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1. Introduction

The rate in which the change in accordance with the time that occurs in everything always to be
dealt with differential equations (DE). The differential equations play a predominant role in almost
every emerging topic of engineering, science, and technology. Especially when we want to deal with
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climatic changes its role is quite unavoidable. DE is further extended its application to the medical field
in different aspects beginning with the formation of medicine to launching it to society’s well-being.
Moreover, why does one need medicine? The answer to this question is when there arise any diseases
and medical treatment is obviously much more needed there arises the need for new medicines and
new vaccines, etc. The pleasant surprise here is that the emergence and spread of all diseases can also
be dealt with with the help of DEs. There are many classifications of DEs like ordinary differential
equations (ODE), partial differential equations (PDE), Delay Differential Equations (DDE), etc., We
are going to make use of ODE to present, study, and analyze our novel decomposable SEIQR epidemic
model.

The earth is not only for human beings but also for all creatures. The ancient world begins human
evolution in the wild environment. Initially, his physical and mental behavior is adopted to a wild
lifestyle. But as time period passes he adopts himself to a different culture. He develops modern
society, family life, agriculture, and training the animals for his work. This change in environment,
lifestyle, and food style is also affecting the features of human immunity. Not only humans but also
all the creatures in this world will be subject to immunity imbalance and stick on to new diseases.
Epidemic diseases are different from diseases that cause to man due by food contamination, pollution,
etc., Epidemic diseases are diseases that emerge in society and infect a few people with common
symptoms like flu, diarrhea, etc., These epidemic diseases are transmitted from one human to another
human. Sometimes the cure may be automatic by one’s self-immunity but on many occasions, there
is requiring a few more strategies like quarantine, Vaccination, and Medication. We are here by going
to use the quarantine strategy and the mathematical background of our model will be described in the
following section.

After Kermamack Mckendrick’s work [9], most of the epidemic models are done as an application
of fractional differential equations. We have obtained knowledge of epidemic modeling and framed
our research in ordinary differential equations. Some of the research in the literature that motivated us
highly are listed below. [1] Abboubakar et al. presented a “mathematical study of tuberculosis (TB)
model with fractional derivatives”. In [2] Adak et al. gave us a “mathematical perspective of COVID-
19 pandemic with disease extinction criteria in deterministic and stochastic models.” In [3]Adda and
Cresson, have done the “novel works on fractional differential equations and the Schrodinger equation”.
In [4] Baleanu et al. went through the “new fractional model and optimal control of a tumor immune
surveillance with non-singular derivative operator”. In [6] Deo et al. had forecasted, “the transmission
dynamics of COVID-19 in India Under Containment Measures-A Time-Dependent State-Space SIR
Approach”. In [10] Khan and Atangana modeled, “the dynamics of novel coronavirus (2019-nCov)
with fractional derivative.” In [12] Muhammad et al. analyzed and numerically found the “solution
of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace
Adomian Decomposition Method.” In [13–15] Prasantha et al. studied both, “fractional and non-
fractional epidemic models with delay and without delay.” In [22–24] Authors, used “the Homotopy
perturbation method (HPM) to study the disease models”. Rekha et al. [19, 20] used, “HPM to
study the model of Dengue Fever, Listeriosis and Anthrax Diseases”. Thamizh et al. [23, 24] done,
“Mathematical modeling of Wastewater Treatment and Groundwater System Using Microbial growth
by HPM method”. Saranya et al. [22] derived, “Unprecedented HPM for nonlinear equations in the
enzymatic reaction of glucose”. Lee G et al. [11] presented, “a simple epidemic models along with
segmentation.” Carcione et al. [5] analyzed, “the simulation of a deterministic COVID-19 Epidemic

AIMS Mathematics Volume 8, Issue 3, 5918–5933.



5920

SEIR Model” whereas Rihan et al. [21] analyzed, “the time delay Stochastic SIRC epidemic model
of COVID-19”. Raid Kamel et al. [16] gave, “the dynamics of an epidemic model with two types of
infectious diseases and Vertical Transmission”. Recently papers are published [17, 18] with assumed
data that closely match with corresponding diseases giving good analysis and helps society to predict
the future occerances even without the actual scenario and corresponding data.

The arguments of the author for presenting our new work called SEIQR model is arranged in such
a way that the mathematical background of model formulation in Section 2, decomposed systems
in 3, equilibrium points and stability analysis in Section 4, numerical simulations in Section 5, and
conclusion of the study in Section 6 are presented.

