non empty set S is an object having the
form

I =
{
(x,

∗
µI(x),

∗
υI(x))/x ∈ S

}
,

where
∗
µI(x) ⊂ [0, 1] and

∗
υI(x) ⊂ [0, 1], x ∈ S ,

with the condition
sup

∗
µI(x) + sup

∗
υI(x) ≤ 1.

Clearly, if
inf

∗
µI(x) = sup

∗
µI(x) and inf

∗
υI(x) = sup

∗
υI(x),

then the IVIFS reduces to IFS [2].
According to the above definition, the basic component of an IVIFS is an ordered pair with

an interval-valued membership degree and an interval-valued nonmembership degree of x in I. An
interval-valued intuitionistic fuzzy number (IVIFN) is the term given to this ordered pair [20]. For
simplicity, an IVIFN is usually stated as

∗

ξ = ([a, b], [c, d]),

where
[a, b] ⊂ [0, 1], [c, d] ⊂ [0, 1], b + d ≤ 1.

Xu also proposes a score function and an accuracy function for IVIFNs in [20] and uses them to develop
an approach to multi-attribute decision making problems.

In order to rank the IVIFNs, we now introduce the unit-valued score function, (uv-score function)
as follows:
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Definition 1. Let I be the set of all IVIFNs. A uv-score function on I can be defined by the mapping

Θ(
∗
µ,
∗
υ) : I → [0, 1] such that Θ(

∗
µ,
∗
υ)(
∗

ξ) =
|a + b| − |c + d| + 2

4
,

where
∗

ξ = ([a, b], [c, d]), Θ(
∗
µ,
∗
υ) is the uv-score function, and Θ(

∗
µ,
∗
υ)(
∗

ξ) is the uv-score of
∗

ξ.

In particular,

if Θ(
∗
µ,
∗
υ)(
∗

ξ) = 1, then the IVIFN
∗

ξ takes the largest value
∗

ξ+ = ([1, 1], [0, 0]).

If Θ(
∗
µ,
∗
υ)(
∗

ξ) = 0, then the IVIFN
∗

ξ takes the smallest value
∗

ξ− = ([0, 0], [1, 1]). Clearly, the greater

the Θ(
∗
µ,
∗
υ)(
∗

ξ), the larger the
∗

ξ.

Let
∗

ξ1 = ([0.2, 0.5], [0.1, 0.3]) and
∗

ξ2 = ([0.1, 0.6], [0.1, 0.2])

be the two IVIFNs. Then the uv-scores of
∗

ξ1 and
∗

ξ2 are as follows:

Θ(
∗
µ,
∗
υ)(
∗

ξ1) = 0.575 and Θ(
∗
µ,
∗
υ)(
∗

ξ2) = 0.6.

Since, the uv-score of an IVIFN
∗

ξ2 is higher than that of an IVIFN
∗

ξ1. So

Θ(
∗
µ,
∗
υ)(
∗

ξ2) > Θ(
∗
µ,
∗
υ)(
∗

ξ1).

However, if we take
∗

ξ1 = ([0.2, 0.6], [0.1, 0.4]) and
∗

ξ2 = ([0, 0.4], [0, 0.1]),

then
Θ(

∗
µ,
∗
υ)(
∗

ξ2) = Θ(
∗
µ,
∗
υ)(
∗

ξ1).

In this case, the uv-score function cannot distinguish between the IVIFNs
∗

ξ1 and
∗

ξ2. To address this
issue, consider the following definition of a uv-accuracy function.

Definition 2. [20] Let I be the set of all IVIFNs. A uv-accuracy function on I is a mapping

Φ(
∗
µ,
∗
υ) : I → [0, 1] such that Φ(

∗
µ,
∗
υ)(
∗

ξ) =
a + b + c + d

2
,

where
∗

ξ = ([a, b], [c, d]), Φ(
∗
µ,
∗
υ) is the uv-accuracy function of

∗

ξ, and Φ(
∗
µ,
∗
υ)(
∗

ξ) is the uv-accuracy degree

of
∗

ξ.

From above IVIFNs
∗

ξ1 = ([0.2, 0.6], [0.1, 0.4]) and
∗

ξ2 = ([0, 0.4], [0, 0.3]),

the uv-accuracy degrees of
∗

ξ1 and
∗

ξ2 are as follows:

Φ(
∗
µ,
∗
υ)(
∗

ξ1) = 0.65 and Φ(
∗
µ,
∗
υ)(
∗

ξ2) = 0.25.
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Since, the uv-accuracy degree of an IVIFN
∗

ξ1 is higher than that of an IVIFN, so

∗

ξ2.Φ(
∗
µ,
∗
υ)(
∗

ξ1) > Φ(
∗
µ,
∗
υ)(
∗

ξ2).

The hesitancy degree of IVIFNs can be defined by the following formula [20]

Λ(
∗
µ,
∗
υ)(
∗

ξ) = 1 − (b + c) + a + d.

The relationship between the score function and the accuracy function has been established to be
similar to the relationship between the mean and variance in statistics [6]. In statistics, an efficient
estimator is described as a measure of the variance of an estimate’s sampling distribution; the lower
the variance, the better the estimator’s performance. On this basis, it is reasonable and appropriate to
say that the higher an IVIFN’s uv-accuracy degree, the better the IVIFN.

In 2007, a technique [20] was developed for comparing and rating two IVIFNs based on the score
function and the accuracy function, which was motivated by the aforementioned study. We can now
compare and rate two IVIFNs in the same way using the uv-score function and uv-accuracy function,
as shown below.

