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Abstract: The aims of this study is to define a cubic fuzzy set based logarithmic decision-
making strategy for dealing with uncertainty. Firstly, we illustrate some logarithmic operations for
cubic numbers (CNs). The cubic set implements a more pragmatic technique to communicate the
uncertainties in the data to cope with decision-making difficulties as the observation of the set. In fuzzy
decision making situations, cubic aggregation operators are extremely important. Many aggregation
operations based on the algebraic t-norm and t-conorm have been developed to cope with aggregate
uncertainty expressed in the form of cubic sets. Logarithmic operational guidelines are factors that help
to aggregate unclear and inaccurate data. We define a series of logarithmic averaging and geometric
aggregation operators. Finally, applying cubic fuzzy information, a creative algorithm technique for
analyzing multi-attribute group decision making (MAGDM) problems was proposed. We compare the
suggested aggregation operators to existing methods to prove their superiority and validity, and we find
that our proposed method is more effective and reliable as a result of the comparison and sensitivity
analysis.
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1. Introduction

Multi attribute group decision making (MAGDM) is quite an interesting and eminent field of
research attempting to produce arguments and techniques that determine the most favorable alternative
from a set of alternatives. It is challenging for decision makers to give accurate information about
options due to the complexity of the socioeconomic environment and their lack of expertise and
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judgment. Classical set theory deals with the information of type yes or no, that is, whether an element
belongs to a set or not. On the other hand, real life situations may be imprecise or unclear, and there
may be possibility other than yes or no. To tackle vague or imprecise information, in 1965, Zadeh [36]
extended the concept of classical sets in the form of fuzzy sets. Fuzzy set theory permits a membership
function valued in the interval [0, 1]. After that, Atanassov [1] presented the intuitionistic fuzzy set
(IFS) as a generalization of the fuzzy set. The IFS has both a positive and a negative membership
degree, and that the sum of both these degrees is less than or equal to one.

Analysis of clusters [6], medical diagnosis problems with decision-making (DM) [14] and pattern
recognition [8] are some of the fields that have used IFSs. In the success of IFSs, numerous researchers
have contributed. Chen et al. [7] defined a method for the use of intuitionistic fuzzy numbers (IFNs)
and interval valued intuitionistic fuzzy (IVIF) numbers in aggregation processes and to address DM
challenges. The intuitionistic fuzzy Hamacher aggregation procedures were cited by Huang as being
advantageous in instances involving decision-making. Khan et al. [22] defined a solution of linear and
quadratic equations based on triangular linear Diophantine fuzzy numbers. Alaoui et al. [5] defined a
novel analysis of fuzzy physical models by generalized fractional fuzzy operators.

In order to combine intuitionistic fuzzy data and make decisions, a variety of intuitionistic fuzzy
aggregation operators have been proposed for combining different options [20]. The cumulative
positive and negative membership degrees of the decision-maker may occasionally exceed one. For
example, if a decision-maker assigns a positive membership degree of 0.3 and a negative membership
degree of 0.9, 0.3 + 0.9 = 1.2 > 1. Intuitionistic fuzzy sets are unable to handle this situation.
Yager [34] developed the Pythagorean fuzzy set (PyFS), which includes both positive and negative
membership degrees but whose square sum is equal to or less than one, to address this issue.
0.32 + 0.92 = 0.9 corresponds to the above-mentioned example. PyFS is a generalization of IFS. PyFS
resolves inaccurate and uncertain information in actual MADM problems better than IFS. Since the
development of PyFS, many aggregation operators have been established for Pythagorean fuzzy Dombi
aggregation operators and their application in Pythagorean fuzzy multiple criteria group decision
making and decision support systems [20, 37]. In multiple attribute group decision-making, some
generalized Pythagorean fuzzy Bonferroni mean aggregation operations are used [38]. Ren et al. [31]
defined the Pythagorean fuzzy TODIM approach to multi-criteria decision making. Gou et al. [12]
proposed some properties of continuous Pythagorean fuzzy information.

Zeng et al. [39] introduced the exponential intuitionistic divergence measure, envelopment analysis,
preference fusion and membership improvement of intuitionistic fuzzy numbers and discussed its
potential application in multi-criteria decision making in 2019. Garg et al. [13] discussed the
correlation measures for cubic m-polar fuzzy sets with applications. Ayub et al. [3] proposed cubic
Heronian mean Dombi aggregation operators and their application on the MADM problem. Qiyas
et al. [30] presented a novel approach of linguistic intuitionistic cubic hesitant variables and their
application in decision making.

In multi-attribute decision making, Hussain et al. [15] applied averaging operators based on
spherical cubic fuzzy numbers. Decision support systems use cubic picture fuzzy aggregation
operators [28]. Decision-making including distance measure and induced aggregation operators, as
well as decision-making involving distance measures and linguistic aggregation operators are discussed
in [24]. Fuzzy generalized hybrid aggregation operators and their application in fuzzy decision
making, and fuzzy induced generalized aggregation operators and its application in multi-criteria
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decision making are discussed in [25, 27]. For comparison, the author studied the cubic fuzzy Einstein
aggregation operations and their application to decision-making [10]. Multi-attribute decision-making
problems were solved under a cubic intuitionistic fuzzy set environment, based on Bonferroni mean
operators [18], and cubic intuitionistic fuzzy aggregation operators [19]. Multi-attribute decision-
making problems are solved under cubic hesitant fuzzy sets and an assessment method of prostate
cancer risk classes utilizing cubic hesitant fuzzy sets similarity measure was presented by different
authors [2, 9, 35]. The expected values of aggregation operators on cubic triangular fuzzy numbers
and their use in problems involving multi-criteria are described in [32, 33]. Abdullah et al. [4]
defined Pythagorean cubic fuzzy Hamacher aggregation operators and their application in a green
supply selection problem.

The main motivation is the extension of aggregation operators characteristics to consider a wider
range of complex problems. To deal with the aggregate uncertainty expressed in the form of cubic
sets, a variety of aggregation operators have been created based on the algebraic t-norm and t-conorm.
Important mathematical processes called logarithmic operational rules can be used to conveniently
aggregate uncertain and erroneous data. These concepts served as inspiration for us to create a
cubic MAGDM approach to solve the problem within cubic sets (CSs). This method is built on the
logarithmic aggregation operators and the logarithmic operations of cubic sets.

The contributions of our method are as follows:

(1) To overcome the limitations of algebraic operations and represent the interactions between various
cubic sets, we developed a variety of distinct logarithmic operations for cubic sets.

(2) We developed aggregation operators for cubic information that overcome the limitations of
algebraic operators. These operators are logarithmic cubic weighted averaging (log-CWA),
logarithmic cubic ordered weighted averaging (log-COWA), logarithmic cubic weighted geometric
(log-CWG) and logarithmic cubic ordered weighted geometric (log-COWG) operators.

(3) Using cubic information, we developed a method to handle multi-attribute decision-making
scenarios.

(4) To illustrate the efficiency and dependability of the recommended cubic logarithmic aggregation
operators, we used a circulation center evaluation problem.

(5) According to the data, the suggested strategy performs better and yields more accurate results when
compared to the current approaches.

The remainder of the paper is organized as follows: Section 2 introduces numerous key terms,
including IFS, PyFS, CS, score, and accuracy function. Section 3 discusses the logarithmic operation
rules and characteristics of cubic numbers (CNs). In Section 4, logarithmic cubic averaging
aggregation operators are defined. In Section 5, logarithmic cubic geometric aggregation operators
are defined. The MAGDM approach is given in Section 6 based on the logarithmic cubic aggregation
operators. An example is solved in Section 7 based on the logarithmic aggregation operator. In
Section 8, we demonstrate the sensitivity analysis and comparison of the proposed method to other
existing methods. Finally, the study’s conclusion is reached in Section 8.

AIMS Mathematics Volume 8, Issue 3, 5847–5878.



5850

2. Preliminaries

This part recaps the basic definitions of current fuzzy set extensions, which served as the study’s
foundation.
Definition 2.1. [1] Let Ĝ , φ be a universal set. Then, the set

Ž =
{
ŝ.

(
ŴŽ (ŝ) , ŬŽ (ŝ) |ŝ ∈ Ĝ

)}
, (2.1)

is an IFS, where ŴŽ (ŝ) , ŬŽ (ŝ) ∈ [0, 1] are the element’s positive and negative membership degrees
ŝ ∈ Ĝ in Ž, respectively. ŴŽ (ŝ) , ŬŽ (ŝ) satisfy the condition, for all ŝ ∈ Ĝ,

0 ≤ ŴŽ (ŝ) + ŬŽ (ŝ) ≤ 1. (2.2)

Definition 2.2. [29] Let Ž = (ŴŽ (ŝ) , ŬŽ (ŝ) |ŝ ∈ Ĝ) be an IFN. Then, the score function of Ž is defined
as;

S (Ž) = ŴŽ (ŝ) − ŬŽ (ŝ) , S (Ž) ∈ [−1, 1]. (2.3)

The accuracy function of Ž is defined as;

Ŝ (Ž) = ŴŽ (ŝ) + ŬŽ (ŝ) , Ŝ (Ž) ∈ [−1, 1]. (2.4)

Definition 2.3. [39] Let Ž1 = (
(
ŴŽ1

(ŝ) , ŬŽ1
(ŝ)

)
and Ž2 = (

(
ŴŽ2

(ŝ) , ŬŽ2
(ŝ)

)
be any two IFNs. Then,

the comparison rules are defined as follows:
(1) If S (Ž1) > S (Ž2), then Ž1 > Ž2.
(2) If S (Ž1) = S (Ž2) and Ŝ (Ž1) > Ŝ (Ž2), then Ž1 > Ž2.
(3) If S (Ž1) = S (Ž2) and Ŝ (Ž1) = Ŝ (Ž2), then Ž1 = Ž2.

