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1. Introduction and preliminaries

Banach [1] introduced one of the most essential Banach Contraction Principles. In 1993,
Czerwik [2] initiated the notion of a b-metric space and proved the fixed point theorem (FPT) in this
space. Aydi et al. [3] proved the common FPT for weak φ-contractions in b-metric space. The
existence and uniqueness of a fixed point of φ-contractions was proved by Pacurar [4]. In 2018, Zada
et al. [5] elaborated a FPT of a rational contraction. Geraghty [6] expanded the Banach contraction
principle in 1973 by factoring an auxiliary function of complete metric space.

One of the interesting results was given by Samet et al. [7] by defining α-ψ-contractive maps via
α-admissible mappings. After that, Cho et al. [8] introduced the α-GC (Geraghty contraction) type
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maps in metric space and proved some FPT’s of these functions. Popescu [9] developed α-GC maps
and proved the fixed point theorem in complete metric space. From the above work, Karapınar [11]
introduced generalized α-ψ-GC type maps, and see also [10, 12]. Furthermore, several authors proved
the common fixed point theorem in many metric spaces, see [13–19].

An orthogonality notion in metric spaces was introduced by Gordji et al. [20]. The theory of an
orthogonal set has general application in a number of mathematical areas, and there are many types of
orthogonality, see [21–29].

In this paper, we prove a FPT in an O-complete O-b-metric space (Ob-MS) with O-generalized α-
ψ-GC type maps. Moreover, an example and application to an integral equation are given to strengthen
our main results.

2. Preliminaries

Throughout this paper, the standard letter R is the set of all real numbers, R+ represents the set of
all positive real numbers, N denotes the set of all natural numbers, N0 denotes the set of all positive
natural numbers, and Z denotes the set of all integers. First, we recall some standard definitions and
other results that will be needed in the sequel.

In 1993, Czerwik [2] introduced a b-metric space as follows:

Definition 2.1. [2] Let Q be a non-void set. Let τ : Q × Q → R+ be called b-metric on Q if for all
θ, µ, ν ∈ Q the below conditions hold:

(i) 0 ≤ τ(θ, µ) and τ(θ, µ) = 0 iff θ = µ;

(ii) τ(θ, µ) = τ(µ, θ);

(iii) τ(θ, µ) ≤ g[τ(θ, ν) + τ(ν, µ)].

Then, (Q, τ) is said to be a b-metric space (with constant g ≥ 1). In 2014, Karapınar [11] introduced
the concept of α-regularity as follows:

Definition 2.2. [11] Let (Q, τ) be a b-metric space and α : Q×Q → Q be a map. Q is called α-regular
if for each sequence {θη} ∈ Q such that α(θη, θη+1) ≥ 1, ∀ η ∈ N and θη → θ ∈ Q as η → ∞, ∃ a
sub-sequence {θη(γ)} of {θη} with α(θη(γ), θ) ≥ 1, for all γ ∈ N.

The notion of an orthogonal set was presented by Gordji et al. [21].

Definition 2.3. [21] Let Q be a non empty set and ⊥⊆ Q × Q be a binary relation. If ⊥ holds with the
constraint

∃ θ0 ∈ Q : (∀ θ ∈ Q, θ ⊥ θ0) or (∀ θ ∈ Q, θ0 ⊥ θ),

then (Q,⊥) is said to be an orthogonal set.

Gordji et al. [21] presented the definition of an orthogonal sequence in 2017 as follows.

Definition 2.4. [21] Let (Q,⊥) be an orthogonal set. A sequence {θη}η∈N is called an orthogonal
sequence (O-sequence) if

(∀η, θη ⊥ θη+1) or (∀η, θη+1 ⊥ θη).
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Definition 2.5. A tripled (Q,⊥, τ) is called an Ob-MS if (Q,⊥) is an orthogonal set and (Q, τ) is a
b-metric space.

Definition 2.6. Let (Q,⊥, τ) be an Ob-MS.

(1) {µη}, an orthogonal sequence in Q, converges at a point µ if

lim
η→∞

(E(µη, µ)) = 0.

(2) {µη}, {µm} are orthogonal sequences in Q and are said to be orthogonal-Cauchy sequences if

lim
η,m→∞

(E(µη, µm)) < ∞.

Definition 2.7. [20] Let (Q,⊥, τ) be an Ob-MS. Then, E : Q → Q is said to be orthogonally continuous
in µ ∈ Q if, for each O-sequence {µη}η∈N in Q with µη → µ, we have E(µη) → E(µ). Also, E is said to
be orthogonal continuous on Q if E is orthogonal continuous in each µ ∈ Q.

Example 2.8. [20] Let Q = R and suppose µ ⊥ θ if

θ, µ ∈

(
η +

1
3
, η +

2
3

)
for some η ∈ Z or θ = 0.

It is clear that (Q,⊥) is an orthogonal set. A map E : Q → Q is defined as E(θ) = [θ]. Then, E is
orthogonal-continuous on Q, because if {θr} is an arbitrary O-sequence in Q such that {θr} converges to
θ ∈ Q, then the below cases hold:

Case 1: If θr = 0 ∀ r, then θ = 0 and E(θr) = 0 = E(θ).
Case 2: If θr0 , 0 for some r0, then there exists m ∈ Z such that θr ∈ (m + 1

3 ,m + 2
3 ), for all r ≥ r0.

