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1. Introduction

The derivatives of arbitrary order, where the integer-order differentiation and n-fold integration
are unified and generalized, the theory of integrals is known as Fractional Calculus. Abel in 1823,
described the first application of derivative of order. In 1965, the fractional derivative (FD) was
introduced by Lebinitz as a generalization of the Integral order derivative. Later it was reconsidered
by Euler, Abel, Riemann Liouville, Grunwald and Letnikov. In several field of research, the topic of
fractional calculus plays a major role in the real world problems. Among the diverse fields of science,
the fractional calculus has the great application, say in physics, thermodynamics, viscoelasticity,
biology, control theory, electrochemistry [1-3] and acts a controller model for population growth,
practically etc. In recent years, fractional differentiation has been drawing increasing attention in the
study of social and physical behaviors where scaling power law of fractional order appears universal
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as an empirical description of such complex phenomena [4]. Over the past few decades, numerous
analyses, real-world problems, and numerical methods were resolved by fractional derivatives and
integrals [5]. Fractional operators used to illustrate better the reality of real-world phenomena with
the hereditary property [6]. The determination of curve’s shape such that the time of descent of non-
friction point mass sliding down through the curve under the action of gravity is not independent of
the starting point is dealt with by the tautochrome problem in which it is the relation of application of
fractional calculus with the solution of integral equations. Fractional derivative are amazing tool for
illustrating the memory and hereditary properties of diverse materials and processes. On finding the
approximation of the solution of the system, numerical analysis have played a major role [7].

The Caputo fractional differential operator is introduced by the Italian mathematician Caputo
in 1967 [8]. Some problems of visco-elasticity are formulated and solved by M.Caputo [9] with
his own definitions of fractional differentiation. The relationship between the Caputo Fractional
Derivative(CFD) with Riemann-Liouville(RL) fractional derivative, Atangana-Baleanu(AB) fractional
derivative has been very strong which describes the generalized Mittag-Leffler(ML) functions among
their kernels, using certain mathematical model to obtain the results in betterment [10].

Neutral differential equations occur when max{ni, n,, ...... ,ni} = n. The past and present values of
the function is dependent by the neutral differential equations, which is similar to retarded differential
equations, but the neutral differential equations also depends on derivatives with delays. Neutral type
differential equations [11-13] acts as a model for elastic network arise in high speed computers. That
is, for the use of interconnection of switching circuit. Neutral differential equation occur in various
branches of applied mathematics, as a result, seeking major heed in recent decades. The development
of neutral differential system have been done by many researchers, mentioning the diverse fixed point
approaches, mild solutions, and nonlocal conditions [14, 15]. The delay differential equations has the
major application in the behaviour of real populations. The systems with impulses are utilized for
studying the dynamics of processes subject to abrupt changes at discrete moments [16, 17].

A set with no empty closed subset of % is called Time scale. The time scale has been introduced
to federate and enhance the theory of differential equation, and many other defined difference systems.
The differential equations on time scales for the existence and uniqueness of IVP has been stated by
Hilger with some applications. The union of disjoint closed real intervals on time scales acts as an
excellent framework for the study of population. In the last few years, differential equations in time
scale is majorly developed (see for example [18-32]).

In [33], by applying fixed point theorems the authors discussed the existence, uniqueness and
stability for the non linear fractional differential equations with non linear integral boundary condition
on time scales. In our work, we discuss the existence and uniqueness solution to the neutral functional
sequential integro differential equations with Caputo fractional derivative on time scale’s T Cauchy
problem,

! !
‘NI°A°p(v) — (v, p,, f ki (2, s,ps)a’S)] =y(v,py, f ka(t, s, py)ds),
0 0

ve 7 :=[0,Tly=[0,T]NT,
p(v) =¢(v),v €[-€0]r =[-€0]NT,
“Ap(0) = ¢ € A. (1.1)

Here,A?,°A¢ are CFD. The given functions are 0 < p,p < 1, ¢ : 7 X C([~€,0]r,%Z) — % and
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¢ € C([-¢€,0]r,%). The function p in [~€,T]r and for v € ¢ and € > 0, the element of C, : =
C([-¢€, 0], Z) and we denote by p, as,

p() =ple+mn), ne€l-¢0]r.
2. Preliminaries

Definition 2.1. [8] The CFD of order S is defined by, for 8 > 0, > 0,8,x,t € %. The fractional
operator is,

1 A u(n)T
T(n—p) fx G—pprim> M= 1 <pB<meN,

Dlu(t) = 2.1)

L u(r), B=meN.