2.1. Properties of fuzzy sets

Definition 2.4. [1] Let Ž1, Ž2 and Ž3 be a fuzzy sets. Then, the following properties of fuzzy sets are
as follows:

Identity

Ž1 ∩ U = Ž1,where U is a universal set.
Ž1 ∪ φ = Ž1,where φis the empty set.

Absorption by φ and U

Ž1 ∩ φ = φ

Ž1 ∪ U = U.

Idempotent

Ž1 ∩ Ž1 = Ž1

Ž1 ∪ Ž1 = Ž1.

De Morgan laws

(Ž1 ∩ Ž2)
′

= Ž
′

1 ∪ Ž
′

2

(Ž1 ∪ Ž2)
′

= Ž
′

1 ∩ Ž
′

2.
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Involution
(Ž
′

1)
′

= Ž1.

Absorption

Ž1 ∩ (Ž2 ∪ Ž3) = Ž1

Ž1 ∪ (Ž2 ∩ Ž3) = Ž1.

2.2. Cubic set and its operations

The cubic set is an appropriate way to deal with fuzziness. The cubic set has been extensively
applied to the decision making problems. It can be defined as follows:
Definition 2.5. [10] Let Ĝ , φ, be a fixed set. Then, the set

Ž =
{
ŝ,

([
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ) |ŝ ∈ Ĝ

)}
, (2.5)

is called CS, where
[
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ) are known as the element’s positive and negative

membership degrees ŝ ∈ Ĝ in Ž respectively, with the condition that 0 ≤
[
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ) ≤ 1.

Definition 2.6. [10] Let Ž =
([

ŴŽ (ŝ) , ŬŽ (ŝ)
]
, ŶŽ (ŝ) |ŝ ∈ Ĝ

)
, Ž1 =

([
ŴŽ1

(ŝ) , ŬŽ1
(ŝ)

]
, ŶŽ1

(ŝ) |ŝ ∈ Ĝ
)

and Ž2 =
([

ŴŽ2
(ŝ) , ŬŽ2

(ŝ)
]
, ŶŽ2

(ŝ) |ŝ ∈ Ĝ
)

are any two IFSs. Then the following operations are
defined:

(1) Žc =
{
ŶŽ (ŝ) ,

[
ŬŽ (ŝ) , ŴŽ (ŝ)

]}
.

(2) Ž1 ∧ Ž2 =
{[

min
(
ŴŽ1

(ŝ) , ŴŽ2
(ŝ)

)
,min

(
ŬŽ1

(ŝ) , ŬŽ2
(ŝ)

)]
,max

(
ŶŽ1

(ŝ) , ŶŽ2
(ŝ)

)}
.

(3) Ž1 ∧ Ž2 =
{[

max
(
ŴŽ1

(ŝ) , ŴŽ2
(ŝ)

)
,max

(
ŬŽ1

(ŝ) , ŬŽ2
(ŝ)

)]
,min

(
ŶŽ1

(ŝ) , ŶŽ2
(ŝ)

)}
.

(4) υ · Ž =
{[

1 −
(
1 − ŴŽ

)υ
, (ŬŽ)υ

]
, (ŶŽ)υ

}
.

(5) Žυ =
{[(

ŴŽ

)υ
, 1 −

(
1 − ŬŽ

)υ]
, 1 −

(
1 − ŶŽ

)υ}
.

3. Logarithmic aggregation information for cubic number

In this section, we define the basic operation laws, and some properties of logarithmic cubic
numbers.

3.1. The logarithmic operation laws of cubic numbers

In this section, we will introduce and investigate the characteristics of certain novel logarithmic
operating rules for cubic numbers. It is noted that logĕ 0 in the real number system, has no meaning,
and logĕ 1 is not defined. As a result, we assume Ž , 0, where Ž is a CN. Also, the base of a logarithm,
i.e., ĕ , 1, is in the open interval (0, 1) and always a positive-real number.
Definition 3.1. Let Ĝ , φ be a fixed set and Ž =

([
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ)

)
be a cubic number. Then,

the logarithmic cubic number is defined as,

logĕ Ž =
{([

1 − logĕ ŴŽ

(
ŝ − logĕ ŬŽ

)
, 1 (ŝ)

]
, logĕ(1 − ŶŽ (ŝ))|ŝ ∈ Ĝ

)}
, (3.1)

0 < ĕ ≤ [Ŵ, Ŭ] ≤ 1, ĕ , 1,
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where,
[
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ) are identified as positive and negative membership degrees of the

element ŝ ∈ Ĝ in Ž respectively, with the condition that 0 ≤ [ŴŽ (ŝ) , ŬŽ (ŝ)], ŶŽ (ŝ) ≤ 1. The
logarithmic operational law’s positive membership is thus defined as follows:[

1 − logĕ ŴŽ (ŝ) , 1 − logĕ ŬŽ (ŝ)
]

: Ĝ → [0, 1], such that[
1 − logĕ ŴŽ (ŝ) , 1 − logĕ ŬŽ (ŝ)

]
∈ [0, 1], for all ů ∈ Ĝ,

Negative membership is defined as

logĕ

(
1 − ŶŽ (ŝ)

)
: Ĝ → [0, 1], such that logĕ

(
1 − ŶŽ (ŝ)

)
∈ [0, 1], ∀ŝ ∈ Ĝ, (3.2)

and the refusal degree is defined as

1 −
([(

1 − logĕ ŴŽ (ŝ)
)

+ 1 − logĕ ŬŽ (ŝ)
]

+ logĕ

(
1 − ŶŽ (ŝ)

))
, for all ŝ ∈ Ĝ. (3.3)

The operational law of log-CNs is defined next.
Definition 3.2. Let Ž =

([
ŴŽ (ŝ) , ŬŽ (ŝ)

]
, ŶŽ (ŝ)

)
, Ž1 =

([
ŴŽ1

(ŝ) , ŬŽ1
(ŝ)

]
, ŶŽ1

(ŝ)
)

and Ž2 =([
ŴŽ2

(ŝ) , ŬŽ2
(ŝ)

]
, ŶŽ2

(ŝ)
)

be any three CNs, let υ be any scalar greater than 0. Then, the logarithmic
cubic operational law is defined as follows;

logě Ž1 ⊕ logě Ž2 =


[
1 − logě Ŵ1. logě Ŵ2, 1 − logě Ŭ1. logě Ŭ2

]
,

logě

(
1 − Ŷ1

)
. logě

(
1 − Ŷ2

) 
logě Ž1 ⊗ logě Ž2 =


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
,

1 − (1 − (1 − logě Ŭ1)).(1 − (1 − logě Ŭ2))

 ,
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))


υ. logě Ž =
([

1 −
(
logě Ŵ

)υ
, (1 − (logě Ŭ))υ

]
,
(
logě

(
1 − Ŷ

)υ))
logě Žυ =

([
(1 − logě Ŵ)υ, 1 − (1 − (1 − logě Ŭ))υ

]
, 1 −

(
1 − logě

(
1 − Ŷ

))υ)
.

3.2. Properties of logarithmic operational law for cubic numbers

We discuss the attributes of CNs based on the logarithmic operational law in this section of the
article.
Theorem 3.1. Let Ž =

([
ŴŽ, ŬŽ

]
, ŶŽ

)
be any cubic number with condition 0 < ĕ ≤

[
Ŵ, Ŭ

]
≤ 1, ĕ , 1.

Then, prove that
ělogě Ž = Ž.

Proof. For proof, see Appendix A.
Theorem 3.2. Let Ž =

([
ŴŽ, ŬŽ

]
, ŶŽ

)
be any cubic numbers with condition 0 < ĕ ≤

[
Ŵ, Ŭ

]
≤ 1, ĕ , 1,

Then, prove that
logě ěŽ = Ž. (3.4)

Proof. As we know,

logě ěŽ = logě

([
ě(1−ŴŽ), ě(1−ŬŽ)] , 1 − ěŶŽ

)
=

([
1 − logě ě(1−ŴŽ), 1 − logě ě(1−ŬŽ)] , logě(1 − (1 − ěŶŽ )

)
=

([
ŴŽ, ŬŽ

]
, ŶŽ

)
= Ž.
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Theorem 3.3. Let the collection of two cubic numbers is Ž1 =
([

Ŵ1, Ŭ1

]
, Ŷ1

)
and Ž2 =

([
Ŵ2, Ŭ2

]
, Ŷ2

)
with conditions 0 < ě ≤ min(

[
Ŵ1, Ŭ1

]
,
[
Ŵ2, Ŭ2

]
) and ě , 1. Then, show that

(a) logě Ž1 ⊕ logě Ž2 = logě Ž2 ⊕ logě Ž1.