Thus, θ ∈ [m + 1
3 ,m + 2

3 ], and E(θr) = m = E(θ).
This means that E is orthogonal-continuous on Q, but it is not continuous on Q.

The concept of orthogonal completeness in metric spaces is defined by Gordji et al. [21] as follows.

Definition 2.9. [21] Let (Q,⊥, τ) be an orthogonal metric space. Then, Q is said to be O-complete if
every orthogonal Cauchy sequence is convergent.

Definition 2.10. [21] Let (Q,⊥) be an orthogonal set. A function E : Q → Q is called orthogonal-
preserving if Eθ ⊥ Eµ whenever θ ⊥ µ.

Ramezani [26] introduced the notion of being orthogonal α-admissible as follows.

Definition 2.11. [26] Let E : Q → Q be a map and let α : Q × Q → R+ be a function. Then, E is said
to be O-α-admissible if ∀ θ, µ ∈ Q with θ ⊥ µ

α(θ, µ) ≥ 1 =⇒ α(Eθ,Eµ) ≥ 1.

In 2021, Gnanaprakasam et al. [25] introduced the notion of being orthogonal triangular
α-admissible, defined as below:
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Definition 2.12. [25] A self-map E : Q → Q is called O-triangular α-admissible if the following
holds:

(E1) E is O-α-admissible,
(E2) α(θ, ν) ≥ 1, α(ν, µ) ≥ 1 with θ ⊥ ν and ν ⊥ µ =⇒ α(θ, µ) ≥ 1,∀ θ, µ, ν ∈ Q.

Recently, Popescu [9] has developed the notion of a triangular α-orbital admissible mappings, and
we extend it to orthogonal in Ob-MS. The following definitions will be needed in the main result.

Definition 2.13. Let E : Q → Q be a map, and let there be a function α : Q × Q → R+. Then, E is
called O-α-orbital admissible if the below constraint holds:

(E3) α(θ,Eθ) ≥ 1 =⇒ α(Eθ,E2θ) ≥ 1,∀ θ ∈ Q.

Example 2.14. Let Q = {0, 1, 2, 3}, τ : Q × Q → R, τ(θ, µ) = |θ − µ|2,E : Q → Q such that
E0 = 0, E1 = 2, E2 = 1, E3 = 3. α : Q × Q → R, α(θ, µ) = 1 if
(θ, µ) ∈ {(0, 1), (0, 2), (1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (2, 3)} with θ ⊥ µ, and α(θ, µ) = 0 otherwise.

Since α(1,E1) = α(1, 2) = 1 and α(2,E2) = α(2, 1) = 1, we have that E is orthogonal α-orbital
admissible.

Definition 2.15. Let E : Q → Q and α : Q×Q → R+ be maps. Then, E is called O-triangular-α-orbital
admissible if E is O-α-orbital admissible and the following property holds:

(E4) ∀ θ, µ ∈ Q with θ ⊥ µ, α(θ, µ) ≥ 1 and α(µ,Eµ) ≥ 1 =⇒ α(θ,Eµ) ≥ 1.

Example 2.16. Let Q = R,Eµ = µ3 + 7
√
µ, and α(µ, θ) = µ5 − θ5 + 1, for all µ, θ ∈ Q with µ ⊥ θ. Then,

E is an O-triangular α-admissible mapping.

Lemma 2.17. Let E : Q → Q be an O-triangular-α-orbital admissible map. Consider that ∃ θ0 ∈ Q

such that θ0 ⊥ Eθ0 and α(θ0,Eθ0) ≥ 1. An O-sequence {θη} is defined by θη+1 = Eθη, ∀ η ∈ N with
θη ⊥ Eθη or Eθη ⊥ θη. Then, we get α(θη, θν) ≥ 1, ∀ η, ν ∈ N with η < ν.

In this section, inspired by the concept of generalized α-ψ-GC type maps defined by Afshari
et al. [28], we introduce a new orthogonal generalized α-ψ-GC type mapping and prove some FPT’s
for these contraction mappings in an O-complete Ob-MS.

3. Main results

Let Λ be a set of all increasing and continuous functions, and ψ ∈ Λ is defined as ψ : R+ → R+,
with ψ−1({0}) = {0}.

Let Γ be the family of all non-decreasing functions λ : [0,∞)→ [0, 1
g
) which satisfy the condition

lim
η→∞

λ(ζη) =
1
g

=⇒ lim
η→∞

ζη = 0 for some g ≥ 1.

First, we explain the definition of an O-generalized α-ψ-GC type(A) map in an O-complete Ob-MS.