Definition 2.2. The mapping X: T — T, defined as X(¢) = inf{s € T : s > ¢} having inf ¢ = supT. The
forward jump operator is defined as a Time scale with an arbitrary non empty closed subset of % and
is denoted by T. (i.e., Z(N) = N if T has a maximum N).

The mapping Q: T — T, defined by Q(¢) = sup{s € T : s < t} with sup ¢ = infT. (i.e., Q(N) = N if
T has a maximum N) is called the backward jump operator.
Here, the symbol ¢ denotes the empty set.
Remark 2.3. In definition 2.2, if T contains # a maximum, then inf ¢ = supT (i.e., X(71) = i ) and if T
contains n a minimum, then sup ¢ = infT (i.e (n) = n ), ¢ is denoted as the empty set.
Definition 2.4. [30] A continuous function u : T — & at right dense points is called rd-continuous and
in left-dense points left sided limit exists.
Definition 2.5. [33] A function U: [x, y]— Z is known as A anti-derivative of function u: [x, y]— Z,
where U is continuous on [x, y], A differentiable on (x, y), and U%(t) = u(t) ¥ te(x, y), where [x, y] is the
closed bounded interval in T.

The A-integral of u from x to y is,

"y
f u(h)At := U(y) — U(x). (2.2)
Definition 2.6. [34] The fractional integral of order S of g is,
(= sy
Phiy = [ ) goas, (2.3)
o LT f

where I is the Gamma function, T be a time scale with interval [x,y] of T, and g be an integrable
function on [x, y].
Definition 2.7. [35] Suppose that T is a time scale. The CFD of order 3 of g is defined by

! _ ym—pB-1
APh(r) := f %gAm(s)As, (2.4)

where m=[]+1 and [5] denotes the integer part of 3.
Theorem 2.8. [36] Let 3, 8 and g be an integrable function on [x, y], then,

T g(r) = TIPF (1),
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Lemma 2.9. (Nonlinear alternative for Leray-Schauder type) [37-39]. Consider U a mapping from F
to C, where C is a closed, convex subset of E, which is a Banach space and F, an open subset of C
with O€eF. Then either of the conditions hold:

(i) F has a fixed point,
(i) f = AF(f), f € OF and A € (0, 1).

Lemma 2.10. (Krasnoselskii fixed point theorem) [37]. Let W be closed, bounded, convex and non-
empty subset of a Banach space S. Let M, N be the operators such that (a) Mu + Nv € W whenever
u,v € W; (b) M is continuous and compact; (c) N is a contraction mapping. Then there exists z € W
such that z = Mz + Nz.

Lemma 2.11. [20] Let T be a time scale and g be an increasing continuous function on the interval
[x, y]with the time-scale . Let G be the extension of g to the real interval [x, y], then

_J &) if seT,
G(s) = { g(r) if set,X(1)¢T,

then,

"y "y
f g(DAT < f G(7)dr.

3. Main sequels

We need the following assumptions
(A1) There exists A > 0 such that, [y(v,z) — ¥ (v,2)| < Allz = Z||. forv € _# and every z,Z € C..

(A2) There exists a non ‘- ve’constant « such that, |[¢(v,z) — ¢(v,2)| < kllz — Zl| for v € _Z and every
z,7 € Ce.

(A3) The function ¥, ¢ are continuous.

(A4) There exists a continuous non-decreasing function ¢ : [0, c0]r — (0, c0) and a function 1" €
C(Z, Z7)suchthat, (v, 2)| < T(vy(llzll.) for each (v,z) € # X C..