Definition 3. Let
∗

ξ1 = ([a1, b1], [c1, d1]) and
∗

ξ2 = ([a2, b2], [c2, d2]) be the two IVIFNs, Θ(
∗
µ,
∗
υ)(
∗

ξ1) and

Θ(
∗
µ,
∗
υ)(
∗

ξ2) be the uv-scores of the IVIFNs
∗

ξ1 and
∗

ξ2 respectively, also Φ(
∗
µ,
∗
υ)(
∗

ξ1) and Φ(
∗
µ,
∗
υ)(
∗

ξ2) be the

uv-accuracy degrees of the IVIFNs
∗

ξ1 and
∗

ξ2 respectively. Then

• If Θ(
∗
µ,
∗
υ)(
∗

ξ1) < Θ(
∗
µ,
∗
υ)(
∗

ξ2), then
∗

ξ1 <
∗

ξ2.

• If Θ(
∗
µ,
∗
υ)(
∗

ξ1) = Θ(
∗
µ,
∗
υ)(
∗

ξ2), then

i) If Φ(
∗
µ,
∗
υ)(
∗

ξ1) < Φ(
∗
µ,
∗
υ)(
∗

ξ2), then
∗

ξ1 <
∗

ξ2.

ii) If Φ(
∗
µ,
∗
υ)(
∗

ξ1) = Φ(
∗
µ,
∗
υ)(
∗

ξ2), then
∗

ξ1 =
∗

ξ2.

3. IVIF-score left (right) ideals of ordered AG-groupoids

In this section, we have explored the notions and examples of IVIF-score left (right) ideals and
IVIF-score (0,2)-ideals in an ordered AG-groupoid.

Definition 4. Let Θ(
∗
µ,
∗
υ) be a uv-score function of an ordered AG-groupoid S and x, y ∈ S . Then Θ(

∗
µ,
∗
υ)

is called an IVIF-score left (right) ideal of S , if the following conditions are satisfied.

i) Θ(
∗
µ,
∗
υ)(xy) ≥ Θ(

∗
µ,
∗
υ)(y)

(
Θ(

∗
µ,
∗
υ)(xy) ≥ Θ(

∗
µ,
∗
υ)(x)

)
;

ii) x ≤ y =⇒ Θ(
∗
µ,
∗
υ)(x) ≥ Θ(

∗
µ,
∗
υ)(y).
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Example 1. Let us consider the following collection of IVIFS I = {
∗

ξ j = (
∗
µξ j ,

∗
υξ j); j = 1, 2, 3, 4, 5, 6} on

an ordered AG-groupoid S 1 = {a, b, c, d, e, f } with the binary operation and order defined as follows
(see Tables 1 and 2):

· a b c d e f
a a a a a a a
b a b b b b b
c a b f f d f
d a b f f c f
e a b c d e f
f a b f f f f

Table 1. Composition of AG-groupoid S 1.

≤= {(a, a), (b, b), (c, c), (d, d), (e, e), ( f , f ), (b, a)}

x
∗

ξ j
∗
µξ j

∗
υξ j uv-score uv-accuracy Rank

a
∗

ξ1 [0.5, 0.8] [0, 0.1] 0.8 ... 2nd

b
∗

ξ2 [0.6, 0.8] [0, 0.1] 0.825 ... 1st

c
∗

ξ3 [0.3, 0.5] [0, 0.5] 0.575 0.65 4th

d
∗

ξ4 [0.2, 0.6] [0.1, 0.4] 0.575 0.65 4th

e
∗

ξ5 [0.2, 0.5] [0.1, 0.5] 0.525 ... 5th

f
∗

ξ6 [0.1, 0.8] [0, 0.1] 0.7 ... 3rd

Table 2. Ranking of the elements of S 1.

It is now a trivial matter to check that

Θ(
∗
µ,
∗
υ) =



0.8 if x = a
0.825 if x = b
0.575 if x = c, d
0.525 if x = e
0.7 if x = f

is the IVIF-score left and IVIF-score right ideal of S .
The following graph Figure 1 demonstrates the ranking comparison of each x ∈ S while generating

Θ(
∗
µ,
∗
υ).

AIMS Mathematics Volume 8, Issue 3, 6095–6118.
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Figure 1. Ranking comparison of elements of AG-groupoid S.

Remark 1. Every IVIF-score right ideal of an ordered AG-groupoid S is an IVIF-score left ideal of S
but the converse is not true in general which can be seen from the following example.

Example 2. Consider the following collection of IVIFS I = {
∗

ξ j = (
∗
µξ j ,

∗
υξ j); j = 1, 2, 3, 4, 5} on an

ordered AG-groupoid S 2 = {a, b, c, d, , e} with the binary operation and order defined as follows (see
Tables 3 and 4):

· a b c d e
a a a a a a
b a e e c e
c a e e b e
d a b c d e
e a e e e e

Table 3. Composition of AG-groupoid S 2.

≤= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, e)}

x
∗

ξ j
∗
µξ j

∗
υξ j uv-score uv-accuracy Rank

a
∗

ξ1 [0.5, 0.8] [0, 0.2] 0.775 0.75 2nd

b
∗

ξ2 [0.3, 0.7] [0.1, 0.3] 0.65 0.7 3rd

c
∗

ξ3 [0.4, 0.6] [0, 0.4] 0.65 0.7 3rd

d
∗

ξ4 [0.2, 0.3] [0, 0.3] 0.55 ... 4th

e
∗

ξ5 [0.6, 0.7] [0.1, 0.3] 0.775 0.85 1st

Table 4. Ranking of the elements of S 2.
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One can see that

Θ(
∗
µ,
∗
υ) =


0.775 if x = a, e
0.65 if x = b, c
0.55 if x = d

is an IVIF-score left ideal of S . Note that Θ(
∗
µ,
∗
υ)(bd) � Θ(

∗
µ,
∗
υ)(b) implying that Θ(

∗
µ,
∗
υ) is not an IVIF-score

right ideal of S .
Following is a graphical representation of the ranking comparison of each x ∈ S during the

construction of Θ(
∗
µ,
∗
υ) (see Figure 2).