Definition 3.1. Let (Q,⊥, τ) be an O-complete Ob-MS, and let there be a map E : Q → Q. E is called
an O-generalized α-ψ-GC type(A) map whenever ∃ α : Q × Q → R+, and, for L ≥ 0 such that

M(θ, µ) = max
{
τ(θ, µ), τ(θ,Eθ), τ(µ,Eµ),

τ(θ,Eµ) + τ(µ,Eθ)
2g

}
,
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N(θ, µ) = min{τ(θ,Eθ), τ(µ,Eθ)},

we have

α(θ, µ)ψ(g3τ(Eθ,Eµ)) ≤ λ(ψ(M(θ, µ)))ψ(M(θ, µ)) + Lϑ(N(θ, µ)), (3.1)

for all θ, µ ∈ Q with θ ⊥ µ, where λ ∈ Γ and ψ, ϑ ∈ Λ.

λ(ψ(M(θ, µ))) <
1
g

for all θ, µ ∈ Q, with θ ⊥ µ and θ , µ.

Now, we generalize and improve our FPT from Afshari et al. [28] by introducing the notion of an
O-generalized α-ψ-GC type(A) map in O-complete Ob-MS.

Theorem 3.2. Let (Q,⊥, τ) be an O-complete Ob-MS, and E : Q → Q satisfies the below properties:

(i) E is orthogonal-preserving,

(ii) E is an O-generalized α-ψ-GC type(A) map,

(iii) E is O-triangular α-orbital admissible,

(iv) ∃ θ0 ∈ Q such that θ0 ⊥ Eθ0 and α(θ0,Eθ0) ≥ 1,

(v) E is O-continuous.

Then, E has a UFP (unique fixed point).

Proof. By the condition (iv), there exists θ0 ∈ Q such that

θ0 ⊥ E(θ0) or E(θ0) ⊥ θ0 and α(θ0 ⊥ Eθ0) ≥ 1.

Let

θ1 = E(θ0), θ2 = E(θ1) = E2(θ0), ......., θη = E(θη−1) = Eη(θ0), θη+1 = E(θη) = Eη+1(θ0), ∀ η ∈ N ∪ {0}.

If θη∗ = θη∗+1 for η∗ ∈ N ∪ {0}, then θη∗ is a fixed point of E. Therefore, the proof is complete.
So, we consider θη , θη+1. Thus, we have τ(Eθη,Eθη+1) > 0. Since E is O-preserving, we get

θη ⊥ θη+1 or θη+1 ⊥ θη, ∀ η ∈ N ∪ {0}.

We construct an O-sequence {θη}. Since E is an O-generalized α-ψ -GC type(A) map, we get

θη+1 = Eθη, ∀ η ∈ N0.

Since the map E is an orthogonal triangular α-orbital admissible, by Lemma 2.17, we get

α(θη, θη+1) ≥ 1, ∀ η ∈ N0. (3.2)

By letting θ = θη−1 and µ = θη in the inequality (3.1), using (3.2) and that ψ is an ascending map, we
get
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ψ(τ(θη, θη+1)) = ψ(τ(Eθη−1,Eθη))
≤ α(θη−1, θη)ψ(g3(τ(Eθη−1,Eθη))
≤ λ(ψ(M(θη−1, θη)))ψ(M(θη−1, θη)) + Lϑ(N(θη−1, θη)), (3.3)

for all η ∈ N, where

M(θη−1, θη) = max
{
τ(θη−1, θη), τ(θη−1,Eθη−1), τ(θη,Eθη),

τ(θη−1,Eθη) + τ(θη,Eθη−1)
2g

}
= max

{
τ(θη−1, θη), τ(θη−1, θη), τ(θη, θη+1),

τ(θη−1, θη+1) + τ(θη, θη)
2g

}
= max

{
τ(θη−1, θη), τ(θη, θη+1),

τ(θη−1, θη+1)
2g

}
and

N(θη−1, θη) = min{τ(θη−1,Eθη−1), τ(θη,Eθη−1)} = min{τ(θη−1, θη), τ(θη, θη)} = 0. (3.4)

Since
τ(θη−1, θη+1)

2g
≤
g[τ(θη−1, θη) + τ(θη, θη+1)]

2g
≤ max{τ(θη−1, θη) + τ(θη, θη+1)},

we get

M(θη−1, θη) ≤ max{τ(θη−1, θη), τ(θη, θη+1)}. (3.5)

Taking (3.5) and (3.4) into account, (3.3) yields

ψ(τ(θη, θη+1)) ≤ ψ(g3τ(θη, θη+1))
≤ α(θη−1, θη)ψ(g3τ(θη, θη+1))
≤ λ(ψ(M(θη−1, θη)))ψ(max{τ(θη−1, θη), τ(θη, θη+1)}). (3.6)

If η ∈ N, we get max{τ(θη−1, θη), τ(θη, θη+1)} = τ(θη, θη+1), and then by (3.6), we get

ψ(τ(θη, θη+1)) ≤ λ(ψ(M(θη−1, θη)))ψ(τ(θη, θη+1)) <
1
g
ψ(τ(θη, θη+1)) < ψ(τ(θη, θη+1)),

which is a contradiction. Thus, from (3.6) we conclude that

ψ(τ(θη, θη+1)) ≤ λ(ψ(M(θη−1, θη)))ψ(τ(θη−1, θη))

<
1
g
ψ(τ(θη−1, θη)) < ψ(τ(θη−1, θη)), ∀ η ∈ N. (3.7)

Hence, {ψ(τ(θη, θη+1))} is a positive non-increasing sequence. Since ψ is ascending, the sequence
{τ(θη, θη+1)} is decreasing. Consequently, ∃ ε ≥ 0 such that lim

η→∞
τ(θη, θη+1) = ε. We claim that ε = 0.