(AS) There exists a constant L. > 0 such that,
T+ 1)—«T?L

H + g LT T o s

where, H = I'(0 + Dli¢ll. + [I¢| + «lls]l. + 20, ]T*

(A6) There exists a continuous function ¥, ¢ : ¢ x C. — %, For each

Ps>qs € 2, 18(s, ps, kips (V) — ¢(s, ps, kigs(V)| = killps — gl

(A7) For each p,,q, € _Z such that
pand g € C([0, Tlr.%), W(s, ps, kops(v) = Y(s, ps, kags(V)] = kallps — gsll.
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Remark 3.1. By (A2) for each (v,2) € 7,

|(D(V? Z)l = |(D(V’ Z) - @(V, O) + (D(V’ O)l
<D, z) — D, 0)] + |D(v, 0)|
< klz| + @,,

where @, = supepo. 11| P(s, 0)].
Remark 3.2. A function p € E is said to be a solution of the problem

N[ Ap(v) - D(v. py. fo e s.po)ds)| = y(v.py. fo ot 5.p)ds)

ve 7 :=[0,Tlr=1[0,TINT,
p(v) =¢(v),v € [-€0]r = [-€0]NT,
‘Np0)=¢p e Z%.

If p satisfies the equation ‘A* [“Aﬁ’p(v) - CD(V, Dy fot ki(t,s, ps)ds)] = w(v, Dy fot ko(t, s, ps)a’s) on ¢, the
condition p(v) = ¢(v) on [—¢, 0] and “‘A¢p(0) = ¢.
Theorem 3.3. The function p € E is the solution of the problem.

N[ A%p(v) - D(v. py. fo e s.po)ds)| = y(v.py. f e, 5.p)ds)

ve #:=[0,Tlr=[0,TINT,
pv) =¢(v),ve€[-€0]r = [-€0]NT
‘A°p(0) = ¢ € %.

If
s(v), ifv e [-€0lr

p(v) =4 ¢(0)+ $-00<0) fo (v— 9P TAs + ==

T (o) o (V - S)Q I(D(V Pvs klP(V))AS

1"()

iz = W0 py kapO))A.
Proof. Using,

cAp[cAgp(v) — CI)(v,pV, fot ky(t, s,ps)ds)] = w(v,pv, ft ko (2, s,ps)ds), ve 7,

0

we get,

“A°p(v) — @[V, p,, kip(v)] = ﬁ+m (v = Y~ 'W(s, ps kop(s))ds,

where 8 € Z.
Dp(0) = ¢, B = ¢ — ©(0,¢(0)), is given as,

‘A% = ¢ — D(0,5(0) + DLy, py, kip(V)] + ) fo (v = ¥~ 'Y(s, ps kap())ds.
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Thus,

p(v) =B+ 2-20.50) f (v =) As + —— f (v = 97 O, py, kip(n)As

(o) ['(o)
f v = Y'Y, py, kap(v))As.
0

+
F(p+9)

we find B = 0 and hence the proof.
Theorem 3.4. Assume that (A1) and (A2) holds if,

Kkl ATng
TP( + )< )
Fo+1) T+o+1)

then there exists a unique element for Initial value problem (1.1) in E. Proof:. Choose E
C([_E7 T]Ta %) - C([_67 T]Ta <%) by7

s(v),

Ep)(v) = { s0)+ 52 (v = )7 As + 55 [ (v = )27 D(s, py, kip(v)As

kg o = S5, p Tap())As.

Let p,q € C([0, T]r, #Z). Then by (A1) and (A2) we get,

1 4
|E(p)(v) = E(@)()] < m v = )7 |O(s, ps, k1ps(v)) = (s, g, kips())|As

+ F(p Y0 fo (v = s W (s, pys kaps(v) = O, s, kop (V)| As

K 4
<— | 0v=9"kllps — qll.As
F(Q)fo P4

f v = sY" Kkl — gl As.
0

+
I'(p +0)
By Lemma 2.11 we get,

|E(p)(v) - E(q)(V)I<m (v—S)Q‘lklllps—qsllcds
-~ ’ — s)ro-Dp _ d
+F(p+g_1)f0<v $)**¢ Vkylp, - gll.ds
Kve AyPre
< killp - +———kllp -
“To+D P = 4lli—eryp Tp+ro+ D) 2llp = gllo )7

KT? I pre L
< ———ki|lp - +——Iyllp - .
*Te+1) 1llp q“[—E,T]’]I‘ Tp+o+1) 2llp CI”[(),T]T

Thus,

Kk] 4 ATQkQ
INo+1) T(o+o0+1)

Ep)0) - El@)»)] < 7/( Jip = ail-cx.
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The operator is contraction E . Hence, in problem (1.1) By using Banach contraction principle E is a
unique solution on [—¢, T}t and it has a unique fixed point.