(b) logě Ž1 ⊗ logě Ž2 = logě Ž2 ⊗ logě Ž1.

Proof. For proof, see Appendix B.
Theorem 3.4. Let the collection of three cubic numbers is Ž1 =

([
Ŵ1, Ŭ1

]
, Ŷ1

)
, Ž2 =

([
Ŵ2, Ŭ2

]
, Ŷ2

)
and Ž3 =

([
Ŵ3, Ŭ3

]
, Ŷ3

)
with conditions 0 < ě ≤ min

([
Ŵ1, Ŭ1

]
,
[
Ŵ2, Ŭ2

])
and ě , 1. Then, we shows

that (
logě Ž1 ⊕ logě Ž2

)
⊕ logě Ž3 = logě Ž1 ⊕

(
logě Ž2 ⊕ logě Ž3

)
. (3.5)

Proof. For proof, see Appendix C.
Theorem 3.5. Let the collection of three cubic numbers is Ž1 =

([
Ŵ1, Ŭ1

]
, Ŷ1

)
, Ž2 =

([
Ŵ2, Ŭ2

]
, Ŷ2

)
and Ž3 =

([
Ŵ3, Ŭ3

]
, Ŷ3

)
with conditions 0 < ě ≤ min

([
Ŵ1, Ŭ1

]
,
[
Ŵ2, Ŭ2

])
and ě , 1. Then, we shows

that (
logě Ž1 ⊗ logě Ž2

)
⊗ logě Ž3 = logě Ž1 ⊗

(
logě Ž2 ⊗ logě Ž3

)
. (3.6)

Proof. For proof, see Appendix D.
Theorem 3.6. Let two CNs is Ž1 =

([
Ŵ1, Ŭ1

]
, Ŷ1

)
and Ž2 =

([
Ŵ2, Ŭ2

]
, Ŷ2

)
with conditions satisfy,

0 < ě ≤ min
([

Ŵ1, Ŭ1

]
,
[
Ŵ2, Ŭ2

])
and ě , 1, and also let υ be any positive real number. Then,(

logě Ž1 ⊗ logě Ž2

)υ
=

(
logě Ž1

)υ
⊗

(
logě Ž2

)υ
. (3.7)

Proof. The procedure in this case is eliminated because the proof is comparable to Theorem 3.2.
Theorem 3.7. Let Ž =

([
Ŵ, Ŭ

]
, Ŷ

)
be a CN, 0 < ě ≤ Ŵ ≤ 1, ě , 1, and υ1, υ2 > 0. Then, we show that

υ1. logě Ž ⊕ υ2. logě Ž = (υ1 ⊕ υ2) logě Ž (3.8)(
logě Ž

)υ1
⊗

(
logě Ž

)υ2
=

(
logě Ž

)υ1⊕υ2((
logě Ž

)υ1
)υ2

=
(
logě Ž

)υ1υ2
.

Proof. For proof, see Appendix E.

4. Logarithmic cubic averaging aggregation operators

We defined some logarithmic cubic fuzzy averaging aggregation operators, namely, log-CWA and
log-COWA, and study their features in depth in this section.

4.1. Logarithmic cubic weighted averaging aggregation operator

Definition 4.1. Let Žp =
([

ŴŽp
, ŬŽp

]
, ŶŽp

)
(p = 1, 2, · · · , n) be a collection of cubic numbers with

0 < ĕp ≤
[
Ŵp, Ŭp

]
≤ 1, and ĕp , 1. Then, the mapping log−CWA : Řn −→ Ř, is defined,

log−CWA
(
Ž1, · · · , Žn

)
=

n⊕
p = 1

$p. logĕp
Žp. (4.1)
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The function log-CWA is called the logarithmic cubic weighted averaging operator, where $ =

($1, $2, · · · , $n)T denotes the weighed vector of logĕp
Žp (p = 1, 2, · · · , n) , such that $p ∈ [0, 1] ,

and
∑n

p=1 $p = 1.
Theorem 4.1. Let Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, · · · , n) be a collection of CNs with condition 0 <

ěp ≤
[
Ŵp, Ŭp

]
≤ 1, and ěp , 1. Then, using Definitions 3.1 and 3.2, we have

log−CWA
(
Ž1, ..., Žn

)
(4.2)

=


[
1 −

n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P

 .
Proof. For proof, see Appendix F.

4.2. Properties

(1) Idempotency: Let Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, · · · , n) be a collection of cubic numbers that

are equal, i.e., Žp = Ž, (p = 1, 2, · · · , n). Then,

log−CWA
(
Ž1, ..., Žn

)
= logĕ Ž, (4.3)

where ĕ1 = ĕ2 = ... = ĕn = ĕ.
Proof. We have

log−CWA
(
Ž1, ..., Žn

)
=


[
1 −

n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P


log−CWA

(
Ž1, ..., Žn

)
=


[
1 −

n∏
p=1

(
logĕp

(
Ŵ

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭ)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷ

))$P


=

([
1 − logĕ ŴŽ

(
ŝ − logĕ ŬŽ

)
, 1 (ŝ)

]
, logĕ

(
1 − ŶŽ (ŝ)

))
= logĕ Ž.

(2) Boundedness: If Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, · · · , n) is a collection of CNs, let Ž− =

min
(
Ž1, · · · , Žn

)
and Ž+ = max

(
Ž1, Ž2, · · · , Žn

)
. Then,

Ž− ≤ log−CWA
(
Ž1, Ž2, · · · , Žn

)
≤ Ž+ (4.4)

where ĕ1 = ĕ2 = · · · = ĕn = ĕ.
Proof. Let, Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
, (p = 1, 2, · · · , n) be a collection of CNs and Ž− = min

(
Ž1, · · · , Žn

)
,

Ž+ = max
(
Ž1, Ž2, · · · , Žn

)
. We have the following inequalities.

min
p

{[
Ŵp, Ŭp

]}
≤

[
Ŵp, Ŭp

]
≤ max

p

{[
Ŵp, Ŭp

]}
min

p
{Ŷp} ≤ Ŷp ≤ max

p
{Ŷp}.
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It follows that 1 − n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(
Ŭp

))$P


≥


1 −

n∏
p=1

(
logĕp

(
minp{Ŵp}

))$P
,

1 −
n∏

p=1

(
logĕp

(
minp{Ŭp}

))$P


=

 1 −
(
logĕp

(
minp{Ŵp}

))∑n
p=1 $P

,

1 −
(
logĕp

(
minp{Ŭp}

))∑n
p=1 $P


=

[
1 −

(
logĕp

(
min

p
{Ŵp}

))
, 1 −

(
logĕp

(
min

p
{Ŭp}

))]
n∏

p=1

(
logĕp

(
1 − Ŷp

))$P
≥

n∏
p=1

(
logĕp

(
1 −min

p
{Ŷp}

))$P

=

(
logĕp

(
1 −min

p
{Ŷp}

))∑n
p=1 $P

=

(
logĕp

(
1 −min

p
{Ŷp}

))
1 − n∏

p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P


≤


1 −

n∏
p=1

(
logĕp

(
maxp{Ŵp}

))$P
,

1 −
n∏

p=1

(
logĕp

(
maxp{Ŭp}

))$P


=


1 −

n∏
p=1

(
logĕp

(
maxp{Ŵp}

))∑n
p=1 $P

,

1 −
n∏

p=1

(
logĕp

(
maxp{Ŭp}

))∑n
p=1 $P


=


1 −

n∏
p=1

(
logĕp

(
maxp

{
Ŵp

}))
,

1 −
n∏

p=1

(
logĕp

(
maxp{Ŭp}

))


n∏
p=1

(
logĕp

(
1 − Ŷp

))$P
≤

n∏
p=1

(
logĕp

(
1 −max

p
{Ŷp}

))$P

=

(
logĕp

(
1 −max

p
{Ŷp}

))∑n
p=1 $P

=

(
logĕp

(
1 −max

p
{Ŷp}

))
.
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Therefore, we have
Ž− ≤ log−CFWA

(
Ž1, Ž2, ..., Žn

)
≤ Ž+.

(3) Monotonicity: Let Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
and Ž∗p =

([
Ŵ∗

p, Ŭ
∗
p

]
, Ŷ∗p

)
, (p = 1, 2, · · · , n) be a

collections of CNs, if
[
Ŵp, Ŭp

]
≤

[
Ŵ∗

p, Ŭ
∗
p

]
and Ŷp ≥ Ŷ∗p, with 0 < ĕp ≤ min

([
Ŵp, Ŭp

]
,
[
Ŵ∗

p, Ŭ
∗
p

])
≤ 1,

hold for any p, then
log−CWA

(
Ž1, · · · , Žn

)
= log−CFWG

(
Ž∗1, · · · , Ž

∗
n

)
(4.5)

where ĕ1 = ĕ2 = ... = ĕn = ĕ.
Proof. Let

Žp = log−CWA
(
Ž1, ..., Žn

)
=

[
1 −

n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P


and

Ž∗p = log−CWA
(
Ž∗1, ..., Ž

∗
n

)
=

[
1 −

n∏
p=1

(
logĕp

(
Ŵ∗

p

))$P
, 1 −

n∏
p=1

(
logĕp

(
Ŭ∗p

))$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷ∗p

))$P


altough

[
ŴŽp

, ŬŽp

]
≤

[
Ŵ∗

Žp
, Ŭ∗

Žp

]
and ŶŽp

≥ Ŷ∗
Žp

for any p, giving1 − n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P


≤

1 − n∏
p=1

(
logĕp

(
Ŵ∗

p

))$P
, 1 −

n∏
p=1

(
logĕp

(
Ŭ∗p

))$P


n∏

p=1

(
logĕp

(
1 − Ŷp

))$P
≥

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P
.