Suppose, on the contrary, that

lim
η→∞

τ(θη, θη+1) = ε � 0.
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Since g ≥ 1, (3.7) can be approximated as

1
g
ψ(τ(θη, θη+1)) ≤ ψ(τ(θη, θη+1)) ≤ λ(ψ(M(θη−1, θη)))ψ(τ(θη−1, θη)). (3.8)

With regard to (3.2), in (3.8) we get

1
g

ψ(τ(θη, θη+1))
ψ(τ(θη−1, θη))

≤ λ(ψ(M(θη−1, θη))) <
1
g
.

This yields limη→∞ λ(ψ(M(θη−1, θη))) =
1
g
. Since λ ∈ Γ, we get limη→∞ ψ(M(θη−1, θη)) = 0. We simplify

that:

lim
η→∞

ψ(τ(θη, θη+1)) = 0.

Thus, by the fact that τ(θη, θη+1) → ε and the continuity of ψ, we get ψ(ε) = 0. Since ψ−1({0}) = {0},
we have ε = 0, and this is a contradiction. Thus, we get

lim
η→∞

τ(θη, θη+1) = 0. (3.9)

Now, we claim that limπ,η→∞ τ(θη, θπ) = 0.
Consider, on the contrary, that ∃ δ � 0, and orthogonal subsequences {θπj}, and {θηj} of {θη}, with

ηj � πj ≥ j, such that

τ(θπj , θηj) ≥ δ. (3.10)

Additionally, for every πj, we choose the smallest integer ηj to fulfill (3.10), and ηj � πj ≥ j. Then, we
get

τ(θπj , θηj−1) < δ. (3.11)

From (3.10) and the condition (iii) in Definition 2.1, we get

δ ≤ τ(θηj , θπj) ≤ gτ(θηj , θηj+1) + gτ(θηj+1 , θπj)
≤ gτ(θηj , θηj+1) + g2τ(θηj+1 , θπj+1) + g2τ(θπj+1 , θπj). (3.12)

Taking j→ ∞ and (3.9) into account, Eq (3.12) yields

δ ≤ gτ(θηj , θηj+1) + g2τ(θηj+1 , θπj+1) + g2τ(θπj+1 , θπj)
≤ lim
j→∞

(gτ(θηj , θηj+1) + g2τ(θηj+1 , θπj+1) + g2τ(θπj+1 , θπj))

≤ g2 lim
j→∞

(τ(θηj+1 , θπj+1)),

δ

g2
≤ lim sup

j→∞

τ(θηj+1 , θπj+1), (3.13)
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where lim
j→∞

τ(θηj , θηj+1) = lim
j→∞

τ(θπj+1 , θπj) = 0. By Lemma 2.17, α(θπj , θηj) ≥ 1. Followed by (3.1), we get

ψ(τ(θηj+1 , θπj+1)) = ψ(τ(Eθηj ,Eθπj))
≤ ψ(g3τ(Eθηj ,Eθπj))
≤ α(θπj , θηj)ψ(g3τ(Eθηj ,Eθπj))
≤ λ(ψ(M(θηj , θπj)))ψ(M(θηj , θπj)) + Lϑ(τ(θπj ,Eθηj)), (3.14)

where

M(θηj , θπj) = max
{
τ(θηj , θπj), τ(θηj ,Eθηj), τ(θπj ,Eθπj),

τ(θηj ,Eθπj) + τ(θπj ,Eθηj)
2g

}
= max

{
τ(θηj , θπj), τ(θηj , θηj+1), τ(θπj , θπj+1),

τ(θηj , θπj+1) + τ(θπj , θηj+1)
2g

}
and

N(θηj , θπj) = min{τ(θηj ,Eθηj), τ(θπj ,Eθηj)}
= min{τ(θηj , θηj+1), τ(θπj , θηj+1)}.

Notice that

τ(θηj , θπj+1) + τ(θπj , θηj+1)
2g

≤
g[τ(θηj , θπj) + τ(θπj , θπj+1)] + g[τ(θπj , θηj) + τ(θηj , θηj+1)]

2g
(3.15)

and

τ(θηj , θπj) ≤ g[τ(θηj , θηj−1) + τ(θηj−1 , θπj)] < gτ(θηj , θηj−1) + gδ. (3.16)

Taking (3.11), (3.15) and (3.16) into account, we find that

lim sup
j→∞

M(θηj , θπj) ≤ gδ, (3.17)

lim sup
j→∞

N(θηj , θπj) = 0. (3.18)

By allowing the upper limit to be j→ ∞ and using constraint (E4), (3.13), (3.17) and (3.18), inequality
(3.14) becomes

1
g
ψ(gδ) ≤ ψ(gδ) ≤ lim sup

j→∞

ψ(g3τ(θηj+1 , θπj+1))

≤ lim sup
j→∞

α(θπj , θηj)ψ(g3τ(θηj+1 , θπj+1))

≤ lim sup
j→∞

α(θπj , θηj)ψ(g3τ(Eθηj ,Eθπj))

≤ lim sup
j→∞

[λ(ψ(M(θηj , θπj)))ψ(M(θηj , θπj)) + Lϑ(N(τ(θηj , θπj)))]
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≤ ψ(gδ) lim sup
j→∞

λ(ψ(M(θηj , θπj)))

≤
1
g
ψ(gδ).