T?
Theorem 3.5. Assume the hypothesis (A2)—(AS) hold. If X

I'o+1)

< 1, then the IVP (1.1) must

contain atleast one solution on E.

Proof. Let us prove the operator £ : C(—€,T)r4s — C(—€,T)r% is continuous and completely
continuous.

Claim 1: Let U, — y in C(—¢, T)t 4 then E is continuous, where {U,} is the sequence. Then,

24

1
EQ)0) = E@QO)| < = | (v =5} 1O(s, puss kipas(v)) = (s, ps, kips(M)IAs

I'(0) Jo

1 Y
_ pte-1 _ A
+r(p+g) fo (v —s) (S, Puss koPns(V)) = Y(s, Py, kops(V)IAs
1 4
< — f (v =) sup |D(s, Pus, kipns(M)| = |O(s, py, k1ps (V)| As
I'(o) Jo s€[0,T1]

1 f v
+ (v = 5P sup (S, Pus, kapus()
I'lo+0) Jo se[O,g")]T VS Puss kap

- W/(S,ps’ klps(V)lAs

. — . T
['(o) 0
WG, P kapn) =G pskop Il (T ool
+ TG0t o) j; (v — sy’ As.

By Lemma 2.11 we get,

. _ . T
EQ)) — Eq))] < 1oCoPulipn) = 0.2 kPl f (v — sy~\ds
0

(o)
I Cs Pns ko) = WG kap )l ro-1
+ foto j(; (v —s)Y" 'ds,
< TN, pu, k1pn) — ©C, p., kip )l
- Lo+ 1)
N TPl (-, pus kapn.) — (s poy kop )l
IFp+o+1) '

Since ¢ and ® are continuous functions,

T, prs Kipa) = O pskap)l
IE(p)(v) — E(q)()] < IO, pus k1pn.) — D, p. kip))l

I'o+1)
" Tp+gllw('7pn7 klpn.) - l//(',pw k2p)||oo
Tp+o+1) ’

as n — oo.
Claim 2: E maps bounded sets into bounded sets in C([—€, T]y, Z). It is necessary to prove for that
k > 0, and ‘+ ve’constant A such that, for every p € By = pe C([6, Ty, %) : |Ipll, < k. we have,

IE@)Il. < A.
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Using (A4) and (AS), for every v € _# ,we have,

EQO) < llgl, + LA Do (7 goingy L f (v = 905 py. Ky ()IAs

I'(0) s I'(0)
"To+o fo (v = 8" (s, pos kap (V) As

¢ + «llsll. + @, [~ . Kpli—er1r + k1D, [ .
< llsll. + (v—9)"As + : (v—9)°"As
(o) s ['(o) s

e Yok
N YIplli-e 1N T llooko f (v — sy A,
Lo +0) 0

By Lemma 2.11 we get,

®, et k1D, [
IE(p)(v)ISII§IIC+| + ksl + f( ) 1ds + KIplli-e,mr + ki f(v_s)g_lds

I'(o) I'o)
e 7|k
 YlplicrpI Tk f - syreas
(o +o0)
© —er + ki ®@,]TC
<l + o] + «llsll. + D, 1T N [KIpll—e. 117 + k1D, ]
[lo+1) [e+1)
N [W(lpll—er1p N Tk 1 TP
INp+o+1)
Thus,
1ol + «llsll. + D,]TC kk + ki ®,]T¢ N ||oka TP
IEG < sl + 2 y WK DITE  YRIT kT
e+1) o+ 1) IMo+o+1)
= A.

Claim 3: E is mapped from bounded to equicontinuous sets of C([€, T ]y, %Z). vi,v> € _Z,vi < v, By
is the bounded set of C([e, T']y, #).Let p € By.

(¢ — (0, (0) f (s — 57 — (1 — 5P DAs
['(0) 0

, 16— 20.5(0) f”((vz VEyS

|E(p)(v2) = E(p)(v1)| <

(o)
+ m [(v2 = )27 = (vi = )27 |O(s, ps, kips(V)|As

%) ) f (v2 = s 1D(s, ps, kips()IAs

F g 02 = = P G ke S

"Tp+o j; (2 =S¥ (s, pss kaps ()l As.
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By Lemma 2.11 we get,