2. Mathematical background and epidemic model-formulation

Let us make use of the following considerations for building up the desired mathematical model.
The background of the model is at a time of study once we observed there are few unnoticed cases
of epidemic spread and control. There we noticed a few simultaneous changes in epidemic models
and a few non-helpful transitions were also noticed. Let us explain them in detail with our model.
Our model SEIQR is not like the model that was studied earlier by others in the literature. It’s quite
different. Here we do the simultaneous transitions from susceptible to recovered class. One transition
passes directly from susceptible to infected at the rate of g and the second transition is that susceptible
passes to Exposed at the rate of a and after that passes to Infected from exposed at the rate of c. Also,
Exposed become quarantined by the rate b, and Exposed becomes infected by the rate of c, and after
that infected become quarantined by the rate of f . Finally, we are introducing the concept of non-
helpful transition on the simultaneous changes from Quarantined to recovered by the rate of u and also
the Infected becoming quarantined at the same rate u. We say the quarantine factor is non-helpful here
since assumed the same rate u from quarantined to recovered and as well as for infected to recovered.
The most interesting factor and novelty of this manuscript are that our model not only behaves as
SEIQR but also as SEQR, SEIR, SIQR, and SIR simultaneously. We assume that the parameters
mentioned below are values with 3 decimal places, that a, b,c, u, f , g are taking the same scale since
there are many diseases like common flu that are not spread to many people but are epidemic and
requires quarantine also which notices one in thousand falls in each category. The remaining those
thousand may be still healthy.

In Table 1, we are defining symbols and descriptions required for SEIQR model formulation (see
Figure 1) and its decompositions such as SIR (see Figure 2), SEQR (see Figure 3), SEIR (see Figure 4),
SIQR (see Figure 5).

SEIQR-Model-Formulation

                           

                                                    SEIQR-EPIDEMIC MODEL 

 

                                    a                                           b                                        u             u                               

 

                                 g                   c                                             f                    u 
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R 

Figure 1. Model formulation.
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Table 1. Symbols and descriptions (similar to [17, 18]).

S Susceptible Population —
E Exposed Population —
I Infected Population —
Q Quarantined Population —
R Recovered Population —
S 0 assumed Initial Susceptible population 10
E0 assumed Initial Exposed population 10
I0 assumed Initial Infected population 10
Q0 assumed Initial Quarantined population 10
R0 assumed Initial Recovered population 30
a assumed rate of susceptible becoming exposed 0.006
b assumed rate of exposed becoming quarnatined 0.005
c assumed rate at which exposed become infected 0.007
u assumed rate at which quarantined and infected become recovered 0.008
f assumed rate at which infected become quarantined 0.002
g assumed rate at which susceptible becoming infected 0.009

Decomposed SIR-Model-Formulation

Figure 2. SIR model.

Decomposed SEQR-Model-Formulation

Figure 3. SEQR model.

Decomposed SEIR-Model-Formulation

Figure 4. Model formulation.
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Decomposed SIQR-Model-Formulation

Figure 5. Model formulation.

S ′(t) = −aS (t)E(t) − gS (t)I(t),
E′(t) = aS (t)E(t) − bE(t)Q(t) − cE(t)I(t),
I′(t) = cE(t)I(t) − f I(t)Q(t)) − uI(t)R(t) + gS (t)I(t),
Q′(t) = bE(t)Q(t) + f I(t)Q(t) − uQ(t)R(t),
R′(t) = uQ(t)R(t) + uI(t)R(t).

(2.1)

The total population for this SEIQR of size N will be S (0) + E(0) + I(0) + Q(0) + R(0) = N. But
also we have few possible systems decomposed from the original systems such as SIR, SEIR, SIQR,
and SEQR with

S (0) + I(0) + R(0) = N,

S (0) + E(0) + I(0) + R(0) = N,

S (0) + I(0) + Q(0) + R(0) = N,

S (0) + E(0) + Q(0) + R(0) = N.

Since we can decompose our model (2.1) in to various models the total population “N” will vary
depending upon the kind of decomposition.

3. The decomposed systems from SEIQR

S ′(t) = −gS (t)E(t),
I′(t) = gS (t)I(t) − uI(t)R(t),
R′(t) = uI(t)R(t).

(3.1)

The total population for this SIR of size N will be S (0) + I(0) + R(0) = N.