Then,

lim sup
j→∞

λ(ψ(M(θηj , θπj))) =
1
g
.

Due to the fact that λ ∈ Γ, we get

lim sup
j→∞

λ(ψ(M(θηj , θπj))) = 0.

Thus, we assume that

lim
j→∞

λ(ψ(τ(θηj , θπj))) = 0.

Consequently, due to the continuity of ψ and ψ−1({0}) = {0}, we obtain

lim
j→∞

τ(θηj , θπj) = 0,

which contradicts (3.10). Therefore, {θη} is a O-Cauchy sequence in Q. Since Q is an O-complete Ob-
MS, ∃ θ∗ ∈ Q such that limη→∞ θη = θ∗. The map E is O-continuous, and it is obvious that Eθ∗ = θ∗.
Hence, θ∗ is a fixed point of E.

Now, we prove θ∗ is a UFP of E. Suppose µ∗ is another fixed point of E. If θη → µ∗ as η → ∞, we
get θ∗ = µ∗.

If lim
η→∞
{θη} 9 µ∗, there is an orthogonal sub-sequence {θηγ} such that Eθηγ , µ

∗, ∀ γ ∈ N. By the

choice of θ0, we get

θ0 ⊥ µ
∗ (or) µ∗ ⊥ θ0.

Since E is O-preserving and Eηµ∗ = µ∗, for all η ∈ N, we get

Eηθ0 ⊥ µ
∗ (or) µ∗ ⊥ Eηθ0, ∀ η ∈ N.

Since E is an O-generalized α-ψ-GC type(A) map, we get

ψ(τ(Eηγθ0, µ
∗)) = ψ(τ(Eηγθ0,Eηγµ∗)) ≤ ψ(τ(θ0, µ

∗)), γ ∈ N.

This implies ψ(τ(Eηγθ0, µ
∗)) → −∞ as γ → ∞. This yields that θη → µ∗ as η → ∞, which is a

contradiction. Hence, E has a UFP. �

We replace the continuity of map E in the above theorem by a suitable condition on Q.

Theorem 3.3. Let (Q,⊥, τ) be an O-complete O-b-metric space, and E : Q → Q fulfills the following
properties:
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(i) E is orthogonal preserving,

(ii) E is an O-generalized α-ψ -GC type(A) map,

(iii) E is O-triangular-α orbital admissible,

(iv) ∃ θ0 ∈ Q such that θ0 ⊥ Eθ0 and α(θ0,Eθ0) ≥ 1,

(v) E is O-α- regular.

Then, E has a UFP.

Proof. From the proof of Theorem 3.2, we conclude that lim
η→∞

θη = θ∗. If Q is O-α-regular, then

α(θη, θη+1) ≥ 1, ∃ a subsequence {θηγ} of {θη} such that

α(θηγ , θ
∗) ≥ 1, ∀ γ ∈ N. (3.19)

By the (iii) in Definition 2.1, we get

τ(θ∗,Eθ∗) ≤ gτ(θ∗, θηγ+1) + gτ(θηγ+1 ,Eθ
∗) = gτ(θ∗, θηγ+1) + gτ(Eθηγ ,Eθ

∗).

Letting γ → ∞, yields

τ(θ∗,Eθ∗) ≤ lim inf
γ→∞

gτ(Eθηγ ,Eθ
∗). (3.20)

Using that ψ ∈ Λ, (3.19) and (3.20), we have

ψ(g2τ(θ∗,Eθ∗)) ≤ lim
γ→∞

ψ(g3τ(Eθηγ ,Eθ
∗))

≤ lim
γ→∞

α(θηγ+1 , θ
∗)ψ(g3τ(Eθηγ ,Eθ

∗))

≤ lim
γ→∞

[λ(ψ(M(θηγ , θ
∗)))ψ(M(θηγ , θ

∗)) + Lϑ(N(θηγ , θ
∗))]. (3.21)

We have

M(θηγ , θ
∗) = max

{
τ(θηγ , θ

∗), τ(θηγ ,Eθηγ), τ(θ∗,Eθ∗),
τ(θηγ ,Eθ

∗) + τ(θ∗,Eθηγ)
2g

}
= max

{
τ(θηγ , θ

∗), τ(θηγ , θηγ+1), τ(θ∗,Eθ∗),
τ(θηγ ,Eθ

∗) + τ(θ∗, θηγ+1)
2g

}
and

N(θηγ , θ
∗) = min{τ(θηγ ,Eθηγ), τ(θ∗,Eθηγ)} = min{τ(θηγ , θηγ+1), τ(θ∗, θηγ+1)}.