Therefore, by using the score function and accuracy function, we can conclude that

log−CWA
(
Ž1, ..., Žn

)
= log−CWG

(
Ž∗1, ..., Ž

∗
n

)
.

4.3. Logarithmic cubic ordered weighted averaging aggregation operator

Definition 4.2. Let Žp =
([

ŴŽp
, ŬŽp

]
, ŶŽp

)
where (p = 1, 2, ..., n) be a collection of cubic numbers with

0 < ĕp ≤
[
Ŵp, Ŭp

]
≤ 1, and ĕp , 1. Then, the mapping log−CWA : Řn −→ Ř, is defined as

log−COWA
(
Ž1, ..., Žn

)
=

n⊕
p = 1

$p. logĕp
Žp. (4.6)
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Thus, the function log-CWA is known as the logarithmic cubic ordered weighted averaging operator,
where the weighed vectors are denoted by $ = ($1, $2, ..., $n)T of logĕp

Žp (p = 1, 2, ..., n) , subject to
$p ∈ [0, 1] , and their sum is always equal to 1.
Theorem 4.2. Let Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
(p = 1, ..., n) be a collections of CNs with 0 < ĕp ≤

[
Ŵp, Ŭp

]
≤

1, and ĕp , 1, that is, p = 1, 2, ..., n. Then, utilized Definition 4.2, we have

log−COWA
(
Ž1, ..., Žn

)
(4.7)

=


[
1 −

n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P

 .
Proof. For proof, see Appendix G.

4.4. Properties

(1) Idempotency: Let Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
, (p = 1, 2, .., n) be a collection of CNs are equal, i.e.,

Žp = Ž, (p = 1, 2, ..., n). Then,

log−COWA
(
Ž1, ..., Žn

)
= logĕ Ž (4.8)

where ĕ1 = ĕ2 = ... = ĕn = ĕ.
(2) Boundedness: If Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, · · · , n) be a collection of CNs. Let Ž− =

min
(
Ž1, ..., Žn

)
and Ž+ = max

(
Ž1, Ž2, ..., Žn

)
. Then,

Ž− ≤ log−COWA
(
Ž1, Ž2, · · · , Žn

)
≤ Ž+ (4.9)

where ĕ1 = ĕ2 = · · · = ĕn = ĕ.
(3) Monotonicity: Let Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
and Ž∗p =

([
Ŵ∗

p, Ŭ
∗
p

]
, Ŷ∗p

)
, (p = 1, 2, · · · , n) be a family

of cubic numbers, if
[
Ŵp, Ŭp

]
≤

[
Ŵ∗

p, Ŭ
∗
p

]
and Ŷp ≥ Ŷ∗p, also 0 < ĕp ≤ min

([
Ŵp, Ŭp

]
,
[
Ŵ∗

p, Ŭ
∗
p

])
≤ 1,

holds for any p, then

log−COWA
(
Ž1, · · · , Žn

)
≤ log−CWG

(
Ž∗1, · · · , Ž

∗
n

)
(23)

whereĕ1 = ĕ2 = · · · = ĕn = ĕ.

5. Logarithmic cubic geometric aggregation operators

The logarithmic cubic weighted geometric and log-CFOWG aggregation operators, as well as their
properties, are defined and explained in this portion of the paper.

5.1. Logarithmic cubic weighted geometric aggregation operator

Definition 5.1. Let Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, · · · , n) be a collection of cubic numbers with

condition 0 < ĕp ≤
[
Ŵp, Ŭp

]
≤ 1, and ĕp , 1. Then, the mapping log−CWG : Řn −→ Ř, defined as

log−CWG
(
Ž1, · · · , Žn

)
=

n⊗
p = 1

(
logĕp

Žp

)$p
, (5.1)
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is called the logarithmic cubic weighted geometric operator of dimension n. Where$ = ($1, · · · , $n)T

are the weight vector of logĕp
Žp (p = 1, 2, · · · , n), such that $p ∈ [0, 1] ,

∑n
p=1 $p = 1. And also we

have take ĕ1 = ĕ2 = · · · = ĕn = ĕ.
Theorem 5.1. Let there be a collection of cubic numbers Žp =

((
Ŵp, Ŭp

)
, Ŷp

)
, (p = 1, 2, · · · , n) with

condition 0 < ěp ≤
[
Ŵp, Ŭp

]
≤ 1, and ěp , 1. Then, utilizing the log-CWG operator the aggregated

value is also a logarithmic cubic number. Hence,

log−CWG
(
Ž1, ..., Žn

)
=


[

n∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

n∏
p=1

(
1 − logĕp

(
Ŭp

))$P

]
,

1 −
n∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 . (5.2)

Proof. For proof, see Appendix H.

5.2. Properties

(1) Idempotency: Let Žp =
(
[Ŵp, Ŭp], Ŷp

)
(p = 1, 2, ..., n) be a collection of cubic numbers and all

the CNs are equal, i.e., Žp = Ž, (p = 1, 2, ..., n). Then,

log−CWG
(
Ž1, ..., Žn

)
= logĕ Ž (5.3)

where ĕ1 = ĕ2 = ... = ĕn = ĕ.
(2) Boundedness: If Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
, (p = 1, 2, ..., n) is a family of CNs, let Ž− =

min
(
Ž1, ..., Žn

)
and Ž+ = max

(
Ž1, Ž2, ..., Žn

)
. Then,

Ž− ≤ log−CWG
(
Ž1, Ž2, · · · , Žn

)
≤ Ž+ (5.4)

where ĕ1 = ĕ2 = · · · = ĕn = ĕ.
(3) Monotonicity: Let Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
and Ž∗p =

([
Ŵ∗

p, Ŭ
∗
p

]
, Ŷ∗p

)
, (p = 1, 2, ..., n) be

a collections of cubic numbers. If
[
Ŵp, Ŭp

]
≤

[
Ŵ∗

p, Ŭ
∗
p

]
and Ŷp ≥ Ŷ∗p, with 0 < ĕp ≤

min
([

Ŵp, Ŭp

]
,
[
Ŵ∗

p, Ŭ
∗
p

])
≤ 1, holds for any p, then

log−CWG
(
Ž1, ..., Žn

)
≤ log−CWG

(
Ž∗1, ..., Ž

∗
n

)
(5.5)

where ĕ1 = ĕ2 = ... = ĕn = ĕ.

5.3. Logarithmic cubic ordered weighted geometric aggregation operator

Definition 5.2. Let the collection of the cubic numbers are Žp =
([

Ŵp, Ŭp

]
, Ŷp

)
(p = 1, 2, ..., n) with

condition 0 < ĕp ≤
[
Ŵp, Ŭp

]
≤ 1, and ĕp , 1. Then, the mapping log−COWG : Řn −→ Ř, defined as

log−COWG
(
Ž1, ..., Žn

)
=

n⊗
p = 1

(
logĕ Žž(p)

)$p
, (5.6)

is called the logarithmic cubic ordered weighted geometric operator of dimension n. The permutations
are denoted by (ž (1) , ž (2) , ..., ž (n)) of (p = 1, 2, ..., n) , such that Žž(p−1) ≥ Žž(p), for all p = 1, 2, ..., n.

AIMS Mathematics Volume 8, Issue 3, 5847–5878.



5859

Also the weighted vectors are denoted by $ = ($1, $2, · · · , $n)T of logĕ Ž(p), (p = 1, 2, ..., n), subject
to $p ∈ [0, 1], and their sum is always equal to one. And, we have ĕ1 = ĕ2 = ... = ĕn = ĕ.
Theorem 5.2. Let the collection of cubic numbers are Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
, (p = 1, 2, ..., n) with

the condition 0 < ĕp ≤
[
Ŵp, Ŭp

]
≤ 1, and ĕp , 1. Then, by utilizing the log-COWG operator the

aggregated value is also a logarithmic CNs. Hence,

log−COWG
(
Ž1, ..., Žn

)
(5.7)

=


[

n∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

n∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
n∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
Proof. For proof, see Appendix I.