Figure 2. Ranking comparison of elements of AG-groupoid S.

4. On characterization problems of intra-regular ordered AG-groupoids

The aim of this section is to investigate the concept of a uv-score (uv-accuracy) function in order
to develop the notions of IVIF-score left (right) ideals and IVIF-score (0, 2)-ideals in an ordered AG-
groupoid. We also study some important characterization problems in an ordered AG-groupoid using
these newly developed IVIF-score ideals. In this regard, we intend to respond to a question about the
relationship between an IVIF-idempotent subsets of an ordered AG-groupoid S and its IVIF-score
(0, 2)-ideals, especially when an IVIF-idempotent subset of S will be an IVIF-score (0, 2)-ideal in
terms of an IVIF-score right ideal and an IVIF-score left ideal of S . In addition, we also use IVIF-
score left (right) ideals to characterize an intra-regular ordered AG-groupoid (AG-group) which is a
semilattice of left simple AG-groupoids.

As an extension of the findings in [13, 23], it should be noted that the results of this section may be
followed easily for a case of fuzzy sets in an AG-groupoid without order.

If S is an AG-groupoid with product · : S × S −→ S , then

ab · c = (ab)c and a · bc = a(bc)

both will denote the product
(a · b) · c and a · (b · c).

AIMS Mathematics Volume 8, Issue 3, 6095–6118.
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Similarly
ab · cd = (ab)(cd)

will denote the product
(a · b) · (c · d).

Definition 5. For ∅ , A ⊆ S , we define

(A] = {t ∈ S | t ≤ a, for some a ∈ A} .

For A = {a}, we usually written as (a] .

The following statements are true for an ordered AG-groupoid S [27], and will be used frequently
without mention in the sequel.

i) A ⊆ (A] ∀ A ⊆ S ;
ii) if A ⊆ B ⊆ S , then (A] ⊆ (B] ;
iii) (A] (B] ⊆ (AB] ∀ A, B ⊆ S ;
iv) (A] = ((A]] ∀ A ⊆ S ;
vi) ((A] (B]] = (AB] ∀ A, B ⊆ S ;
vii) A = (A] if A is any type of ideal.

Definition 6. A non-empty subset A of an ordered AG-groupoid S is called a left (resp. right) ideal of
S , if

i) S A ⊆ A (resp. AS ⊆ A);
ii) if a ∈ A and b ∈ S such that b ≤ a, then b ∈ A, that is if (A] = A.
Equivalently, if (S A] ⊆ A (resp. (AS ] ⊆ A).

Definition 7. Let S be an ordered AG-groupoid. Then S is left simple if it does not properly contain
any left ideal.

Definition 8. An AG-subgroupoid F of an an ordered AG-groupoid S is called a filter of S if
a) x, y ∈ S , xy ∈ F =⇒ x ∈ F and y ∈ F.
b) x ∈ F, S 3 z ≤ x =⇒ z ∈ F.

We denote by N(x) the filter of S generated by s (s ∈ S ). Let N be the equivalence relation on S
defined by

N = {(x, y) : N(x) = N(y)}.

Definition 9. Let S be an ordered AG-groupoid. An equivalence relation ρ on S is called congruence
if

(a, b) ∈ ρ =⇒ (ac, bc) ∈ ρ, (ca, cb) ∈ ρ for all c ∈ S .

A congruence ρ on S is called semilattice congruence if

(a2, a) ∈ ρ, (ab, ba) ∈ ρ for all a, b ∈ S .

Let ρ is a semilattice congruence on an ordered AG-groupoid S . Then (s)ρ is an AG-subgroupoid of
S for every s ∈ S . Indeed, ∅ , (s)ρ ⊆ S .

Let x, y ∈ S . Since xρs and yρs, we have xyρs2. As s2ρs, we have xyρs, that is, xy ∈ (s)ρ.

AIMS Mathematics Volume 8, Issue 3, 6095–6118.
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Let ρ is a congruence on an ordered AG-groupoid S . Then the multiplication “·” on the set

S/ρ = {(s)ρ : s ∈ S }

is defined by
(a)ρ · (b)ρ = (ab)ρ for all a, b ∈ S ,

and (S/ρ, ·) is an AG-subgroupoid.

Definition 10. Let S be an ordered AG-groupoid. Then S is a semilattice of left simple AG-groupoids
if and only if there exists a semilattice Y and a family

{S l : l ∈ Y}

of left simple AG-subgroupoids of S such that
a) S k ∩ S l = ∅ for every k, l ∈ Y, k , l.
b) S = ∪

l∈Y
S l.

c) S kS l ⊆ S kl for every k, l ∈ Y.
Equivalently, S is a semilattice of left simple AG-groupoids if there exists a semilattice congruence

ρ on S such that the ρ-class (x)ρ of S containing x is a simple AG-subgroupoid of S for every x ∈ S .

In [17], T. Saito has shown that a semigroup S is a semilattice of left simple semigroups if and only
if the set of left ideals of S is a semilattice under the multiplication of subsets, which is similar to say
that S is left regular and every left ideal of S is two-sided. In addition, S. Lajos [14] has shown that a
semigroup S is left regular and its left ideals are two-sided if and only if P1 ∩ P2 = P1P2 for any two
left ideals P1, P2 of S . We are now considering these results in the context of an ordered AG-groupoid,
which will provide more comprehensive and generalized findings.