Recall that

τ(θηγ ,Eθ
∗) + τ(θ∗, θηγ+1)

2g
≤
gτ(θηγ , θ

∗) + gτ(θ∗,Eθ∗) + τ(θ∗, θηγ+1)
2g

.
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Then, by (3.9), we get

lim sup
γ→∞

τ(θηγ ,Eθ
∗) + τ(θ∗, θηγ+1)

2g
≤
τ(θ∗,Eθ∗)

2
.

When γ → ∞, we deduce

lim
γ→∞

M(θηγ , θ
∗) = τ(θ∗,Eθ∗),

lim
γ→∞
N(θηγ , θ

∗) = 0.

Since λ(ψ(M(θηγ , θ
∗))) ≤ 1

g
, for all γ ∈ N, from (3.21), we obtain

ψ(g2τ(θ∗,Eθ∗)) ≤
1
g
ψ(τ(θ∗,Eθ∗)) ≤ ψ(τ(θ∗,Eθ∗)).

Hence, τ(θ∗,Eθ∗) = 0, that is Eθ∗ = θ∗. Therefore, E has a fixed point.
Now, we prove θ∗ is a UFP of E. Suppose µ∗ is another fixed point of E. If θη → µ∗ as η → ∞, we

get θ∗ = µ∗.
If lim

η→∞
{θη}9 µ∗, there is a subsequence {θηγ} such that Eθηγ , µ

∗, ∀ γ ∈ N. By the choice θ0, we get

θ0 ⊥ µ
∗ or µ∗ ⊥ θ0.

Since E is O-preserving and Eηµ∗ = µ∗, ∀ η ∈ N, we get

Eηθ0 ⊥ µ
∗ or µ∗ ⊥ Eηθ0, ∀ η ∈ N.

Since E is an O-generalized α-ψ -GC type(A) map, we get

ψ(τ(Eηγθ0, µ
∗)) = ψ(τ(Eηγθ0,Eηγµ∗)) ≤ ψ(τ(θ0, µ

∗)), γ ∈ N.

This implies ψ(τ(Eηγθ0, µ
∗)) → −∞ as γ → ∞. This yields that θη → µ∗ as η → ∞, and this is

contradiction. Hence, E has a UFP. �

We initiate the definition of an O-generalized α-ψ-GC type(B) map as follows:

Definition 3.4. Let (Q,⊥, τ) be an O-complete Ob-MS and let E : Q → Q be a map. E is called
O-generalized α-ψ-GC map of type(B) whenever ∃ α : Q × Q → R+ such that for all θ, µ ∈ Q with
θ ⊥ µ or µ ⊥ θ,

α(θ, µ)ψ(g3τ(Eθ,Eµ)) ≤ λ(ψ(M(θ, µ)))ψ(M(θ, µ)), (3.22)

where

M(θ, µ) = max
{
τ(θ, µ), τ(θ,Eθ), τ(µ,Eµ),

τ(θ,Eµ) + τ(µ,Eθ)
2g

}
,

λ ∈ Γ and ψ ∈ Λ.
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Now, we generalize and improve our fixed point theorem from Afshari et al. [28] by introducing the
notion of an O-generalized α-ψ-GC type(B) map in O-complete Ob-MS.

Theorem 3.5. Let (Q,⊥, τ) be an O-complete Ob-MS, and let E : Q → Q satisfy the below properties:

(i) E is orthogonal preserving,

(ii) E is an O-generalized α-ψ -GC map of type(B),

(iii) E is O-triangular-α orbital admissible,

(iv) ∃ θ0 ∈ Q such that θ0 ⊥ Eθ0 and α(θ0,Eθ0) ≥ 1,

(v) E is O-continuous or Q is O-α-regular.

Then, E has a UFP.

Now, we provide the example for Theorem 3.3.

Example 3.6. Let Q be a set of Lebesgue measurable functions [0,1] such that
∫ 1

0
|θ(ζ)|τζ < 1. Define

a relation ⊥ on Q by

θ ⊥ µ i f θ(ζ)µ(ζ) ≤ θ(ζ) ∨ µ(ζ),

where θ(ζ) ∨ µ(ζ) = θ(ζ) or µ(ζ). Define τ : Q × Q → R+ by

τ(θ, µ) =

(∫ 1

0
|θ(ζ) − µ(ζ)|τζ

)2

.

Then, (Q, τ) is an O-complete Ob-MS with g = 2. The operator E : Q × Q → R+ is defined by

Eθ(ζ) =
1
4

In(1 + |θ(ζ)|).

Consider the map α : Q × Q → R+, with λ : R+ → [0, 1
2 ) and ψ : R+ → R+, defined by

α(θ, µ) =

1, i f θ(ζ) ≥ µ(ζ), ∀ ζ ∈ [0, 1],
0, otherwise.

λ(ζ) =
(In(1 +

√
ζ))2

2ζ
and ψ(ζ) = ζ.

Obviously, ψ ∈ Λ, and λ ∈ Γ. Moreover, E is an O-triangular-α orbital admissible map, and
α(1,E1) ≥ 1.