5.4. Properties

(1) Idempotency: Let there be a collection of cubic numbers are Žp =
(
[Ŵp, Ŭp], Ŷp

)
(p = 1, 2, ..., n)

with Žp = Ž. Then, we show that

log−COWG
(
Ž1, ..., Žn

)
= logě Ž (5.8)

where ě1 = ě2 = ... = ěn = ě.
(2) Boundedness: Let there be a collection of cubic numbers are Žp =(

[Ŵp, Ŭp], Ŷp

)
(p = 1, 2, ..., n) . Ž− = min

(
Ž1, Ž2, ..., Žn

)
and Ž+ = max

(
Ž1, Ž2, ..., Žn

)
. Then,

Ž− ≤ log−COWG
(
Ž1, · · · , Žn

)
≤ Ž+, (5.9)

where ě1 = ě2 = · · · = ěn = ě.
(3) Monotonicity: Let Žp =

([
Ŵp, Ŭp

]
, Ŷp

)
and Ž∗p =

([
Ŵ∗

p, Ŭ
∗
p

]
, Ŷ∗p

)
(p = 1, 2, ..., n) be a collections

of cubic numbers. If
[
Ŵp, Ŭp

]
≤

[
Ŵ∗

p, Ŭ
∗
p

]
and Ŷp ≥ Ŷ∗p, with 0 < ěp ≤ min

([
Ŵp, Ŭp

]
,
[
Ŵ∗

p, Ŭ
∗
p

])
≤ 1,

holds for any p, then,

log−COWG
(
Ž1, ..., Žn

)
≤ log−PFOWG

(
Ž∗1, ..., Ž

∗
n

)
. (5.10)

Definition 5.3. Let there be a collection of cubic numbers are logě Ž =([
1 − logě Ŭ, logě(1 − Ŭ)

]
, logě(1 − Ŷ)

)
.

Then, S is the score function of logĕ Ž , which is defined as follows:

S
(
logĕ Ž

)
=

[(
1 − logĕ ŴŽ

)
− logĕ(1 − ŬŽ)

]
− logĕ(1 − ŶŽ), S

(
logĕ Ž

)
∈ [−1, 1] .

Ŝ be the accuracy degree of logĕ Ž and is defined as follows:

Ŝ
(
logĕ Ž

)
=

[(
1 − logĕ ŴŽ

)
+ logĕ(1 − ŬŽ)

]
+ logĕ(1 − ŶŽ), Ŝ

(
logĕ Ž

)
∈ [0, 1]

(1) If S
(
logĕ Ž1

)
> S

(
logĕ Ž2

)
, then logĕ Ž1 > logĕ Ž2.

(2) If S
(
logĕ Ž1

)
= S

(
logĕ Ž2

)
, then if Ŝ

(
logĕ Ž1

)
> Ŝ

(
logĕ Ž2

)
, then logĕ Ž1 > logĕ Ž2.

(3) If Ŝ
(
logĕ Ž1

)
= Ŝ

(
logĕ Ž2

)
, then logĕ Ž1 = logĕ Ž2.
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6. Approach for solving MAGDM problem

This part tackles the MAGDM problem using the previously mentioned aggregation operations. An
example is given to demonstrate the superiority as well as the validity of the introduced operators in
a real-life scenario. Let the finite set of m alternatives be Ŭ = {u1, u2, ..., um} , and the finite set of n
attribute is Ž = {z1, z2, ..., zn}. The weight vector of attributes is $ = ($1, $2, · · · , $n)T , such that
$p ∈ [0, 1] ,

∑n
p=1 $p = 1. Let the decision matrices (DMs) as follows:

Žÿk =
(〈[

Ŵÿk , Ŭÿk

]
, Ŷÿk

〉)
m×n

=

u1 ... um

z1

([
Ŵ11, Ŭ11

]
, Ŷ11

)
...

([
Ŵm1, Ŭm1

]
, Ŷm1

)
z2

([
Ŵ12, Ŭ12

]
, Ŷ12

)
...

([
Ŵm2, Ŭm2

]
, Ŷm2

)
...

...
...

...

zn

([
Ŵ1n, Ŭ1n

]
, Ŷ1n

)
...

([
Ŵmn, Ŭmn

]
, Ŷmn

)
.

By using the log-CWA, log-COWA, log-CWG, and log-CWG operators, we intend to solve the
MAGDM issue using cubic fuzzy information using the following algorithm.

Step 1. Make the decision matrices (DMs).

Step 2. Normalize the given decision matrices (DMs).

Step 3. Use the introduced operators to combine the preferences of the DMs of various types.

Step 4. Use the Definition of the score function to calculate the score value.

Step 5. On the basis of the score function, rank all of the possibilities and choose the best one.

Figure 1 shows the algorithm of the proposed method.

Figure 1. Flow chart of the algorithm.
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7. Illustrative example

7.1. Online study effect during Covid-19

Education plays a vital role in the development of society and individual behavior. For that purpose,
the role of teachers is the most important in delivering and transferring of knowledge and experience
to students in a healthy and effective environment with smoothness and easy way. The relationship
of teacher to student in this sense is like a backbone in the body. If there is more effective ways
and suitable environment for sharing knowledge there will be the best outcomes of it. The flow of
knowledge between teacher and student plays a key role in that scenario. We have studied and observed
the difference between the flow and gaining of knowledge between students and teacher before and after
the Covid-19 pandemic. We have found very vivid clues of teacher teaching effect before Covid-19,
and the effects on students today has a clear difference.

Knowledge flow between Students and teacher before and after Covid-19 in colleges:

R1: Face to face interaction

Teacher student interaction in the classroom before Covid was face to face interaction. The teacher
was teaching everything in a friendly environment with direct student interaction. However this
effective way of teaching with face to face interaction has vanished because of Covid-19, which creates
hurdles in the way of transferring knowledge from teacher to students.

R2: Attention

Face to face interaction was interrupted by the arrival of Covid-19. Before Covid, the relationship
between teacher and student was so closed which was showing their strong connection whenever
students lost their attention during class from their particular topic, teachers were always there to help
them pay their attention again. However now, using virtual classrooms, that strong bonding between
teacher and students has lost and students lose their attention. Such teaching method includes not
powerful visual presentations because the teacher didn’t see whether students are attentive or not.
Finally, we come to the conclusion that taking classes from home fuels a disturbing environment that
leads to losing attention, etc.

R3: Performance

Performances of students are getting worse because of the lack of face to face interaction in the
classroom between teacher and student and the lack of full attention. This badly effects students
performance. They lose their vocabulary skills, fluency, sharpness, and obedience, etc. Informal
environment of class at home leads to disturbed patterns of gaining knowledge that directly affects
student performance.

R4: Interest

Interest is something really important for achieving goals. Online classes create a situation in which
students cannot hold their interest in studies. When the students pick up a cell phone and get on
the internet, a lot of unwanted notifications start coming, which attract students toward unproductive
things. Especially immature students can easily lose their attention to other things than studies and
taking classes.

Step 1. Decision matrices given by three experts are given in Tables 1–4.
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Table 1. Forth decision matrix E1.

C1 C2 C3 C4 C5

R1 ([.11, .15], .23) ([.13, .18], .32) ([.11, .21], .20) ([.26, .27], .12) ([.16, .18], .23)
R2 ([.19, .20], .25) ([.17, .18], .29) ([.25, .26], .19) ([.17, .18], .25) ([.21, .22], .15)
R3 ([.12, .14], .20) ([.14, .16], .26) ([.15, .16], .23) ([.21, .22], .16) ([.17, .18], .22)
R4 ([.16, .17], .40) ([.20, .21], .21) ([.24, .25], .21) ([.31, .32], .23) ([.30, .31], .25)

Table 2. Forth decision matrix E2.

C1 C2 C3 C4 C5

R1 ([.16, .18] , .23) ([.26, .27] , .12) ([.23, .25] , .20) ([.13, .15] , .32) ([.11, .15] , .23)
R2 ([.17, .18] , .25) ([.25, .26] , .19) ([.17, .18] , .29) ([.19, .20] , .25) ([.21, .23] , .15)
R3 ([.15, .16] , .23) ([.14, .15] , .26) ([.12, .13] , .20) ([.21, .22] , .26) ([.21, .22] , .26)
R4 ([.20, .21, .21]) ([.16, .17] , .40) ([.30, .31] , .25) ([.21, .22] , .15) ([.24, .25] , .21)

Table 3. First decision matrix E3.

C1 C2 C3 C4 C5

R1 ([.13, .15] , .32) ([.26, .27], .12) ([.18, .20] , .23) ([.16, .17] , .40) ([.20, .22] , .21)
R2 ([.17, .18] , .29) ([.12, .15] , .20) ([.17, .18] , .25) ([.31, .32] , .13) ([.16, .17] , .40)
R3 ([.14, .15] , .26) ([.21, .22] , .25) ([.16, .17] , .23) ([.17, .18] , .22) ([.11, .13] , .20)
R4 ([.20, .21] , .31) ([.21, .22] , .16) ([.14, .15] , .26) ([.24, .25] , .21) ([.11, .14] , .31)

Table 4. Forth decision matrix E4.

C1 C2 C3 C4 C5

R1 ([.20, .21] , .21) ([.16, .19], .40) ([.20, .21] , .23) ([.13, .15] , .32) ([.30, .31] , .25)
R2 ([.31, .32] , .13) ([.17, .18] , .25) ([.12, .15] , .20) ([.16, .17] , .40) ([.21, .22] , .16)
R3 ([.16, .17] , .23) ([.21, .22] , .18) ([.14, .15] , .26) ([.17, .18] , .22) ([.21, .22] , .23)
R4 ([.21, .22] , .16) ([.20, .21] , .18) ([.13, .14] , .31) ([.14, .15] , .25) ([.16, .17] , .41)

Step 2. We do not need to normalize the data because all the criteria are of the same type.
Step 3. Use the methods that have been introduced, which are listed below.
First, we utilized the log-CWA operator, and we obtained Table 5.