Definition 11. [25] An ordered AG-groupoid S is intra-regular if for each a ∈ S , there exists x, y ∈ S ,
such that a ≤ xa2 · y. Equivalently, if a ∈ (S a2 · S ] for every a ∈ S or A ⊆ (S A2 · S ] for every A ⊆ S .

Theorem 1. For an ordered AG-groupoid S with left identity, the following conditions are equivalent:
i) S is a semilattice of left simple AG-groupoids;
ii) S is intra-regular and every left ideal of S is two-sided;
iii) the set of all left ideals of S is a semilattice under the multiplication of subsets;
iv) if P1 and P2 are left ideals of S , then

P1 ∩ P2 = (P1P2];

v) if P1, P2 and P are left ideals of S , then

(P1P2] = (P2P1] and P = (P2].

Proof. i)⇒ v) : Let P1, P2 be the left ideals of S . Then by given assumption,

P1 = S k and P2 = S l for some k, l ∈ Y.

Let z ∈ (P1P2]. Then
z ≤ ab for some a ∈ P1, b ∈ P2.
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As
ab ∈ P1P2 = S kS l ⊆ S m and ba ∈ P2P1 = S lS k ⊆ S m

for some m ∈ Y, therefore ab, ba ∈ S m.

Since S m is left simple, then it is easy to see that, there exists x ∈ S m such that ab ≤ x · ba.
Thus we have

z ≤ ab ≤ x · ba

= ex · ba

= ab · xe

= (xe · b)a ∈ S P2 · P1 ⊆ P2P1,

which implies z ∈ (P1P2].
Similarly we can show that

(P2P1] ⊆ (P1P2].

Hence
(P1P2] = (P2P1],

for any left ideals P1 and P2 of S .
Now let P be left ideal of S and let z ∈ P = S k for some k ∈ Y. Since z ∈ P and S k is an AG-

subgroupoids of S , we have z2 ∈ P.
Since z, z2 ∈ S k, then it is easy to see that, there exists x ∈ S k such that

z ≤ xz2 = x · zz

= z · xz ∈ P · S P ⊆ P2,

we have z ∈ (P2]. On the other hand, we have

(P2] ⊆ (S P] ⊆ P,

implies
P = (P2].

v)⇒ iv) : If P1, P2 are the left ideals of S , then

(P1P2] ⊆ (S P2] ⊆ (P2] = P2 and (P2P1] ⊆ (S P1] ⊆ (P1] = P1.

Therefore by given condition,
(P1P2] = (P2P1].

Thus we have
(P1P2] ⊆ P1 ∩ P2.

Since (P1P2] , ∅,we have P1∩P2 , ∅. Therefore P1∩P2 is a left ideal of S , and by given condition,

P1 ∩ P2 = ((P1 ∩ P2)(P1 ∩ P2)] ⊆ (P1P2].
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Thus we get
P1 ∩ P2 = (P1P2].

iv)⇒ ii) : Let a ∈ S . Then, (S a] is a left ideal of S , and clearly a ∈ (S a].By using given assumption,

a ∈ (S a] ∩ (S a] = ((S a](S a]] ⊆ ((S a · S a]]
= (S a · S a] = (S S · aa]
= (S S · a2] = (a2S · S ]
= (S a2 · S ],

which implies that a ≤ xa2 · y for some x, y ∈ S .
Now let P be a left ideal of S . Then

(PS ] ⊆ P.

Indeed, if a ∈ P, s ∈ S , then

as ≤ (xa2 · y)s = sy · a2x

= a2(sy · x)
= (sy · x)a · a ∈ S P ⊆ (S P] ⊆ P.

ii)⇒ i) : Let S be intra-regular. Then by using given condition, it is easy to show that (s)N is a left
simple AG-subgroupoid of S for every s ∈ S .

Hence S is a semilattice of left simple AG-groupoids.
i)⇒ iii) : Let ρ be a semilattice congruence on S such that (s)ρ is a left simple AG-subgroupoid of

S for every s ∈ S and let P1, P2 and P be left ideals of S . We endow S with equality relation

≤= {(a, b) : a = b}.

Then S is an ordered AG-groupoid, ρ is a semilattice congruence on S and (s)ρ is a left simple AG-
subgroupoid of S for every s ∈ S .

By i)⇒ v), we have
(P1P2] = (P2P1] and P = (P2],

implies
(P1P2] = P1P2.

Indeed, if a ∈ (P1P2], then a ≤ bc for some b ∈ P1 and c ∈ P2.

Since (a, bc) ∈≤, we have a = bc, which implies a ∈ P1P2.

Similarly, we have
(P2P1] = P2P1 and P = (P2],

which is what we set out to prove.
iii)⇒ iv) : Straightforward. �
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Definition 12. The product of any uv-score functions Ω(
∗
µ,
∗
υ) and Υ(

∗
µ,
∗
υ) of S is defined by

(Ω(
∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ))(x) =


∨

(y,z)∈Ax

{Ω(
∗
µ,
∗
υ)(y) ∧ Υ(

∗
µ,
∗
υ)(z)} i f Ax , ∅

0 if Ax = ∅,
,

where
Ax = {(y, z) ∈ S × S \x ≤ yz}

for any x ∈ S .

The proof of the following four lemmas are same as in [25, 26].

Lemma 1. Let S be an ordered AG-groupoid. For ∅ , A, B ⊆ S , the following holds.
i) CA ∩ CB = CA∩B.

ii) CA ◦ CB = C(AB].