Now, we prove E is an O-generalized α-ψ-GC type(A) map. Certainly, ∀ ζ ∈ [0, 1], we get

√
α(θ(ζ), µ(ζ))ψ(g3τ(Eθ(ζ),Eµ(ζ)) ≤

√
23

( ∫ 1

0
|Eθ(ζ) − Eµ(ζ |τζ

)2

≤ 2
√

2
∫ 1

0

∣∣∣∣14 In(1 + |θ(ζ)|) −
1
4

In(1 + |µ(ζ)|)
∣∣∣∣τζ
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=
1
√

2

∫ 1

0

∣∣∣∣In
(1 + |θ(ζ)|
1 + |µ(ζ)|

)∣∣∣∣τζ
=

1
√

2

∫ 1

0

∣∣∣∣In
(
1 +
|θ(ζ)| − |µ(ζ)|

1 + |µ(ζ)|

)∣∣∣∣τζ
≤

1
√

2

∫ 1

0
|In(1 + |θ(ζ)| − |µ(ζ)|)|τζ,

and we have ∫ 1

0
|In(1 + |θ(ζ)| − |µ(ζ)|)|τζ ≤ In

( ∫ 1

0
|(1 + |θ(ζ)| − |µ(ζ)|)|τζ

)
= In

(
1 +

∫ 1

0
|θ(ζ) − µ(ζ)|τζ

)
.

Therefore, √
α(θ(ζ), µ(ζ))ψ(g3τ(Eθ(ζ),Eµ(ζ)) ≤

1
√

2
In

(
1 +

∫ 1

0
|θ(ζ) − µ(ζ)|τζ

)
≤

1
√

2
In(1 +

√
τ(θ, µ) ).

So, we get

α(θ(ζ), µ(ζ))ψ(g3τ(Eθ(ζ),Eµ(ζ)) ≤
1
2

(In(1 +
√
τ(θ, µ) ))2

≤
1
2

(In(1 +
√

M(θ, µ) ))2

≤
(In(1 +

√
M(θ, µ) ))2

2M(θ, µ)
M(θ, µ)

= λ(ψ(M(θ, µ)))ψ(M(θ, µ)).

Hence by Theorem 3.3, we get that E has a UFP.

4. Application

As an application of Theorem 3.2, we find an existence and uniqueness result of the following type
of integral equation:

ω(θ) = λ(θ) +

∫ a

0
E(θ, s)H(θ, s, ω(s))ds, θ ∈ [0, a], a > 0. (4.1)

Consider Q = C([0, a],R) to be the real continuous functions on [0, a], and a mapping D : Q → Q is
defined by

τ(ω, µ) = max
0≤θ≤a

|ω(θ) − µ(θ)|2, ω, µ ∈ Q. (4.2)

Obviously, (Q, τ) is a complete b-metric space, and ω(θ) is a solution of integral equation (4.1) iff ω(θ)
is a fixed point ofD.
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Theorem 4.1. Suppose the following.

(1) The mappings E : [0, a] × R → R+, H : [0, a] × R → R, and λ : [0, a] → R are O-continuous
functions.

(2) There exists K > 0, such that, for all θ, s ∈ [0, a] and ω, µ ∈ Q,

|H(θ, s, ω(s)) −H(θ, s, µ(s))| ≤

√
e−K(ω,µ)K(ω, µ)

2
. (4.3)

(3) For all θ, s ∈ [0, a], we have

max
∫ a

0
E(θ, s)2ds ≤

1
a
.

Then, (4.1) has a unique solution in Q.

Proof. Define the O-relation ⊥ on Q by

ω⊥µ ⇐⇒ ω(θ)µ(θ) ≥ ω(θ) or ω(θ)µ(θ) ≥ µ(θ), ∀ θ ∈ [0, a].

Define τ : Q × Q → R+, given by

τ(ω, µ) = max
0≤θ≤a

|ω(θ) − µ(θ)|2,

for all ω, µ ∈ Q. It is easy to see that, (Q,⊥, τ) is an O-complete Ob-MS. For all ω, µ ∈ Q with ω⊥µ
and θ ∈ [0, a], we have

D(ω(θ)) = λ(θ) +

∫ a

0
E(θ, s)H(θ, s, ω(s))ds ≥ 1. (4.4)

Accordingly, [(Dω)(θ)][(Dµ)(θ)] ≥ (Dµ)(θ), and so (Dω)(θ)⊥(Dµ)(θ). Then,D is ⊥-preserving.
Let ω, µ ∈ Q with ω⊥µ. Suppose thatD(ω) , D(µ). For each θ ∈ [0, a], we have

τ(Dω,Dµ) = max
θ∈[0,a]

|Dω(θ) −Dµ(θ)|2

= max
θ∈[0,a]

{∣∣∣∣λ(θ) +

∫ a

0
E(θ, s)H(θ, s, ω(s))ds − λ(θ) −

∫ a

0
E(θ, s)H(θ, s, µ(s))ds

∣∣∣∣2}
= max

θ∈[0,a]

{∣∣∣∣ ∫ a

0
E(θ, s)(H(θ, s, ω(s)) −H(θ, s, µ(s)))ds

∣∣∣∣2}
≤ max

θ∈[0,a]