(¢ — D(0, (0)) f (s — 511 — (v — 53V
['(0) 0

- ®(0,¢(0 V2 _
L@ r(@g( I f (s — sy-1ds

V1

|E(p)(v2) = E(p)(vi)| <

+ m [(v2 = ) = (v = )77 1|O(s, ps, ki p(V)ldss
o ) f (v2 = ¥ 10Cs. pis kip,(V)ds
" r(p 7 | 109 9 s, o (D
oo f "0 = P, o kap s,
Thus,
E@)s) - Ep)on)] < 2 }fgi”f Doty -1+ Klf(+ cflk; 04 =41+ Iva =]
%[h@w -+ vy =il

As vi — v,, the R.H.S of the above inequality — 0. The equicontinuity for the case v < v, < 0
& v < 0 < v, is obvious. By using Arzela Ascoli theorem, C([—€, Ty, Z) — C([—€,T]r, %) is
continuous and completely continuous.
Claim 4: A set U C C([—€, Ty, Z) with p # m E(p) and for m € (0, 1)and p € dp.

Let U € C([~€, Ty, #Z) & p = mE(p) for some 0 < m < 1. Then, for each v € ¢, we have,

Y (v — s)e! As
o (o) F(Q)

fV(V — sy (s, ps, kop(s))As.
0

p(v) = m(s(0)) + (¢ - ©(0,(0)))

f (v = )77 (s, ps, kip(s))As

+
Lo +0)

Considering, for every v € ¢, we obtain,

Y (v — 5)e! Klplli—etr + @k (Y
) < liclle + N8l + Kligle + @, [ E= Ay MPlizenis + Dok f (v = 5 As
0 I'(o) F(Q) 0

t o [ o= T udipd s
0
V(v =) Klplli-emip + Dok fv -
< lgll. + Il + il + ©, s + v - sylds
’ , TQ I

Y _ +o—1
O or fo v = P T upllll)ds

+ e+ DO, T°  KIplli—eryr + Pkt T Tl k .
<llcll. + 141l + «lIs] . Mlplleniy T2 Wk Iplierio) g
Te+D (o +1) Tp+o+1)
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Thus,
T+ 1) = kT)plli—crip < Tl + Dllslle + [I¢ + «llgll, + 2ok 1T

I'o+1)
+ TP+Q Tl Kk )
17l 2¢(||P||[_E,T]T)p+9+1

which can be expressed as

e+ 1) = kT)pll e 71~
H + T Vot (Ipll o) DD~

p+o+1

There exists L and such that ||p||_E’TT # L, Setting for p € {p € C([—€,Tlr, %) : Iplli-er1r < L}. From
p, there is no p € dp such that p = mEp there exists m € (0, 1). E has a fixed point u € U by using the
nonlinear alternative for Leary-Schauder type as the solution of the problem (1.1).

TQ
Theorem 3.6. Consider that (A2)—(A3) and fo+1) < 1 holds, and (A6) [y (v, x)| < X1(v), |O(v,x)| <
Xo(v) for all (p,x) € 7 X %, where X|,X, € (Z,%"). On E the problem (1.1) has atleast one

solution defined.
Proof. The operator Q; and @, :

0, if vel—-eO0lr,

Qip(v) =1 (6~ DO, sON) s [/(v = 59" As 2.5)

s [ = 9O p kip,()As i v € [0, Tl

sp), if vel[-¢€0ln,
Qp(») = ) (2.6)
§O) + gy Jy = (s, pykap,)As if v €0, Tl

Put

sup X1(v) = IXillo,  sup Xo(v) = [|X]lw,

ve[0,T ]y ve[0,T ]y

and

0
w > sl + T@[“(M + 2|1 X3l ] . T X |l ]

T+ 1) To+o+ DI

and define D, = p € C([€, T, Z) = ||pllo < w
Claim 1: Any sort of p,q € D, : Qip + Qq € D,: Any sort of p,q € D,. From (2.5), (2.6) and
Lemma 2.11, we have,

D0, ¢(0
|a1p(v>+a2q(v)|sves[gr;h("’ r(( )g( ) f v — sy 1As+m f (v = 5921 B(s, py, ki ps()As

f (v — s y(s, ps, kZPS(V))AS)
2) Jo

+¢(0) + T
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¢ — ©(0,¢(0))

< sup (
vel0,T)r I'(o)

fv(v — 5 'ds + L fv(v — §)7 (s, py, kip,(v))ds
0 (o) Jo

1 Y
#5604 s [ = Wk )ds)
< ” ” + Tg[k1[|¢| + 2|X2|oo] 4 Tpkz”X”m ]
- Te+1) To+o+D

< Q)klkz.