Lemma 2. If Ω(
∗
µ,
∗
υ) is any uv-score function of an ordered AG-groupoid S , then Ω(

∗
µ,
∗
υ) is an IVIF-score

right (left) ideal of S if and only if

Ω(
∗
µ,
∗
υ) ◦ S ⊆ Ω(

∗
µ,
∗
υ)(S ◦Ω(

∗
µ,
∗
υ) ⊆ Ω(

∗
µ,
∗
υ)).

Lemma 3. Let S be an ordered AG-groupoid and ∅ , A ⊆ S . Then A is a right (left) ideal of S if and
only if CA is an IVIF-score right (left) ideal of S .

Lemma 4. If S is an intra-rgular ordered AG-groupoid with left identity and Ω(
∗
µ,
∗
υ) is an IVIF-score

left (right) ideal of S , then
Ω(

∗
µ,
∗
υ) = Ω2

(
∗
µ,
∗
υ)

= S ◦Ω(
∗
µ,
∗
υ) = Ω(

∗
µ,
∗
υ) ◦ S .

Theorem 2. Let S be an ordered AG-groupoid. Then every left ideal of S is two-sided if and only if
every IVIF-score left ideal of S is two-sided.

Proof. It is simple. �

Theorem 3. For an ordered AG-groupoid S with left identity, the following conditions are equivalent:
i) S is a semilattice of left simple AG-groupoids;
ii) S is intra-regular and every IVIF-score left ideal of S is an IVIF-score ideal;
iii) for every IVIF-score left ideal Θ(

∗
µ,
∗
υ) and Ψ(

∗
µ,
∗
υ) of S ;

Θ(
∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ) = Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ);

iv) the set of all IVIF-score left ideals of S forms a semilattice under the composition of IVIFSs;
v) the set of all left ideals of S forms a semilattice under the composition of subsets.

Proof. i)⇒ ii) : It can be followed from Theorems 1 and 2.
ii) ⇒ iii) : Let Θ(

∗
µ,
∗
υ) and Ψ(

∗
µ,
∗
υ) be any IVIF-score left ideals of S with left identity e, and a ∈ S .

Since S is intra-regular, there exist some x, y ∈ S for which

a = xa2 · ey = ye · a2x

= a2(ye · x) = (a · ye)(ax)
= (xa)(ye · a).
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Consequently

(Θ(
∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ))(a) =

∨
(xa,ye·a)∈Aa

{Θ(
∗
µ,
∗
υ)(xa) ∧ Ψ(

∗
µ,
∗
υ)(ye · a)}

≥ Θ(
∗
µ,
∗
υ)(a) ∧ Ψ(

∗
µ,
∗
υ)(a) = (Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ))(a).

Thus
Θ(

∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ) ⊇ Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ).

Similarly
Θ(

∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ) ⊆ Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ).

As a result,
Θ(

∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ) = Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ)

for every IVIF-score left ideal Θ(
∗
µ,
∗
υ) and Ψ(

∗
µ,
∗
υ) of S .

iii)⇒ iv) : It is simple.
iv) ⇒ v) : Let P1 and P2 be any left ideals of S , then by given assumption, it is easy to see that

P1P2 (P2P1) is a left ideal of S , and thus

P1P2 = (P1P2](P2P1 = (P2P1]).

Let x ∈ (P1P2]. Using Lemmas 1 and 3, and the given assumption, we have

C[P1,P2](x) = (CP1 ◦ CP2)(x)
= (CP2 ◦ CP1)(x)
= C[P2,P1](x) = 1.

This indicates that
x ∈ (P2P1] = P2P1.

Thus
P1P2 ⊆ P2P1.

Similarly, we can show that
P2P1 ⊆ P1P2.

Therefore
P1P2 = P2P1.

Now to prove that every left ideal P1 of S is idempotent, let x ∈ P1. Then by the given assumption, we
have

C(P2
1](x) = (CP1 ◦ CP1)(x)

= CP1(x) = 1

which shows that
P1 ⊆ P2

1.
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Hence
P1 = P2

1

for every left ideal P1 of S .
v)⇒ i) : Let a ∈ S . Since (S a] is the left ideal of S and a ∈ (S a], so by given assumption

a ∈ (S a] = (S a](S a] ⊆ (S a · S a]
= (S S · a2] = (a2S · S ]
= (S a2 · S ],

which shows that a ≤ xa2 · y for some x, y ∈ S . Hence S is intra-regular. Using Theorem 1, S is a
semilattice of left simple AG-groupoids. �

Theorem 4. Let S be an ordered AG-group. Then the following conditions are equivalent:
i) S is a semilattice of left simple AG-groupoids;
ii) S is intra-regular and every IVIF-score left ideal of S is an IVIF-score ideal;
iii) for every IVIF-score left ideal Θ(

∗
µ,
∗
υ) and Ψ(

∗
µ,
∗
υ) of S ;

Θ(
∗
µ,
∗
υ) ◦ Ψ(

∗
µ,
∗
υ) = Θ(

∗
µ,
∗
υ) ∩ Ψ(

∗
µ,
∗
υ);

iv) the set of all IVIF-score left ideals of S forms a semilattice under the composition of IVIFSs;
v) the set of all left ideals of S forms a semilattice under the composition of subsets;
vi) let R and P be any left and right ideals of S respectively.

R ∩ P2 = (RP],

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) can be followed from Theorem 3.
(v) =⇒ (vi) : Let R and P be any left and right ideals of S respectively, then it is easy to see that

(RP] ⊆ R ∩ P2.

Let a ∈ R ∩ P2, then
a ∈ R and a ∈ P2.

Let e be the left identity of S , then for a ∈ S there exists a
′

∈ S such that

aa
′

= a
′

a = e.