S ′(t) = −aS (t)E(t),
E′(t) = aS (t)E(t) − bE(t)Q(t),
Q′(t) = bE(t)Q(t) − uQ(t)R(t),
R′(t) = uQ(t)R(t).

(3.2)

The total population for this SEQR of size N will be S (0) + E(0) + Q(0) + R(0) = N.

AIMS Mathematics Volume 8, Issue 3, 5918–5933.



5923

S ′(t) = −aS (t)E(t),
E′(t) = aS (t)E(t) − cE(t)I(t),
I′(t) = cE(t)I(t) − uI(t)R(t),
R′(t) = uI(t)R(t).

(3.3)

The total population for this SEIR of size N will be S (0) + E(0) + I(0) + R(0) = N.

S ′(t) = −gS (t)E(t),
I′(t) = gS (t)I(t) − f I(t)Q(t),
Q′(t) = f I(t)Q(t) − uQ(t)R(t),
R′(t) = uQ(t)R(t).

(3.4)

The total population for this SEQR of size N will be S (0) + E(0) + Q(0) + R(0) = N.

4. Basic reproduction number, equilibrium points, stability analysis

4.1. Basic reproduction number (B0)-estimation

Theorem 4.1. Any epidemic model can be announced to

(1) will not survive iff B0 < 1,

(2) will survive and may lead to further waves iff B0 ≥ 1.

Proof. By this number, we can predict the count of occurring of new cases that transfers from an
infected individual. The rate of infection leads to new susceptibility at time t = 0. The secondary
susceptibility of our SEIQR model will be depending on two compartments namely E(t) and I(t). So
we have to apply the concept of the next-generation matrix in order to find the basic reproduction
number here. Let us consider,

E′(t) = aS (t)E(t) − bE(t)Q(t) − cE(t)I(t),
I′(t) = cE(t)I(t) − f I(t)Q(t) − uI(t)R(t) + gS (t)I(t).

(4.1)

The Jacobian matrix of (4.1) is given by

F =
(

aS (0) − bQ(0) − cI(0) −cE(0)
cI(0)) cE(0) − f Q(0) − uR(0) + gS (0)

)
. (4.2)

Now, F can be decomposed as F = F1.F2 where

F1 =

(
aS (0) 0

0 0

)
, (4.3)

and

F2 =

(
−bQ(0) − cI(0) −cE(0)

cI(0)) cE(0) − f Q(0) − uR(0) + gS (0)

)
. (4.4)
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Now, let us calculate X from X = −F2 then

X =
(

bQ(0) + cI(0) cE(0)
−cI(0)) f Q(0) + uR(0) − cE(0) − gS (0)

)
. (4.5)

Now we have found Ad j.X, |X| and X as follows

Ad j.X =
(

f Q(0) + uR(0) − cE(0) − gS (0) −cE(0)
cI(0) −(bQ(0) + cI(0))

)
. (4.6)

|X| = ((bQ(0) + cI(0)).( f Q(0) + uR(0) − cE(0) − gS (0))) + ((cI(0)).(cE(0))) (4.7)

X−1 =
1
|X|

(Ad j.X)

F1X−1 =

(
αS (0) 0

0 0

)
.

(
f Q(0) + uR(0) − cE(0) − gS (0) −cE(0)

cI(0) −(bQ(0) + cI(0))

)
((bQ(0) + cI(0)).( f Q(0) + uR(0) − cE(0) − gS (0))) + ((cI(0)).(cE(0)))

. (4.8)

The Basic reproduction number is calculated from B0 = ρF1.X−1 where ρF1.Y−1 is the spectral
radius of the matrix F1.X−1 and is given by max(|λB0|) where, λ is the eigenvalue of the F1.X−1. The
eigenvalues of λB0 = F1.X−1 = (0.35503, 0.).

B0 = max(|λB0|) = 0.35503 is the basic reproduction number. Since the basic reproduction number
B0 < 1 the disease will not produce new secondary susceptible. □

4.2. Equilibrium points

The equilibrium points are found when the system undergoes no changes, i.e.,
S ′(t) = 0, E′(t) = 0, I′(t) = 0,Q′(t) = 0,R′(t) = 0. By our calculation, we found a disease-free
equilibrium point i.e., D f and a disease dependence equilibrium points, i.e., Dd

D f = (0, 0, 0, 0, 0),

where as if we want to find the diseases dependent equilibrium point, we have to choose which is
fully dependent on infection. We know that Susceptible (S), Exposed (E), Quarantined are partially
disease oriented if either they are symptomatic or asymptomatic but the populations I(t) and R(t)
are purely infection dependent. So we found that the disease dependent equilibrium points are
S 0, E0, I0,Q0,

bE0+ f I0
u . i.e., now,

D f = (0, 0, 0, 0, 0), Dd = (10, 10, 10, 10, 16.25).