This shows that Qy + Qz = D
Claim 2: On D,,, Q, is a contraction mapping:
Letp,q € D,. By (2.5) and Lemma 2.11 we have,

1Qip(v) + Qg(V)] < f (v = Y D(s, py, kaps(v) = O, g5, kip(V)IAs

I(0)
F(Q)f(V—S)Q allps = gsllAs

<— | v=9"kllps — q,ll.ds
F(Q)fo P4

<X Ll —dl
ST+ P~ rery
kT® I
< - .
Thus,
kT?
1Qip() + QgWlli_c.1yr < *ToiD

killp - 61||[,E,T]T-

Claim 3: @, and y is continuous so @, is continuous. &, is uniformly bounded on D,,. i.e.,

TPk || X |l oo
< .
1Qpll < llsll. Tp+o+ D)
Claim 4: @, is equicontinuous. Defining
o= sup  |Y(v,p)| < co.

v,p)El0,T XDy,

For vy, v, € [0, Ty, v, v2 by (2.6) and Lemma 2.11 we have,

Qup(r2) — Qup(n)] < r;f; [ 10m =yt =
wokZ +o—1
F(p s, f (vp — s’ As
< ("z:‘g) vy — P! — (v

AIMS Mathematics
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wokZ fVl +o—1
+ (vp — sy ds
To+0)Jo °
Yokiks +
< T [P — ylPre1.
_r@+g+1ﬂ|2|+Wz Vi€l

As vy — v, the R.H.S of the above inequality — 0. Therefore @, is equicontinuous, where on D, Q,
is relatively compact . Therefore, by Arzela-Ascoli theorem @, is compact on D,, .

The problem (1.1) has atleast one solution [—¢, T'].
4. Example

Let us consider the fractional functional integro-differential equation on a Time scale T.

CA% CA%p(V) - 1000(Vcosllpv”c_ ”pv”cSan)f kl(t VCOS”Pv”c,||Pv||cSan)dV

_ T Ipl
100¢” 5 + [l

f (8, veoslipll Ipylesiny)dv,
0

ve Z :[0,1]NT,
p(v) = g‘(V), vV € [_ €, O] N T’

| 1
D2p0) = =.
p(0) 3
Let
!
U, x) = 10005 = x fo ko (t, vcosx, xsinv)dy,
o(v,x) = 1000 (vcosx — xsinv) j; ki (t, vcosx, xsinv)dy,

v,x) €[0,11NT x [0, c0].

Forp,q € [0,00] and v € _Z, we have

!
(v, p) — (v, q)l = T00e' |3 f—p -3 j]_ 2l ko(t, vcospq, pgsinv)dy
Slp — 4l

!
ky(t, vcospq, pgsinv)dy

zlmw6+m6+@

< 50Olp qlf ky(t, vcospq, pgsinv)dyv,

and

|¢(V’ p) - ¢(V, (I)| <

[Vllcosp — cosq +

1000

t
100Olsmvllp ql]f ky(t, vcospq, pgsinv)dv

1
< —=Ip—ql+

= 1000 10007 ~ q'yf‘kzﬂ’vcoqupqsnnOdv
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1 t
< 5mlp - q| ‘fo ky(t, vcospq, pgsinv)dy.

And pllt k1 = kz,
TP( Kk, AT® )_ ( = ==
+ = +
T+ Te+o+ D) \rd+1) Td+1+1)

!
) f ky(t, vcospq, pgsinv)dy
0
!
~ 0.04385118 f ky(t, vcospq, pgsinv)dy
0

!
< f ky(t, vcospq, pgsinv)dy.
0

Hence the conditions (A1) and (A2) hold with A = k= %. Thus the problem has a unique solution on
[- & 1.

5. Conclusions

In this work, we obtain the existence and uniqueness solution to the integro differential equations
for the Caputo fractional derivative on Time scale. The solution of the neutral fractional differential
equations along the finite delay condition is derived by using the fixed point theory.

In future we look forward more on circuit analysis, in particular by using Sequential fractional order
Neutral functional Integro differential equations on time scales with Caputo fractional operator over
Banach spaces.
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