Therefore
a ≤ ea ≤ aa

′

· ea

implies

a ∈ (RS · S P2] = ((RS )(PP · S )]
= ((RS )(S P · P)]
⊆ (R · S P] ⊆ (RP].
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(vi) =⇒ (i) : Since (S a2] and (S a] are the right and left ideals of S respectively such that

a2 ∈ (S a2]

and
a2 = aa ∈ (S a](S a] = (S a]2,

therefore by using given assumption, we have

a2 ∈ (S a2] ∩ (S a]2 = ((S a2](S a]2]
= ((S a2)(S a)2] = ((S a2) · (aS )(aS )]
= (S a2 · a2S ] = ((aa)(S a2 · S )]
= ((S a2 · S )a · a] = ((aS · S a2)a]
= ((S a2 · S a)a] ⊆ ((S a2 · S )a],

which implies
a2 ≤ (xa2 · y)a

for some x, y ∈ S . Thus

a2 ≤ (xa2 · y)a⇒ (aa)a
′

≤ ((ax · a)a)a
′

⇒ (a
′

a)a ≤ (a
′

a)(xa2 · y)
⇒ a ≤ xa2 · y.

Hence S is intra-regular. Using Theorem 1, S is a semilattice of left simple AG-groupoids. �

Remark 2. Assume S is an ordered AG-groupoid with left identity and a ∈ S . The smallest left ideal
of S containing a is thus Pa = (S a], and the smallest right ideal of S containing a2 is Ra2 = (S a2].

Theorem 5. Let S be an ordered AG-groupoid with left identity. Then the following conditions are
equivalent:

i) S is intra-regular.
ii) Let Pa be the smallest left ideal of S containing a, then:

Pa = P2
a.

iii) Let P1 and P2 be any left ideals of S , then:

P1 ∩ P2 = (P2P1].

iv) Let Ω(
∗
µ,
∗
υ) and Υ(

∗
µ,
∗
υ) are any IVIF-score left ideals of S , then:

Ω(
∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ) = Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ),

Proof. i) =⇒ iv) : Let Ω(
∗
µ,
∗
υ) and Υ(

∗
µ,
∗
υ) be the IVIF-score left ideals of an intra-regular S with left

identity e for all a ∈ S . Now, for a ∈ S , there exists some x, y ∈ S such that

a ≤ (ex · aa)y = (ea · xa)y
= (y · xa)(ea).
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Thus

(Υ(
∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ))(a) =

∨
(y·xa,ea)∈Aa

{
Υ(

∗
µ,
∗
υ)(y · xa) ∧Ω(

∗
µ,
∗
υ)(ea)

}
≥ Υ(

∗
µ,
∗
υ)(a) ∧Ω(

∗
µ,
∗
υ)(a).

This suggests that
Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ) ⊇ Ω(

∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ).

It is clear that
Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ) ⊆ Ω(

∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ)

by applying Lemmas 2 and 4. As a result,

Ω(
∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ) = Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ).

iv) =⇒ iii) : Let P1 and P2 be any left ideals of S . Then, according to Lemma 3, CP1 and CP2 are
the IVIF-score left ideals of S . If we take x ∈ P1 ∩ P2 and apply Lemma 1, we get

1 = CP1∩P2(x)
= (CP1 ∩ CP2)(x)
≤ (CP2 ◦ CP1)(x)
= C[P2,P1](x).

This implies
a ∈ (P2P1]

and, as a result,
P1 ∩ P2 ⊆ (P2P1].

It is obvious
(P2P1] ⊆ P1 ∩ P2.

Hence
P1 ∩ P2 = (P2P1].

iii) =⇒ ii) : It is obvious.
ii) =⇒ i) : Since (S a] is the smallest left ideal of S that contains a. Using Theorem 3 v)⇒ i), S is

intra-regular. �

Theorem 6. Assume S is an ordered AG-group. Then the following conditions are equivalent:
i) S is intra-regular;
ii) Let Ra2 is the smallest right ideal of S containing a2, then;

Ra2 = R2
a2 .

iii) Let R1 and R2 be any right ideals of S , then;

R1 ∩ R2 = (R2R1].

iv) Let Ω(
∗
µ,
∗
υ) and Υ(

∗
µ,
∗
υ) be any IVIF-score right ideals of S , then;

Ω(
∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ) = Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ).
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Proof. i) =⇒ iv) : Let Ω(
∗
µ,
∗
υ) and Υ(

∗
µ,
∗
υ) be both IVIF-score right ideals of S with left identity e and

V(a) , ∅ for all a ∈ S . Now for a ∈ S , there exists some x, y ∈ S such that

a ≤ (ex · aa)y = (aa · xe)y
= (ax · ae)y = (y · ae)(ax)
= (a · ye)(ax).

Thus

(Υ(
∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ))(a) =

∨
(a·ye,ax)∈Aa

{
Υ(

∗
µ,
∗
υ)(a · ye) ∧Ω(

∗
µ,
∗
υ)(ax)

}
≥ Υ(

∗
µ,
∗
υ)(a) ∧Ω(

∗
µ,
∗
υ)(a).

Thus by using Lemmas 2 and 4, we get

Ω(
∗
µ,
∗
υ) ∩ Υ(

∗
µ,
∗
υ) = Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ).

iv) =⇒ iii) : Let R1 and R2 be any right ideals of S . Then by Lemma 3, CR1 and CR2 are IVIF-score
right ideals of S . Let x ∈ R1 ∩ R2. Then by using Lemma 1, we have

1 = CR1∩R2(x)
= (CR1 ∩ CR2)(x)
≤ (CR2 ◦ CR1)(x)
= C[R2,R1](x).

which implies that
a ∈ (R2R1]

and therefore
R1 ∩ R2 ⊆ (R2R1].