4.3. Stability analysis

Theorem 4.2. The system with the (2.1) is locally asymptotically stable when all the eigenvalues of
characteristic polynomial obtained by the linearization of (2.1) are having negative real parts.
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Proof. Let us now consider the system (2.1). The linearized from of (2.1) can be presented using
Jacobian matrix.

J =



−aE(0) −aS (0) −gS (0) 0 0

aE(0) aS (0) − bQ(0) − cI(0) −cE(0) −bE(0) 0

gI(0) cI(0) cE(0) + gS (0)
− f Q(0) − uR(0) − f I0 −uI(0)

0 bQ(0) f I(0) bE(0)+
f I(0) − uR(0) −uQ(0)

0 0 uR(0) uR(0) uI(0) + uQ(0)



.

(4.9)

On solving the above matrix by substituting the values of S (0), E(0), I(0),Q(0),R(0) and also the
required values of a, b, c, u, f , g, we found that the characteristic polynomial as

λ5 + 0.32λ4 + 0.0638λ3 + 0.008008λ2 + 0.00043152λ + 1.13981 × 10−20 = 0.

The corresponding eigenvalues are found to be
(−0.0428429 + 0.163821i,−0.0428429 − 0.163821i,−0.1171557 + 0.036387i,−0.117157 −
0.036387i,−2.64139 × 10−17).

Since all the eigenvalues are having the negative real parts which is also shown in the Figure 6, the
system we considered is locally asymptotically stable.

SEIQR model-Complex Plane Portrait

-0.10 -0.08 -0.06 -0.04 -0.02
Re[λ]

-0.15

-0.10

-0.05

0.05

0.10

0.15

Im[λ]

Figure 6. Complex plane-SEIQR.

□

Theorem 4.3. The decomposed systems SIR, SEQR, SEIR, and SIQR of SEIQR model are at least
marginally stable when the model SEIQR is asymptotically stable.
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Proof. Let us now consider the decomposed system SIR (3.1) obtained from (2.1). The linearized from
of (3.1) can be presented using Jacobian matrix.

J =


−gI(0) −gS (0) 0
gI(0) gS (0) − uR(0) −uI(0)

0 uR(0) uI(0)

.
(4.10)

On solving the above matrix by substituting the values of S (0), I(0),R(0) and also the required values
of a, b, c, u, f , g, we found that the characteristic polynomial as

4.21515 × 10−21 − 0.0216λ − 0.16λ2 − λ3 = 0.

The corresponding eigenvalues are found to be

(−0.08 + 0.123288i,−0.08 − 0.123288i, 1.95146 × 10−19),

which is approximately equal to

(−0.08 + 0.123288i,−0.08 − 0.123288i, 0).

Since one of the eigenvalues is zero and the plot does not pass through the first or fourth quadrant
the system we considered is marginally stable, which is also shown in the Figure 7.

Decomposed SIR-Model-Complex Plane Portrait

-0.08 -0.06 -0.04 -0.02
Re[λ]

-0.10

-0.05

0.05

0.10

Im[λ]

Figure 7. Complex plane- SIR.

Let us now consider the decomposed system SEQR (3.2) obtained from (2.1). The linearized form
of (3.2) can be presented using Jacobian matrix.

J =


−aE(0) −aS (0) 0 0
aE(0) aS (0) − bQ(0) −bE(0) 0

0 bQ(0) bE(0) − uR(0) −uQ(0)
0 0 uR(0) +uQ(0)

.
(4.11)
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On solving the above matrix by substituting the values of S (0), E(0),Q(0),R(0) and also the required
values of a, b, c, u, f , g we found that the characteristic polynomial as

−7.75472 × 10−21 + 0.00048λ + 0.015λ2 + 0.16λ3 + λ4 = 0.

The corresponding eigenvalues are found to be

−0.054615 + 0.0804462i,−0.054615 − 0.0804462i,−0.0507701, 1.61557 × 10−17

which is approximately equal to

−0.054615 + 0.0804462i,−0.054615 − 0.0804462i,−0.0507701, 0.