Table 5. Aggregated value obtained using log-CWA operator.

R1 ([0.381, 0.466] , 0.055)
R2 ([0.449, 0.494] , 0.050)
R3 ([0.307, 0.367] , 0.051)
R4 ([0.449, 0.486] , 0.055)
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Second, we utilized the log-CWG operator, and we get Table 6.

Table 6. Aggregated value obtained using log-CWG operator.

R1 ([0.419, 0.497] , 0.053)
R2 ([0.456, 0.499] , 0.049)
R3 ([0.347, 0.402] , 0.051)
R4 ([0.453, 0.489] , 0.053)

Third, we utilized the log-COWA operator, and we get Table 7.

Table 7. Aggregated value obtained using log-COWA operator.

R1 ([0.275, 0.430] , 0.060)
R2 ([0.368, 0.456] , 0.055)
R3 ([0.244, 0.327] , 0.052)
R4 ([0.372, 0.443] , 0.059)

Fourth, we utilized the log-COWG operator, and we get Table 8.

Table 8. Aggregated value obtained using log-COWG operator.

R1 ([0.312, 0.463] , 0.059)
R2 ([0.386, 0.465] , 0.055)
R3 ([0.272, 0.361] , 0.051)
R4 ([0.376, 0.447] , 0.059)

Step 4. The following score values are obtained by using the score function (see Table 9).

Table 9. Score values obtained using different aggregation operators.

Proposed Operators
Score value

S (R1) S (R2) S (R3) S (R4)
log-CWA 0.264 0.297 0.207 0.293
log-COWA 0.287 0.302 0.232 0.296
log-CWG 0.215 0.256 0.173 0.252
log-COWG 0.238 0.265 0.194 0.254

Step 5. Thus, from the obtained score values, we get the ranking of the attributes, as shown in
Table 10.
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Table 10. Proposed aggregation operators and their rankings.

Proposed operators Ranking
log-CWA R2 > R4 > R1 > R3

log-COWA R2 > R4 > R1 > R3

log-CWG R2 > R4 > R1 > R3

log-COWG R2 > R4 > R1 > R3

Hence, R2 is our best choice.
In Figure 2, we show the ranking of the alternative graphically.

Figure 2. Ranking of the alternatives using proposed operators.

8. Sensitivity analysis

8.1. Validity test

Uncertain outcomes are a result of the fact that, when applied to the same decision making problem,
several MAGDM methods provide different assessments (rankings). In order to assess the validity and
reliability of the MAGDM method, we consider the following.

Test criteria on 1: The MAGDM method works well when the best alternative is kept as the
default, and the non-optimal alternative is changed to a worse alternative without altering the relative
importance of any decision attribute.

Test criteria on 2: Transitive qualities should be followed by an effective MAGDM strategy.
Test criteria on 3: When the MAGDM problem is divided into smaller problems and these

smaller problems, are subjected to the proposed MAGDM approach for the ranking of alternatives,
the MAGDM approach is effective. The cumulative rating of the options maintains consistency with
the ranking of the original problem.

The following attributes are used to evaluate the suggested solution’s validity.

8.2. Validity check with criteria 1

In order to assess the viability of the established technique using criteria on 1, the worst alternative
R/

4 is substituted for the non-optimal alternative R/
4 for each expert in the original decision matrix, and

the rating values are provided in Table 11.
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Now, utilizing the log-CWA operator in Step 3 on transferring alternative, we get the computed
scores of the alternatives are S (R1) = 0.234, S (R2) = 0.265, S (R3) = 0.223, S (R4) = 0.245. As a
result, the final ranking of the options points to R2 as the best alternative, and the approach developed
satisfies test criteria on 1.

Table 11. Transferred alternative R/
4 by each expert.

C1 C2 C3 C4 C5

E1 ([.14, .15] , .26) ([.11, .14] , .31) ([.18, .20] , .23) ([.16, .17, .40) ([.16, .17] , .23)
E2 ([.26, .27], .12) ([.14, .15] , .26) ([.20, .21] , .31) ([.20, .22] , .21) ([.12, .15] , .20)
E3 ([.24, .25] , .21) ([.11, .13] , .20) ([.31, .32] , .13) ([.17, .18] , .22) ([.13, .15] , .32)
E4 ([.17, .18] , .25) ([.16, .17] , .40) ([.21, .22] , .16) ([.21, .22] , .25) ([.17, .18] , .29)

8.3. Validity check with criteria 2 and 3

We divided the initial decision-making problem into smaller decision making problems (R1,R2,R3) ,
(R2,R3,R4) and (R1,R3,R4) using these possibilities in order to test the defined MAGDM approach with
criteria 2 and 3. When we use the provided MAGDM approach to solve these subproblems, the rating
of the alternatives will be R2 > R1 > R3,R2 > R4 > R3 and R4 > R1 > R3. We achieve the ultimate
ranking order as R2 > R4 > R1 > R3 by adding a ranking of alternatives to the smaller problems. This
shows a transitive property and is equivalent to a non-decomposed problem. As a result, the criteria 2
and 3 have same best alternative as the defined MAGDM approach.

8.4. Comparison analysis

In this part, the comparing of our suggested aggregation operators to previous information
aggregation operators is expressed using [21, 11, 10, 18] aggregation operators. The STOLs for the
MAGDM problem are defined for MAGDM problems with CFNs. The results and rankings are shown
in Table 12. For comparison, we have solved the same numerical example present in Section 7.1
by the existing aggregation operators in [21, 11, 10, 18]. The results are shown in Table 12. It is
determined that the best option is still the same. Consequently, the new strategy is more logical than
the existing one.

Table 12. Score values and rankings of the existing methods.

Proposed operators S (R1) S (R2) S (R3) S (R4) Ranking
Khoshaim et al. [21] 0.139 0.163 0.109 0.156 R2 > R4 > R1 > R3

Fahmi et al. [11] 0.363 0.440 0.395 0.414 R2 > R4 > R3 > R1

Fahmi et al. [10] 0.207 0.224 0.180 0.195 R2 > R1 > R4 > R3

Kaur et al. [18] 0.541 0.563 0.538 0.551 R2 > R4 > R1 > R3

We have observed the logarithmic aggregation operators, and we have suggested proposed results
that are broader, are more accurate and represent a novel approach to aggregating the cubic fuzzy data.
In Figure 3, we show the ranking of the alternatives using different methods.
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Figure 3. Ranking of the alternatives using different methods.

9. Conclusions

In this study, we presented the CNs logarithmic operating laws, which are a useful addition
to the currently used cubic aggregation methods. Based on logarithmic operational principles,
we derived valuable operational laws under cubic information. Then, based on the developed
logarithmic operational laws, a number of cubic aggregation operators were defined, including log-
CWA, log-CWG, log-COWA, and log-COWG aggregation operators. We have examined a number of
prerequisites for these logarithmic aggregation operations. To show the effectiveness and consistency
of the suggested cubic logarithmic aggregation operators, we developed a method to handle MAGDM
problems with uncertainty in the form of cubic fuzzy information. A real life example of Online
study effect during Covid-19 was given in order to assess and show the applicability of our suggested
technique. In order to demonstrate the superiority and the validity of the recommended aggregation
methods, we employed certain existing tools. The research shows that our proposed aggregation
operator outperforms the existing method in terms of reliability and accuracy. Thus, our suggested
technique, logarithmic aggregation operator, provides a novel way to identify the best option in the
MAGDM decision-making problem. The theory of logarithmic aggregation operators based on the CS
is a very effective and dominant idea, which can be used for aggregating the collection of information
into a single set. The proposed theory can easily resolve many real-life problems: for instance, artificial
intelligence in education, in Health care, in business, in manufacturing, roads, machine learning, game
theory, computer science and many more. Thus, our suggested technique, logarithmic aggregation
operator, provides a novel way to identify the best option in the MAGDM decision-making problem.