It is easy to see that
(R2R1] ⊆ R1 ∩ R2

and therefore
R1 ∩ R2 = (R2R1].

iii) =⇒ ii) : It is obvious.
ii) =⇒ i) : Since (S a2] is the smallest right ideal of S containing a2. Therefore

a2 ∈ (S a2] = ((S a2](S a2]]
= ((S a2)(S a)2].

Using Theorem 4 vi)⇒ i), S is intra-regular. �

Definition 13. A non-empty subset A of an ordered AG-groupoid S is called a (0, 2)-ideal of S , if
i) S A2 ⊆ A;
ii) if a ∈ A and b ∈ S such that b ≤ a, then b ∈ A, that is if (A] = A.
Equivalently, if (S A2] ⊆ A.
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Definition 14. Let Θ(
∗
µ,
∗
υ) be a uv-score function of an ordered AG-groupoid S and x, y, z ∈ S . Then

Θ(
∗
µ,
∗
υ) is called an IVIF-score (0, 2)-ideal of S , if the following conditions are satisfied.
i) Θ(

∗
µ,
∗
υ)(x · yz) ≥ Θ(

∗
µ,
∗
υ)(y) ∧ Θ(

∗
µ,
∗
υ)(z);

ii) x ≤ y =⇒ Θ(
∗
µ,
∗
υ)(x) ≥ Θ(

∗
µ,
∗
υ)(y).

The next two lemmas are straightforward, hence their proofs are omitted.

Lemma 5. If Θ is any uv-score function of an ordered AG-groupoid S , then Θ is an IVIF-score (0, 2)-
ideal of S if and only if S ◦ Θ2 ⊆ Θ.

Theorem 7. Let Θ be an IVIF-idempotent subset of an ordered AG-groupoid S with left identity. Then
the following conditions are equivalent:

(i) Let Ω(
∗
µ,
∗
υ) be an IVIF-score right ideal and Υ(

∗
µ,
∗
υ) be an IVIF-score left ideal of S , then

Θ = Ω(
∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ),

(ii) Θ is an IVIF-score (0, 2)-ideal of S .

Proof. (i) =⇒ (ii) : We can obtain the following by using Lemma 2.

S ◦ Θ2 = (S ◦ S ) ◦ (Θ ◦ Θ) = (S ◦ Θ) ◦ (S ◦ Θ)
= (S ◦ (Ω(

∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ))) ◦ (S ◦ (Ω(

∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ)))

= (Ω(
∗
µ,
∗
υ) ◦ (S ◦ Υ(

∗
µ,
∗
υ))) ◦ ((S ◦ S ) ◦ (Ω(

∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ)))

⊆ (Ω(
∗
µ,
∗
υ) ◦ S ) ◦ ((Υ(

∗
µ,
∗
υ) ◦Ω(

∗
µ,
∗
υ)) ◦ (S ◦ S ))

⊆ Ω(
∗
µ,
∗
υ) ◦ ((S ◦Ω(

∗
µ,
∗
υ)) ◦ Υ(

∗
µ,
∗
υ)) ⊆ Ω(

∗
µ,
∗
υ) ◦ (S ◦ Υ(

∗
µ,
∗
υ))

⊆ Ω(
∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ) = Θ.

As a result of Lemma 5, Θ is an IVIF-score (0, 2)-ideal of S .
(ii) =⇒ (i) : Setting Υ(

∗
µ,
∗
υ) = S ◦ Θ and Ω(

∗
µ,
∗
υ) = S ◦ Θ2, then using Lemma 5, we obtain

Ω(
∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ) = (S ◦ Θ2) ◦ (S ◦ Θ) = (Θ ◦ S ) ◦ (Θ2 ◦ S )

= (Θ ◦ Θ) ◦ ((Θ ◦ S ) ◦ S ) = (S ◦ (Θ ◦ S )) ◦ Θ

⊆ S ◦ Θ2 ⊆ Θ = Θ ◦ Θ = (Θ ◦ Θ2) ◦ (Θ ◦ Θ)
⊆ (S ◦ Θ2) ◦ (S ◦ Θ) = Ω(

∗
µ,
∗
υ) ◦ Υ(

∗
µ,
∗
υ).

This is what we set out to show. �

5. Applications of IVIF-score (0,2)-ideals

Many researchers have studied several real world problems in an interval-valued intuitionistic
fuzzy environment by developing various decision-making techniques. For example, Yue and Jia [29]
presented a soft computing model for group decision problems. Chen et al. [5] established a method
for dealing with group decision problems in the context of IVIFSs. Further to that, Cai and Han [4]
applied IVIFSs to a data mining-based decision-making problem by providing an example of selecting
an ERP system, which validated the developed approach. Moreover, Xu and Shen [19] suggested a
new outranking choice method and illustrated it with a practical supplier selection example.
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We now devise a technique to see which alternative is a good choice for further analysis on the basis
of IVIF-score (0,2)-ideals. The steps are broken down as follows:

i) Take the collection of alternatives X = {xi : i = 1, 2, 3..., n}.
ii) Construct an ordered AG-groupoid on collection X under a combination rule “·” and order “≤”.
iii) Define an IVIFS on X that creates an IVIF-score (0, 2)-ideal of (X, ·,≤).
iv) Rank all the IVIFNs by using uv-score function (use uv-accuracy function if uv-scores are equal).
To take a decision that will rank the available alternatives according to the requirements, we utilize

an IVIF-score (0, 2)-ideal of an ordered AG-groupoid.