{ ∫ a

0
E(θ, s)2ds

∫ a

0
|H(θ, s, ω(s)) −H(θ, s, µ(s))|2ds

}
≤

1
a

∫ a

0

∣∣∣∣√e−K(ω,µ)K(ω, µ)
2

∣∣∣∣2ds

≤
e−K(ω,µ)

2
K(ω, µ).

Thus,

τ(Dω,Dµ) ≤ γ(K(ω, µ))K(ω, µ),

for all ω, µ ∈ Q. Therefore, all the conditions of Theorem (3.2) are satisfied. Hence, (4.1) has a unique
solution. �
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Example 4.2. Consider the integral equation as follows:

g(θ) = sin(πθ2) −
θ2

π
+

∫ x

0
θ2σg(σ)δσ, 0 ≤ x ≤ 1. (4.5)

Clearly, the above Eq (4.5) satisfies the assumption of Theorem 4.1, that is, sin(πθ2) −
θ2

π
is an

orthogonal continuous function on [0, 1]. Kernel K(θ, σ) is orthogonal continuous on
R = {(θ, σ), 0 < θ, σ < 1}.

The solution will be determined from Eq (4.5) by the fixed point iteration method:

gϑ+1(θ) = sin(πθ2) −
θ2

π
+

∫ x

0
θ2σgϑ(σ)δσ, 0 ≤ x ≤ 1.

By choosing sin(πθ2) −
θ2

π
as the initial function, we can apply the fixed point iteration method to get

a numerical solution:

g1(θ) = sin(πθ2) −
θ2

π
+

∫ x

0
θ2σg0(σ)δσ

= sin(πθ2) −
θ2

π
+

∫ x

0
θ2σ sin(πσ2)δσ

= sin(πθ2) −
θ2

π
+ θ2 1

2π
(1 − cos(πθ2)),

g2(θ) = sin(πθ2) −
θ2

π
+

∫ x

0
θ2σg1(σ)δσ

= sin(πθ2) −
θ2

π
+

∫ x

0
θ2σ

(
sin(πσ2) −

σ2

π
+ σ2 1

2π
(1 − cos(πσ2))

)
δσ

= sin(πθ2) −
θ2

π
+

θ2

8π3

(
− 4π2 − 2 + 4π2 cos(πθ2) + π2θ4 + 2θ2π sin(πθ2) + 2 cos(πθ2)

)
,

g3(θ) = sin(πθ2) −
θ2

π
+

∫ x

0
θ2σg2(σ)δσ

= sin(πθ2) −
θ2

π
+

∫ x

0
θ2σ

(
sin(πσ2) −

σ2

π
+
σ2

8π2 (−4π2 − 2 + 4π2 cos(πσ2) + σ4π2

+ 2θ2π sin(πθ2) + 2 cos(πθ2))
)
δσ

= sin(πθ2) −
θ2

π
+ θ2

{
−

1
64π6

(
− 32π5 − 16π3 − 24π + 32π5 cos(πθ2) + 8θ4π5 − 4θ4π3

+ 16θ2π4
(

sin(πθ2) + 16π3 cos(πθ2) + θ8π5 − 8θ4π3 cos(πθ2) + 24θ2π2 sin(πθ2)

+ 24π cos(πθ2)
))}

.

Consider that for |θ| ≤ 1, an O-sequence {gϑ(θ)} will converge to g(θ) = sin(πθ2) −
θ2

π
.
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Error calculation for an approximate solution compared to an exact solution is given in Figure 1.
Table 1 shows that the error of an approximate solution compared to an exact solution is relatively
small.

Table 1. Comparison of an approximate solution and an exact solution.

θ j approximate solution exact solution error

0.000 0.000 0.000 0.000
0.100 0.023 0.028 0.005
0.200 0.102 0.113 0.011
0.300 0.234 0.250 0.016
0.400 0.412 0.431 0.019
0.500 0.609 0.628 0.018
0.600 0.779 0.790 0.011
0.700 0.848 0.844 0.004
0.800 0.730 0.701 0.029
0.900 0.358 0.304 0.054
1.000 -0.251 -0.318 0.067

Figure 1. Graph of an approximate solution compare to an exact solution with h=0.1.

5. Conclusions

In this paper, we proved fixed point theorems for O-generalized α-ψ-GC type contraction mappings
in an O-complete Ob-MS. Furthermore, we presented some examples to strengthen our main results.
Also, we provided an application to the existence of the solution of an integral equation and we have
compared the approximate solution with the exact solution.

Khalehoghli et al. [30, 31] presented a real generalization of the mentioned Banach’s contraction
principle by introducing R-metric spaces, where R is an arbitrary relation on L. We note that in a
special case, R can be considered as R = �[partially ordered relation], R = ⊥[orthogonal relation], etc.
If one can find a suitable replacement for a Banach theorem that may determine the values of fixed

AIMS Mathematics Volume 8, Issue 3, 5899–5917.
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points, then many problems can be solved in this R-relation. This will provide a structural method for
finding a value of a fixed point. It is an interesting open problem to study the fixed-point results on
R-complete R-metric spaces.
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