In the future, we extended our work to other disciplines for further research, including pattern
recognition, symmetric operators, power operators, Hamacher operators, Dombi operators, Einstein
operator, etc.
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Appendix

A. Proof of Theorem 3.2
Proof. In accordance with the aforementioned Definition 3.2, we have

ělogě Ž =
([

ě1−(1−logě ŴŽ), ě1−(1−logě ŬŽ)] , 1 − ělogě(1−ŶŽ))
=

([
ělogě ŴŽ , ělogě ŬŽ

]
, 1 −

(
1 − ŶŽ

))
=

[
ŴŽ, ŬŽ

]
, ŶŽ

= Ž.
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B. Proof of Theorem 3.2
Proof. As stated in the Definition 3.2, we have

(a). logě Ž1 ⊕ logě Ž2 =
[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

)  ⊕ 
[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

) 
=


[
1 − logě Ŵ1. logě Ŵ2, 1 − logě Ŭ1. logě Ŭ2

]
,

logě

(
1 − Ŷ1

)
. logě

(
1 − Ŷ2

) 
logě Ž2 ⊕ logě Ž1 =

[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

)  ⊕ 
[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
=


[
1 − logě Ŵ2. logě Ŵ1, 1 − logě Ŭ2. logě Ŭ1

]
,

logě

(
1 − Ŷ2

)
. logě

(
1 − Ŷ1

) 
=


[
1 − logě Ŵ1. logě Ŵ2, 1 − logě Ŭ1. logě Ŭ2

]
,

logě

(
1 − Ŷ1

)
. logě

(
1 − Ŷ2

)  .
Therefore,

logě Ž1 ⊕ logě Ž2 = logě Ž2 ⊕ logě Ž1

(b). logě Ž1 ⊗ logě Ž2 =
[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

)  ⊗ 
[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

) 
=


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
,

1 − (1 − (1 − logě Ŭ1).(1 − (1 − logě Ŭ2))

 ,
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))


logě Ž2 ⊗ logě Ž1 =
[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

)  ⊗ 
[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
=


 (

1 − logě Ŵ2

)
.
(
1 − logě Ŵ1

)
,

1 − (1 − (1 − logě Ŭ2)).(1 − (1 − logě Ŭ1))

 ,
1 −

(
1 − logě

(
1 − Ŷ2

))
.
(
1 − logě

(
1 − Ŷ1

))


=


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
,

1 − (1 − (1 − logě Ŭ1)).(1 − (1 − logě Ŭ2))

 ,
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))


therefore,
logě Ž1 ⊗ logě Ž2 = logě Ž2 ⊗ logě Ž1.
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C. Proof of Theorem 3.2
Proof. As stated in the Definition 3.2, we have(

logě Ž1 ⊕ logě Ž2

)
. ⊕ logě Ž3 =

[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

)  ⊕ 
[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

) 
⊕


[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
=


[
1 − logě Ŵ2. logě Ŵ1, 1 − logě Ŭ2. logě Ŭ1

]
,

logě

(
1 − Ŷ2

)
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(
1 − Ŷ1

) 
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[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
=


[
1 − logě Ŵ1. logě Ŵ2. logě Ŵ3, 1 − logě Ŭ1. logě Ŭ2. logě Ŭ3

]
,

logě

(
1 − Ŷ1

)
. logě

(
1 − Ŷ2

)
. logě

(
1 − Ŷ3

) 
logě Ž1 ⊕ (logě Ž2 ⊕ logě Ž3) =

[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

)  ⊕
[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

)  ⊕ 
[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
=


[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
⊕


[
1 − logě Ŵ2. logě Ŵ3, 1 − logě Ŭ2. logě Ŭ3

]
,

logě

(
1 − Ŷ2

)
. logě

(
1 − Ŷ3

) 
=


[
1 − logě Ŵ1. logě Ŵ2. logě Ŵ3, 1 − logě Ŭ1. logě Ŭ2. logě Ŭ3

]
,

logě

(
1 − Ŷ1

)
. logě

(
1 − Ŷ2

)
. logě

(
1 − Ŷ3

) 
Therefore, (

logě Ž1 ⊕ logě Ž2

)
⊕ logě Ž3 = logě Ž1 ⊕

(
logě Ž2 ⊕ logě Ž3

)
.

D. Proof of Theorem 3.2
Proof. Taking the L.H.S.(

logě Ž1 ⊗ logě Ž2

)
⊗ logě Ž3

=




[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
⊗


[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

) 

 ⊗


[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
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=


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
,

1 − (1 − (1 − logě Ŭ1).(1 − (1 − logě Ŭ2))

 .
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))


⊗


[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
=


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
.
(
1 − logě Ŵ3

)
,

1 − (1 − (1 − logě Ŭ1)).(1 − (1 − logě Ŭ2)).(1 − (1 − logě Ŭ3))

 ,
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))
.
(
1 − logě

(
1 − Ŷ2

))
 .

Now, taking the R.H.S.

logě Ž1 ⊗
(
logě Ž2 ⊗ logě Ž3

)
=


[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
⊗


[
1 − logě Ŵ2, 1 − logě Ŭ2

]
,

logě

(
1 − Ŷ2

)  ⊗ 
[
1 − logě Ŵ3, 1 − logě Ŭ3

]
,

logě

(
1 − Ŷ3

) 
=


[
1 − logě Ŵ1, 1 − logě Ŭ1

]
,

logě

(
1 − Ŷ1

) 
⊗


 (

1 − logě Ŵ2

)
.
(
1 − logě Ŵ3

)
,

1 − (1 − (1 − logě Ŭ2).(1 − (1 − logě Ŭ3))

 ,
1 −

(
1 − logě

(
1 − Ŷ2

))
.
(
1 − logě

(
1 − Ŷ3

))


=


 (

1 − logě Ŵ1

)
.
(
1 − logě Ŵ2

)
.
(
1 − logě Ŵ3

)
,

1 − (1 − (1 − logě Ŭ1)).(1 − (1 − logě Ŭ2)).(1 − (1 − logě Ŭ3))

 ,
1 −

(
1 − logě

(
1 − Ŷ1

))
.
(
1 − logě

(
1 − Ŷ2

))
.
(
1 − logě

(
1 − Ŷ2

))
 .

Hence. L.H.S.=R.H.S.; i.e.,(
logě Ž1 ⊗ logě Ž2

)
⊗ logě Ž3 = logě Ž1 ⊗

(
logě Ž2 ⊗ logě Ž3

)
.

E. Proof of Theorem 3.2
Proof. Using the Definition 3.2, we get

υ1. logě Ž ⊕ υ2. logě Ž

=




[
1 −

(
logě Ŵ

)$1
, 1 − (logě Ŭ)

υ1
]
,

logě

(
1 − Ŷ

)υ1


⊕


[
1 −

(
logě Ŵ

)υ2
, 1 − logě(Ŭ)

υ2
]
,

logě

(
1 − Ŷ

)υ2




=




[
1 − υ1 logě Ŵ, 1 − υ1 logě Ŭ

]
,

υ1 logě

(
1 − Ŷ

) 
⊕


[
1 − υ2 logě Ŵ, 1 − υ2 logě Ŭ

]
,

υ2 logě

(
1 − Ŷ

) 
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=


[
1 − υ1 logě Ŵ.υ2 logě Ŵ, 1 − υ1 logě Ŭ.1 − υ2 logě Ŭ

]
,

υ1 logě

(
1 − Ŷ

)
.υ2 logě

(
1 − Ŷ

) 
=


[
1 − logě Ŵυ1 . logě Ŵυ2 , 1 − logě Ŭυ1 .1 − logě Ŭυ2

]
,

logě

(
1 − Ŷ

)υ1
. logě

(
1 − Ŷ

)υ2


=

([
1 − logě Ŵυ1⊕υ2 , 1 − logě Ŭυ1⊕υ2

]
, logě

(
1 − Ŷ

)υ1⊕υ2
)

= (υ1 ⊕ υ2) . logě Ž.

(
logě Ž

)υ1
⊗

(
logě Ž

)υ2

=




(
1 − logě Ŵ

)υ1
,

1 −
(
1 − (1 − logě Ŭ)

)υ1

 ,
1 −

(
1 − logě

(
1 − Ŷ

))υ1

 ⊗



(
1 − logě Ŵ

)υ2
,

1 −
(
1 − (1 − logě Ŭ)

)υ2

 ,
1 −

(
1 − logě

(
1 − Ŷ

))υ2


=




(
1 − logě Ŵ

)υ1
.
(
1 − logě Ŵ

)υ2
,

1 −
(
1 − (1 − logě Ŭ)

)υ1
.
(
1 − (1 − logě Ŭ)

)υ2

 ,
1 −

(
1 − logě(1 − Ŷ)

)υ1
.
(
1 − logě(1 − Ŷ)

)υ2


=

[(
1 − logě Ŵ

)υ1⊕υ2
, 1 −

(
1 − (1 − logě Ŭ)

)υ1⊕υ2
]
, 1 −

(
1 − logě

(
1 − Ŷ

))υ1⊕υ2

=
(
logě Ž

)υ1⊕υ2
.

Hence, ((
logě Ž

)υ1
)υ2

=


[(

1 − logě Ŵ
)υ1
, 1 −

(
1 − (1 − logě Ŭ)

)υ1
]
,

1 −
(
1 − logě

(
1 − Ŷ)

))υ1

υ2

.