Selection of warehouse distributors

A warehouse is made up of a variety of components, including shelves and containers for storage, air
conditioning systems for temperature-sensitive products, storage management software and inventory
control software to keep the two in sync, picking equipment to transport goods from one location
to another, and so on. While, a distribution centre is distinct from a warehouse in that it includes
components for picking, packaging, and shipping, as well as storage. However, virtually all warehouses
nowadays are built to include distribution centre functionality. As a result of these overlapping
goals, warehousing has come to play a significant part in the supply management process. Planning,
information collecting, product procurement, inventory management, transportation, delivery, and
return of items are all part of the e-commerce supply management process. A warehouse can help
you handle most of these procedures smoothly and optimize your business for optimum returns.
Warehousing is a critical component of the supply chain operation. Even though this is not a customer-
facing activity and your consumers may never be aware of it, their purchasing experience will be
impeded without it.

Shipping a truckload of products from multiple warehouses to different marketplaces varies due
to different modes of transportation and distances involved. An international corporation has five
warehouses, designated by x1, x2, x3, x4 and x5, with locations as follows:

x1 : City Centre: It is located in the city centre, which is the economic, social, cultural, political,
and geological soul of a metropolis.

x2 : Downtown: It is situated in downtown, which is the busiest section of a city, with the most
merchants, cafés, skyscrapers, and passengers.

x3 : S uburb: It is in a suburb where citizens reside away from the middle of a major metropolitan
area.

x4 : S lum: It is located in a slum, which is a tightly packed metropolitan residential area made up
of low-quality dwelling units.

x5 : Midtown: It is the part of a city near the centre.
The rankings of the IVIFNs associated with each warehouse in the collection X = {x1, x2, x3, x4, x5}

will decide the rankings.
Let consider the collection of warehouses X = {x1, x2, x3, x4, x5}. Let the combination rule be the

time taken to pick an item form warehouse and bringing it to the selling point, e.g. time taken to
picking first item from warehouse x1 then second item from x4 is same as time taken to pick a single
item from x5, similarly time taken to pick two items from x1 (x1 to x1) is same as time required for
picking a single item from x4. All the possible combinations are listed in table below (see Table 5):
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· x3 x2 x5 x4 x1

x3 x3 x3 x3 x3 x3

x2 x3 x2 x2 x2 x2

x5 x3 x2 x4 x1 x5

x4 x3 x2 x5 x4 x1

x1 x3 x2 x1 x5 x4

Table 5. Composition of warehouses.

≤= {(x3, x3), (x2, x2), (x5, x5), (x4, x4), (x1, x1), (x2, x5), (x2, x4), (x2, x1)}

It is easy to see that (X, ·,≤) is an ordered AG-groupoid.

Consider the following collection of IVIFS I = {
∗

ξ j = (
∗
µξ j ,

∗
υξ j); j = 1, 2, 3, 4, 5} on X as follows (see

Table 6):

x
∗

ξ j
∗
µξ j

∗
υξ j uv-score uv-accuracy Rank

x3
∗

ξ1 [0.7, 0.8] [0.1, 0.2] 0.8 0.9 1st

x2
∗

ξ2 [0.6, 0.7] [0, 0.1] 0.8 0.7 2nd

x5
∗

ξ3 [0.3, 0.8] [0.1, 0.2] 0.7 0.7 3rd

x4
∗

ξ4 [0.4, 0.7] [0, 0.3] 0.7 0.7 3rd

x1
∗

ξ5 [0.5, 0.6] [0, 0.3] 0.7 0.7 3rd

Table 6. Ranking of warehouses along with uv-scores and uv-accuracies.

The above table shows that Θ(
∗
µ,
∗
υ)(I) is an IVIF-score (0, 2)-ideal of (X, ·,≤).

Sort all of the alternatives according to their respective uv-scores. If two uv-scores (Definition 1)
are equal, the uv-accuracy function (Definition 2) can be used to sort the alternatives (see Figure 3).

Figure 3. uv-score uv-accuracy and ranking comparison of elements of ordered AG-
groupoid.
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The preferences of the alternatives based on an IVIF-score (0, 2)-ideal on (X, ·,≤) can be seen from
the following Table 7:

Ranking 1st 2nd 3rd 4th 5th
Warehouse x3 x2 x5 x4 x1

Table 7. Preference information for the warehouses.

6. Conclusions

We developed some novel characterization results for an intra-regular ordered AG-groupoid. We
used the notions of uv-score and uv-accuracy functions under interval-valued intuitionistic fuzzy
environment to provide a method that satisfies a decision maker while making the decision by
incorporating the concept of IVIF-score (0, 2)-ideals in an ordered AG-groupoid. The results of
this paper are developed for ordered AG-groupoids but they also hold for un-ordered AG-groupoids,
so these results could be considered as extended results. They also generalize the results already
developed on the structure of AG-groupoids and ordered groupoids by considering various versions
of fuzzy sets. The work carried out in this paper is in the most generalized form and is capable of
extending the existing theory of AG-groupoids

Based on our proposed concept, more applications for future research work can be found in a variety
of directions. Among them are the following:
• Using the concepts of a Pythagorean fuzzy set (PFS) [21] and interval valued picture hesitant

fuzzy set (IVPHF) [7], one can investigate an ordered AG-groupoid in detail.
• To characterize an ordered AG-groupoid using the notion of a q-rung orthopair fuzzy set (Cq-

ROFS) [22].
• To investigate the concept of a linear Diophantine fuzzy set (LDFS) [16], their algebraic

structures [9] and complex linear Diophantine fuzzy set (CLDFS) [8] in the framework of an ordered
AG-groupoid.
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