Since one of the eigenvalues is zero and does not pass through first or fourth quadrant, the system
we considered is marginally stable,which is also shown in the Figure 8.

Decomposed SEQR-Model-Complex Plane Portrait

-0.05 -0.04 -0.03 -0.02 -0.01
Re[λ]

-0.05

0.05

Im[λ]

Figure 8. Complex plane-SEQR.

Let us now consider the decomposed system SEIR (3.3) obtained from (2.1). The linearized from
of (3.3) can be presented using the Jacobian matrix.

J =


−aE(0) −aS (0) 0 0

aE(0) − cI(0) aS (0) − cI(0) −cE(0) 0
0 cI(0) cE(0) − uR(0) −uI(0)
0 0 uR(0) +uI(0)

.
(4.12)

On solving the above matrix by substituting the values of S (0), E(0), I(0),R(0) and also the required
values of a, b, c, u, f , g we found that the characteristic polynomial as

2.35459 × 10−21 + 0.000672λ + 0.021λ2 + 0.16λ3 + λ4 = 0.

The corresponding eigenvalues are found to be

−0.0590719 + 0.112096i,−0.0590719 − 0.112096i,−0.0418563,−3.50385 × 10−18.
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Since all the eigenvalues are having negative real parts, which is also shown in the Figure 9, the
system we considered is locally asymptotically stable.

Decomposed SEIR-Model-Complex Plane Portrait
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-0.05

0.05

0.10

Im[λ]

Figure 9. Complex plane SEIR.

Let us now consider the decomposed system SIQR (3.4) obtained from (2.1). The linearized form
of (3.4) can be presented using the Jacobian matrix.

J =


−gI(0) −aS (0) 0 0
gI(0) gS (0) − f Q(0) − f I(0) 0

0 f Q(0) f I(0) − uR(0) −uQ(0)
0 0 uR(0) +uQ(0)

.
(4.13)

On solving the above matrix by substituting the values of S (0), I(0),Q(0),R(0) and also the required
values of a, b, c, u, f , g we found that the characteristic polynomial as

6.9205 × 10−21 + 0.000288λ + 0.0066λ2 + 0.16λ3 + λ4 = 0.

The corresponding eigenvalues are found to be

−0.125724,−0.0171378 + 0.044688i,−0.0171378 − 0.044688i,−2.40295 × 10−17.

Using all the Eqs (4.1)–(4.8) and other equations, we found that, since all the eigenvalues are
having negative real parts, which is also shown in the Figure 10, the system we considered is locally
asymptotically stable. Hence it is now proved that the decomposed systems of asymptotically stable
systems are at least marginally stable.
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Decomposed SIQR-Model-Complex Plane Portrait
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Figure 10. Complex plane- SIQR.

□

5. Numerical simulations

For our system (2.1) (SEIQR), and for the decomposed systems (3.1)–(3.4) (SIR, SEQR, SEIR, and
SIQR) the numerical simulations are presented below respectively in Figures 11–15.

SEIQR Model
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Infected

Quarantined

Recovered

20 40 60 80 100
t
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Figure 11. Plot of S, E, I, Q, and R.
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SIR Model

Susceptible

Infected

Recovered

10 20 30 40 50
t

10

20

30

40

S,I,R

Figure 12. Plot of S, I, and R.

SEQR Model
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Figure 14. Plot of S, E, I, and R
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Figure 15. Plot of S, E, I, and R.

6. Conclusion and discussion

We have done a very new kind of developing epidemic model i.e., a model with simultaneous
decomposed models. By theorem, we have proved that our SEIQR model is asymptotically stable. By
using another theorem we have established that the decomposed models are at least marginally stable or
almost asymptotically stable but they will never be unstable. Also, the numerical simulations are also
supporting our results. Since this study is very new to the literature on the epidemic models we hope
that this model will create much more impact in studying the diseases like HIV, cancer, etc., which will
create additional opportunistic diseases like TB. On that occasion, instead of the strategy quarantine as
a parameter, we need to include opportunistic diseases as a parameter. Also, we would like to consider
a new version of the modified SEIQR model in the future study since many recent works investigated
the SEIR model in a new way are very inspiring, e.g., Beddington–DeAngelis functional response
in [7], the generalized nonlinear incidence [8].
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