F. Proof of Theorem 4.1
Proof. We demonstrate this via mathematical induction. So, for n = 1, we have

log−CFWA
(
Ž1

)
= [1 −

(
logě1

(
Ŵ1

))$1
, 1 −

(
logĕ1

(Ŭ1)
)$1

],(
logĕ1

(
1 − Ŷ1

))$1

For n = 2, we have
log−CFWA(Ž1, Ž2) = $1. logĕ1

Ž1 ⊕$2. logĕ Ž2

where

$1. logě1
Ž1 =

 [1 −
(
logē1

(
Ŵ1

))$1
, 1 −

(
logē1

(Ŭ1)
)$1

],(
logĕ1

(
1 − Ŷ1

))$1


and

$2. logĕ2
Ž2 =

 [1 −
(
logē2

(
Ŵ2)

))$2
, 1 −

(
logē2

(Ŭ2)
)$2

],(
logĕ2

(
1 − Ŷ2

))$2

 .
Therefore,

log−CFWA(Ž1, Ž2) = $1. logĕ1
Ž1 ⊕$2. logĕ2

Ž2
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=
([

1 −
(
logē1

(
Ŵ1

))$1
, 1 −

(
logē1

(Ŭ1)
)$1

]
,
(
logĕ1

(
1 − Ŷ1

))$1
)

⊕
([

1 −
(
logē2

(
Ŵ2

))$2
, 1 − (logē2

(Ŭ2))$2
]
,
(
logĕ2

(
1 − Ŷ2

))$2
)

log−CFWA(Ž1, Ž2)

=


[
1 −

2∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

2∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

2∏
p=1

(
logĕp

(
1 − Ŷp

))$P


For n = k, we have

log−CFWA(J1, ..., Jk) =


[
1 −

k∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

k∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

k∏
p=1

(
logĕp

(
1 − Ŷp

))$P


for n = k + 1 we have

log−CFWA(Ž1, ..Žk , Žk+1)
= $1. log ĕ1Ž1 ⊕$2. logĕ2

Ž2 ⊕ ... ⊕$k. logěk
Žk ⊕$k+1. logěk+1

Žk+1

=


[
1 −

k∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

k∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

k∏
p=1

(
logĕp

(
1 − Ŷp

))$P


⊕


[
1 −

(
logěk+1

(
Ŵk+1

))$k+1
, 1 − (logěk+1

(Ŭk+1))$k+1
]
,(

logĕk+1

(
1 − Ŷk+1

))$k+1

 .
By definition, we have

=


[1 −

k+1∏
p=1

(logĕp
(Ŵp)$P , 1 −

k+1∏
p=1

(
logĕp

(Ŭp)
)$P

],

k+1∏
p=1

(
logĕp

(1 − Ŷp)
)$P

 .
Therefore, the result is valid for n = k + 1. As a result, the conclusion holds for all n, i.e.,

log−CFWA
(
Ž1, ..., Žn

)
=


[
1 −

n∏
p=1

(
logĕp

(
Ŵp

))$P
, 1 −

n∏
p=1

(
logĕp

(Ŭp)
)$P

]
,

n∏
p=1

(
logĕp

(
1 − Ŷp

))$P

 .
G. Proof of the Theorem 4.3
Proof. Now, we use the mathematical induction to prove this theorem. So, for n = 1, we have

log−CFWG(Ž1) =

 [
(
1 − logě1

(Ŵ1)
)$1

,
(
1 − logĕ1

(Ŭ1)
)$1

],
1 −

(
1 − logĕ1

(1 − Ŷ1)
)$1
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For n = 2, we have
log−CFWG(Ž1, Ž2) = $1. logĕ1

Ž1 ⊕$2. logĕ Ž2

where

$1. logĕ1
Ž1 =


[(

1 − logě

(
Ŵ1

))$1
,
(
1 − logĕ1

(Ŭ1)
)$1

]
,

1 −
(
1 − logĕ1

(
1 − Ŷ1

))$1


and

$2. logĕ2
Ž2 =


[(

1 − logě

(
Ŵ2

))$2
,
(
1 − logĕ2

(Ŭ2)
)$2

]
,

1 −
(
1 − logĕ2

(
1 − Ŷ2

))$2

 .
Therefore, for n = k, we have

log−CFWG(Ž1, ..., Žk) =


[

k∏
p=1

(
1 − logĕp

(Ŵp)
)$P

,
k∏

p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


For n = k + 1, we have

log−CFWG(Ž1, ..., Žk , Žk+1) = $1. log ĕ1Ž1 ⊕$2. logĕ2
Ž2

⊕.... ⊕$k. logěk
Žk ⊕$k+1. logěk+1

Žk+1

=


[

k∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


⊕

 [(
1 − logěk+1

(
Ŵk+1

))$k+1
, (1 − logěk+1

(Ŭk+1))$k+1
]
,

1 − (1 − logĕk+1
(1 − Ŷk+1))

$k+1

 .
By definition, we have

=


[

k+1∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k+1∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k+1∏
p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
Hence, the result holds for n = k + 1. Thus, the result is true for all n, i.e.,

log−CFWG
(
Ž1, ..., Žn

)
=


[

n∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

n∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
n∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
H. Proof of the Theorem 5.1
Proof. Now, we use the mathematical induction to prove this theorem. So, for n = 1, we have

log−CFWG(Ž1) =

 [
(
1 − logě1

(Ŵ1)
)$1

,
(
1 − logĕ1

(Ŭ1)
)$1

],
1 −

(
1 − logĕ1

(1 − Ŷ1)
)$1
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For n = 2, we have
log−CFWG(Ž1, Ž2) = $1. logĕ1

Ž1 ⊕$2. logĕ Ž2,

where

$1. logĕ1
Ž1 =


[(

1 − logě

(
Ŵ1

))$1
,
(
1 − logĕ1

(Ŭ1)
)$1

]
,

1 −
(
1 − logĕ1

(
1 − Ŷ1

))$1


and

$2. logĕ2
Ž2 =


[(

1 − logě

(
Ŵ2

))$2
,
(
1 − logĕ2

(Ŭ2)
)$2

]
,

1 −
(
1 − logĕ2

(
1 − Ŷ2

))$2

 .
Therefore, for n = k, we have

log−CFWG(Ž1, ..., Žk) =


[

k∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


For n = k + 1, we have

log−CFWG(Ž1, ..., Žk , Žk+1) = $1. log ĕ1Ž1 ⊕$2. logĕ2
Ž2

⊕.... ⊕$k. logěk
Žk ⊕$k+1. logěk+1

Žk+1

=


[

k∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


⊕

 [(
1 − logěk+1

(
Ŵk+1

))$k+1
, (1 − logěk+1

(Ŭk+1))$k+1
]
,

1 − (1 − logĕk+1
(1 − Ŷk+1))

$k+1

 .
By definition, we have

=


[

k+1∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k+1∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k+1∏
p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
Hence, the result holds for n = k + 1. Thus, the result is true for all n, i.e.,

log−CFWG
(
Ž1, ..., Žn

)
=


[

n∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

n∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
n∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
I. Proof of the Theorem 5.3
Proof. We prove this using mathematical induction. So, for n = 1, we have

log−COWG(Ž1) =


[(

1 − logě1

(
Ŵ1

))$1
,
(
1 − logĕ1

(Ŭ1)
)$1

]
,

1 −
(
1 − logĕ1

(
1 − Ŷ1

))$1
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For n = 2, we have
log−COWG(Ž1, Ž2) = $1. logĕ1

Ž1 ⊕$2. logĕ Ž2

where

$1 . logě1
Ž1 =


[(

1 − logě1

(
Ŵ1

))$1
,
(
1 − logĕ1

(Ŭ1)
)$1

]
,

1 −
(
1 − logĕ1

(
1 − Ŷ1

))$1


and

$2. logĕ2
Ž2 =


[(

1 − logě2

(
Ŵ2

))$2
,
(
1 − logĕ2

(Ŭ2)
)$2

]
,

1 −
(
1 − logĕ2

(
1 − Ŷ2

))$2

 .
Therefore,

log−COWG(Ž1, Ž2) = $1. logĕ1
Ž1 ⊕$2. logĕ2

Ž2

=

 [
(
1 − logě1

(
Ŵ1

))$1
,
(
1 − logĕ1

(Ŭ1)
)$1

],
1 −

(
1 − logĕ1

(
1 − Ŷ1

))$1


⊕


[(

1 − logě2
(Ŵ2)

)$2
,
(
1 − logĕ2

(Ŭ2)
)$2

]
,

1 −
(
1 − logĕ2

(
1 − Ŷ2

))$2


log−COWG(Ž1, Ž2) =


[

2∏
p=1

(
1 − logĕp

(Ŵp)
)$P

,
2∏

p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
2∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


For n = k, we have

log−COWG(Ž1, ..., Žk)

=


[

k∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


For n = k + 1, we have

log−COWG(Ž1, ..., Žk , Žk+1)
= $1. logĕ1

Ž1 ⊕$2. logĕ2
Ž2 ⊕ ... ⊕$k. logěk

Žk ⊕$k+1. logěk+1
Žk+1

=


[

k∏
p=1

(
1 − logĕp

(
Ŵp

))$P
,

k∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P


⊕

 [(
1 − logěk+1

(
Ŵk+1

))$k+1
, (1 − logěk+1

(Ŭk+1))$k+1
]
,

1 − (1 − logĕk+1
(1 − Ŷk+1))

$k+1

 .
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By definition, we have

=


[

k+1∏
p=1

(
1 − logĕp

(Ŵp)
)$P

,
k+1∏
p=1

(
1 − logĕp

(Ŭp)
)$P

]
,

1 −
k+1∏
p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
Therefore, the result is valid for n = k + 1. As a result, the conclusion holds for all n, i.e.,

log−COWG
(
Ž1, ..., Žn

)
=


[

n∏
p=1

(
1 − logĕp

(Ŵp)
)$P

,
n∏

p=1

(
1 − logĕp

(Ŭp)
)$P

],

1 −
n∏

p=1

(
1 − logĕp

(
1 − Ŷp

))$P

 .
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